
1

Visual Basic .NET

Short Overview

Marek Mittmann

Gliwice, March 2004

2

Agenda

� Data types and operators

� Statements

� Arrays

� Classes and objects

� Properties and indexers

� Delegates and events

3

First program

' Hello world application

Module Hello

Sub Main()

MsgBox("Hello world!")

End Sub

End Module

4

Console applicat ion

Imports System

Module Hello

Sub Main(ByVal CmdArgs() As String)

Dim I As Integer

Console.WriteLine("Hello world!")

For I = 0 To CmdArgs.GetUpperBound(0)

Console.WriteLine("CmdArgs[{0}] = {1}", _

I, CmdArgs(I))

Next I

End Sub

End Module

5

VB.NET data types

refer enc e to object

sequence of Unicode characters

Unicode character

8-bit integer value

16-bit integer value

32-bit integer value

64-bit integer value

floating-point number (single precision)

floating-point number (double precision)

logical value (True or False)

fixed-point decimal number

date value

Object

String

Char

Byte

Short

Integer

Long

Single

Double

Boolean

Decimal

Date

6

Value types and reference

types

123i

s

Dim i As Integer 'value type
Dim s As String 'reference type
i = 123

s = "Text..."

Text…

stack heap

2

7

Boxing

123i

o System.Int32

stack heap

123

Dim i As Integer = 123
Dim o As Object
o = i

8

Operators

+ - * / \ Mod ^

Not And Or Xor AndAlso OrElse

& +

= <> < > <= >= Like Is

= += -= *= /= \= ̂ = &=

AddressOf GetType

Arithmetic

Logical/bitwise

Concatenation

Comparison

Assignment

Miscellaneous

9

Namespaces
Namespace MyNamespace

Namespace Inner

Class MyClass

Shared Sub Proc1()

'procedure body

End Sub

End Class

End Namespace

End Namespace

Imports System, Microsoft.VisualBasic

Imports NamespaceAlias = MyNamespace.Inner

Module MyApp

Sub Main()

NamespaceAlias.Proc1()

End Sub

End Module

10

Constants and variables

Sub Main()

' variables

Dim r As Single = 1.25F

Dim a, b As Integer

Dim c As Integer = 2

' constants

Const pi As Single = 3.14F

a = 12 : b = 1

Console.WriteLine(a + b + c)

Console.WriteLine(pi * r * r)

End Sub

11

Enumerations

Enum Color

Red ' = 0

Green = 10 ' = 10

Blue ' = 11

End Enum

Sub Main()

Dim c As Color = Color.Green

DrawBox2D(10, 20, c)

DrawBox2D(12, 10, Color.Blue)

End Sub

12

Conditional statements

Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length = 0

Console.WriteLine("No arguments")

ElseIf CmdArgs.Length = 1

Console.WriteLine("Single argument")

Else

Console.WriteLine("{0} arguments", _

CmdArgs.Length)

End If

End Sub

3

13

Select statement

Sub Main(ByVal CmdArgs() As String)

Select Case CmdArgs.Length

Case 1, 2

Console.WriteLine("To few arguments")

Case 3 To 5

UseArgs1(CmdArgs)

Case Is < 7

UseArgs2(CmdArgs)

Case Else

Console.WriteLine("Error")

End Select

End Sub

14

Loop statements

Dim I As Integer

For I = 0 To CmdArgs.Length-1

Console.WriteLine(CmdArgs(I))

Next I

I = 0

While I < CmdArgs.Length

Console.WriteLine(CmdArgs(I)) : I += 1

End While

I = 0

Do

Console.WriteLine(CmdArgs(I)) : I += 1

Loop Until I >= CmdArgs.Length

15

Foreach statement

Sub Main()

Dim Table() As Integer = New Integer() {2, 1, -5}

Dim I As Integer

For Each I In Table

Console.WriteLine(I)

Next I

End Sub

16

Exit statement

Sub Main(ByVal CmdArgs() As String)

Dim I As Integer

For I = 0 To CmdArgs.GetUpperBound(0)

If CmdArgs(I) = "end" Then Exit For

Console.WriteLine(CmdArgs(I))

Next I

I = 0

While I < CmdArgs.Length

If CmdArgs(I) = "end" Then Exit While

Console.WriteLine(CmdArgs(I))

End While

End Sub

17

Procedures and functions

' Function

Function Sum(ByVal A As Double, _

ByVal B As Double) As Double

Sum = a + b

End Function

' Procedure

Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length < 2 Then Exit Sub

Console.WriteLine(Sum(Val(CmdArgs(0)), _

Val(CmdArgs(1))))

