Gliwice, March 2004

Visual Basic .NET

EE

ShortOverview

Marek Mittmann

$ Agenda

= Data types and operators
= Statements

= Arrays

= Classes and objects

= Properties and indexers

= Delegates and events

:L First program

' Hello world application
Module Hello
Sub Main ()
MsgBox ("Hello world!")
End Sub
End Module

:L Console application

Imports System
Module Hello
Sub Main (ByVal CmdArgs () As String)
Dim I As Integer
Console.WriteLine ("Hello world!")
For I = 0 To CmdArgs.GetUpperBound(0)

Console.Writeline ("CmdArgs[{0}] = {1}", _

I, CmdArgs(I))
Next I
End Sub
End Module

VB.NET data types

Object reference to object

String sequence of Unicode characters

Char Unicode character

Byte 8-bitinteger value

Short 16-bitinteger value

Integer | 32-bitinteger value

Long 64-bitinteger value

Single floating-point number (single precision)
Double | floating-point number (double precision)
Boolean | logical value (7rue or Fal/se)

Decimal | fixed-pointdecimal number

Date date value

Value types and reference
types

Dim i As Integer 'value type
Dim s As String 'reference type
i =123

s = "Text..."

stack heap

i 123

s o——P| Text.

$ Boxing

Dim i As Integer
Dim o As Object
o=1i

stack heap

=]

= 123

of e—P| e—P systemint32

123

Operators

Arithmetic + - * / \ Mod
Logical/bitwise |Not And Or Xor AndAlko
Concatenation & +

Comparison = <> < > <= >= Lke
Assignment H == U (= \E A=
Miscellaneous AddressOf GetType

OrElse

Namespaces

.Namespace MyNamespace
Namespace Inner
Class MyClass
Shared Sub Procl ()
'procedure body

| Module MyApp
Sub Main ()

End Sub
End Module

NamespaceAlias.Procl ()

E
End Imports System, Microsoft.VisualBasic
n
End N Imports NamespaceAlias = MyNamespace.Inner
n
End Nam

Constants and variables

Sub Main()

' variables

Dim r As Single = 1.25F
Dim a, b As Integer

Dim c As Integer = 2

' constants

Const pi As Single = 3.14F

a=12 : b =1
Console.WriteLine(a + b + ¢)

Console.WriteLine(pi * r * r)

End Sub

10

9
Enum Color
Red '=0
Green = 10 ' = 10
Blue "= 11
End Enum
Sub Main()
Dim c As Color = Color.Green
DrawBox2D (10, 20, c)
DrawBox2D (12, 10, Color.Blue)
End Sub
11

Conditional statements

Sub Main(ByVal CmdArgs () As String)

If CmdArgs.length = 0
Console.WriteLine ("No arguments")
ElseIf CmdArgs.Length =1
Console.WriteLine ("Single argument")
Else
Console.WriteLine ("{0} arguments", _
CmdArgs. Length)
End If

End Sub

12

Select statement

Sub Main(ByVal CmdArgs () As String)

Select Case CmdArgs.Length
Case 1, 2
Console.Writeline ("To few arguments")
Case 3 To 5
UseArgsl(CmdArgs)
Case Is < 7
UseArgs2(CmdArgs)
Case Else
Console .Writeline ("Error")
End Select

Loop statements

Dim I As Integer

For I = 0 To OmndArgs.Length-1
Console.WriteLine (CmdArgs (I))

Next I

I =0
While I < CmdArgs.Length
Console.WriteLine (CmdArgs(I)) : I +=

End While
I=0
Do

Console.WriteLine (CmdArgs (I)) : I +=
Loop Until I >= CmdArgs.Length

14
Exit statement
Sub Main(ByVal CmdArgs () As String)
Dim I As Integer
For I = 0 To CmdArgs.GetUpperBound(0)
If CmdArgs(I) = "end" Then Exit For
Console.Writeline (CmdArgs (I))
Next I
I=0
While I < CmdArgs.Length
If CmdArgs(I) = "end" Then Exit While
Console.Writeline (CmdArgs (I))
End While
End Sub
16

End Sub
13
Foreach statement
Sub Main()
Dim Table() As Integer = New Integer() {2, 1, -5}
Dim I As Integer
For Each I In Table
Console.WriteLine (I)
Next I
End Sub
15
Procedures and functions
' Function
Function Sum(ByVal A As Double, _
ByVal B As Double) As Double
Sum = a + b
End Function
' Procedure
Sub Main(ByVal CmdArgs () As String)
If CmdArgs.Llength < 2 Then Exit Sub
Console.WriteLine (Sum(Val (CmdArgs (0)),
Val (CmdArgs (1))))
End Sub
17

i Exceptions

Fuhction Div(ByVal A'As Integer, _
ByVal B As Integer) As Integer

If B = 0 Then Throw New Exception("Divide by zero")

Div =A / B
End Function

Sub Main(ByVal CmdArgs () As String)
Try
Console.WriteLine (Div (Val (CmdArgs (0)),
Val (CmdArgs(1))))
Catch Ex As Exception

Console.WriteLine ("Error: " & Ex.Message)
Finally

Console.Writeline ("Done")
End Try

End Sub

Arrays

' Single-dimensional arrays

Dim V1(10) As Integer

Dim V2 () As Integer = {2, 3, 0, 7, 3, -5}

Dim V3 () As Integer = New Integer(2) {}

Dim V4 () As Integer = New Integer() {1, -2, 3, 0}

vV1(0) =v2(2)
v3(1) =5

' Multidimensional arrays

Dim M1 (4, 3) As Integer

Dim M2 (,) As Byte = {{1, 4}, {5, 7}}

Dim M3(,,) As Byte = New Byte (3, 3, 2) {}

M2(0, 0) = 3

19

Jagged arrays

Dim T1()() As Byte = {New Byte(2){}, New Byte(4){}}

Dim T2(1) () As Integer

T2(0) = New Integer(l) {1, -5}

T2 (1) = New Integer(2) {}

T2(1) (0) = 2 : T2(1)(1) = -3 : T2(1)(2) = 7

Dim I, J As Integer
For I =0 To T2.Length-1
For J = 0 To T2(I).Length-1
Console.WriteLine ("[{0}]1[{1}] = {2}",
I, J, T2(I) (J))

Using arrays

Dim Arr(20), Arr2(20), Il1l, I2, I3 As Integer

' Reversing

Array.Reverse (Arr)

' Sorting
Array.Sort (Arr)

' Searching

Il = Array.IndexOf (Arr, 5)

I2 = Array.IndexOf (Arr, 5, Il + 1)
I3 = Array.BinarySearch(Arr, 10)

' Copying
Arr.CopyTo (Arr2, 0)

21

Next J
Next I
20
Dim S1 As String = "Alice has a cat"
Dim S2 As String = "line 1"&Chr(10)&Chr(13)&"line 2"

' String length
Dim Len As Integer
Len = Sl.Length

' Concatenation
S1 = Sl & " and a dog"

' Indexing
Dim I As Integer
For I =0 To Sl.Length-1
Console.WriteLine ("Char {0}: {1}", I, Sl.Chars(I))
Next I

String manipulation

Dim S1, S2 As String

Dim Cmpl, Cmp2, Cmp3 As Boolean
Dim Il As Integer

S1 = "Text..." : S2 = "text..."
' Case-sensitive comparison

Cmpl = sl = s2

Cmp2 = String.Compare(S1l, S2) =0
' Case-insensitive comparison

Cmp3 = String.Compare(sl, s2, true) =0
' Searching for a substring

Il = S1.IndexOf ("some text")

' Copying of a substring

S2 = Sl.Substring(2, 4)

' Replacing

S1 = Sl.Replace("old", "new") 'string is immutable

Z3

:L Classes

‘Class Point
Public X As Short = ' attributes
Public Y As Short = 0 ’

l
o

Public Sub New(ByVal X As Short, ByVal Y As Short)
Me.X = X : Me.Y = Y ' constructor
End Sub

Public Sub Show() ' ‘member method
Console.WriteLine (" ({0}, {1})™", X, Y)
End Sub
End Class

Sub Main()
Dim Pt As Point = New Point (10, 5) : Pt.Show()
End Sub

With statement

Class Point3D
Public X As Integer = 0
Public Y As Integer = 0
Public Z As Integer = 0
End Class

Sub Main()
Dim Pt As Point3D = New Point3D()
With Pt
.X =10

25

_-L Passing arguments

Class Point
Dim X As Short = 0 : Dim Y As Short = 0
' passing arguments by value
Public Sub SetXY(ByVal X As Short, ByVal Y As Short)
Me.X =X : Me.Y =Y
End Sub
' passing arguments by reference
Public Sub GetXY (ByRef X As Short, ByRef Y As Short)
X =Me.X : Y = Me.Y
End Sub
End Class
Dim Pt As Point = New Point ()
Dim X0, X1, Y1 As Short : X0 = 5 : X1
Pt.SetXY(X0, 4)
Pt.GetXY(X1l, Yl) ' after call X1 = 5 and Y1 = 4

n
o

¥l =0

Optional arguments

Class Camputer
Dim Id As String
Dim Type As String

Public Sub New(ByVal aId As String,
Optional ByVal aType As String = "PC")
Id = aId : Type = aType
End Sub
End Class

Dim Cl As Computer = New Computer ("COOl") ' Type = "PC"
Dim C2 As Computer = New Computer ("C002", "Notebook")

27

Overloading

Class Point
Public X As Short = 0
Public Y As Short = 0

Overloads Public Sub SetXY(ByVal X As Short,
ByVal Y As Short)

Me.X = X
Me.Y = Y
End Sub

Overloads Public Sub SetXY (ByRef Pt As Point)
X =Pt.X
Y =Pt.Y
End Sub
End Class

Inheritence

Derived class

Class Point

Inherits GraphObject

Public X As Short = 0 : Public Y As Short = 0

'

Public Sub New (ByVal Name As String,
ByVal X As Short, ByVal Y As Short)
MyBase .New (Name)
Me.X = X : Me.Y =Y
End Sub

Public Sub Show ()
Console.WriteLine (" ({0}, {1})", X, Y¥)
End Sub
End Class

29

_‘L Virtual methods

Class Point
Inherits GraphObject
Public X As Short = 0
Public Y As Short = 0

Public Sub New(ByVal Name As String, _
ByVal X As Short, ByVal Y As Short)
MyBase .New (Name)
Me.X = X : Me.Y =Y
End Sub
' virtual method in derived class
Public Overrides Sub Show ()
Console.WriteLine ("{0}: ({1}, {2})", Name, X, Y)
End Sub
End Class

Abstract classes

' abstract class
MustInherit Class GraphObject
Public Name As String

Public Sub New (ByVal Name As String)
Me .Name = Name
End Sub

' pure-virtual method
Public MustOverride Sub Show ()
End Class

31

Interfaces

Interface IGraphObject
Sub Show ()
End Interface

Class Point
Implements IGraphGbject
'

Public Sub Show() Implements IGraphGbject.Show
Console.WriteLine (" ({0}, {1})", X, Y)
End Sub
End Class

Dim Pt As Point = New Point (2, 5)
Dim graphObj As IGraphObject = Pt
If Not graphObj Is Nothing Then graphCbj.Show()

32

Members accessibility

= Accessibility modifiers for classes
« Friend - accessible fram the same module
= Public — accessible fran anywhere

= Accessibility modifiers for class members

= Public — accessible fran anywhere

= Protected —accessible fran the same class and
from inherited classes

= Private —only from within the same class

= Friend —fram the same module

= Protected Friend — from the same module and
from inherited classes

33

Constructor and destructor

Class ResourceWrapper
Dim Handle As Integer = 0

' Constructor
Public Sub New ()

Handle = GetWindowsResource ()
End Sub

' Destructor

Protected Overrides Sub Finalize ()
' Doesn't known, when it will be called
FreeWindowsResource (Handle)
MyBase.Finalize ()

:L Interface IDisposable

ciass ResourceWrapper : Implements IDisposable
Private Sub DoDispose ()
FreeWindowsResource (Handle)
Handle = 0
End Sub

Public Sub Dispose() Implements IDisposable.Dispose
DoDispose ()
GC.SuppressFinalize (Me)

End Sub

Protected Overrides Sub Finalize()

DoDispose ()
End Sub
End Class

End Sub
End Class 34
Class GraphObject
Shared Counter As Integer = 0
Public Name As String
Public Sub New ()
Counter +=1
Me.Name = "GraphObject" + Counter.ToString()
End Sub
Public Shared Sub ResetCounter()
Counter = 0
End Sub
End Class
36

Properties

Class Point
Dim X As Short = 0
Dim Y As Short = 0

Public Property X() As Short

;L Default properties

CIldss Worksheet
Dim Data (20, 20) As Double

Default Public Property Value (ByVal Col As String,
ByVal Row As Integer) As Double
Get
Return Data (Row, ColToIndex (Col))
End Get
Set(ByVal Value As Double)
Data (Row, ColToIndex (Col)) = Value
End Set
End Property
End Class

'

Dim sheet As Worksheet = New Worksheet()
Sheet ("A", 10) = 20.5

Get
Return X
End Get
Set (ByVal Value As Short)
X = Value
End Set
End Property
End Class
37
Delegate Sub MyDelegate (ByVal Arg As String)
Class Tester
Sub Proc(ByVal Arg As String)
Console.WriteLine ("Proc({0})", Arg)
End Sub
End Class
Sub Main(ByVal CmdArgs () As String)
Dim C As Tester = New Tester ()
Dim D As MyDelegate = AddressOf C.Proc
D.Invoke (CmdArgs (0)) ' calls procedure
' pointed by delegate
End Sub
Gl 39

Events

Class Button
Public Event ClickEvent () ' points the event
Public Sub PerformClick() ' raises the event
RaiseEvent ClickEvent ()
End Sub
End Class

Public Sub OnClick () '"event handler
Console.WriteLine ("Button clicked")
End Sub

Sub Main()
Dim Bt As Button = new Button|()
AddHandler Bt.ClickEvent, AddressOf OnClick
Bt .PerformClick ()

End Sub 40

Event handlers

Friend WithEvents Buttonl As Windows.Forms.Button

Protected Sub Buttonl Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Buttonl.Click

MsgBox("Button clicked")
End Sub

a1

Summary of classes, structures
and interfaces

= Class
= defines aset of properties, methods and events
= reference type (allocaed on the heap)
= Structure
= like class can contains data and methods
= value type (stored on the stadk)
= may not be inherited from
= Interface
= similar to class, but do not provide implementation

42

EE

Questions?