End Sub

18

Exceptions
Function Div(ByVal A As Integer, _

ByVal B As Integer) As Integer

If B = 0 Then Throw New Exception("Divide by zero")

Div = A / B

End Function

Sub Main(ByVal CmdArgs() As String)

Try

Console.WriteLine(Div(Val(CmdArgs(0)), _

Val(CmdArgs(1))))

Catch Ex As Exception

Console.WriteLine("Error: " & Ex.Message)

Finally

Console.Writeline("Done")

End Try

End Sub

4

19

Arrays
' Single-dimensional arrays

Dim V1(10) As Integer

Dim V2() As Integer = {2, 3, 0, 7, 3, -5}

Dim V3() As Integer = New Integer(2) {}

Dim V4() As Integer = New Integer() {1, -2, 3, 0}

V1(0) = V2(2)

V3(1) = 5

' Multidimensional arrays

Dim M1(4, 3) As Integer

Dim M2(,) As Byte = {{1, 4}, {5, 7}}

Dim M3(,,) As Byte = New Byte(3, 3, 2) {}

M2(0, 0) = 3
20

Jagged arrays

Dim T1()() As Byte = {New Byte(2){}, New Byte(4){}}

Dim T2(1)() As Integer

T2(0) = New Integer(1) {1, -5}

T2(1) = New Integer(2) {}

T2(1)(0) = 2 : T2(1)(1) = -3 : T2(1)(2) = 7

Dim I, J As Integer

For I = 0 To T2.Length-1

For J = 0 To T2(I).Length-1

Console.WriteLine("[{0}][{1}] = {2}", _

I, J, T2(I)(J))

Next J

Next I

21

Using arrays

Dim Arr(20), Arr2(20), I1, I2, I3 As Integer

' Reversing

Array.Reverse(Arr)

' Sorting

Array.Sort(Arr)

' Searching

I1 = Array.IndexOf(Arr, 5)

I2 = Array.IndexOf(Arr, 5, I1 + 1)

I3 = Array.BinarySearch(Arr, 10)

' Copying

Arr.CopyTo(Arr2, 0)
22

Strings

Dim S1 As String = "Alice has a cat"

Dim S2 As String = "line 1"&Chr(10)&Chr(13)&"line 2"

' String length

Dim Len As Integer

Len = S1.Length

' Concatenation

S1 = S1 & " and a dog"

' Indexing

Dim I As Integer

For I = 0 To S1.Length-1

Console.WriteLine("Char {0}: {1}", I, S1.Chars(I))

Next I

23

String manipulat ion
Dim S1, S2 As String

Dim Cmp1, Cmp2, Cmp3 As Boolean

Dim I1 As Integer

S1 = "Text..." : S2 = "text..."

' Case-sensitive comparison

Cmp1 = s1 = s2

Cmp2 = String.Compare(S1, S2) = 0

' Case-insensitive comparison

Cmp3 = String.Compare(s1, s2, true) = 0

' Searching for a substring

I1 = S1.IndexOf("some text")

' Copying of a substring

S2 = S1.Substring(2, 4)

' Replacing

S1 = S1.Replace("old", "new") 'string is immutable
24

Classes
Class Point

Public X As Short = 0 ' attributes

Public Y As Short = 0 '

Public Sub New(ByVal X As Short, ByVal Y As Short)

Me.X = X : Me.Y = Y ' constructor

End Sub

Public Sub Show() ' member method

Console.WriteLine("({0}, {1})", X, Y)

End Sub

End Class

Sub Main()

Dim Pt As Point = New Point(10, 5) : Pt.Show()

End Sub

5

25

With statement

Class Point3D

Public X As Integer = 0

Public Y As Integer = 0

Public Z As Integer = 0

End Class

Sub Main()

Dim Pt As Point3D = New Point3D()

With Pt

.X = 10

.Y = -2

.Z = 4

End With

End Sub

26

Passing arguments
Class Point

Dim X As Short = 0 : Dim Y As Short = 0

' passing arguments by value

Public Sub SetXY(ByVal X As Short, ByVal Y As Short)

Me.X = X : Me.Y = Y

End Sub

' passing arguments by reference

Public Sub GetXY(ByRef X As Short, ByRef Y As Short)

X = Me.X : Y = Me.Y

End Sub

End Class

' ...

Dim Pt As Point = New Point()

Dim X0, X1, Y1 As Short : X0 = 5 : X1 = 0 : Y1 = 0

Pt.SetXY(X0, 4)

Pt.GetXY(X1, Y1) ' after call X1 = 5 and Y1 = 4

27

Optional arguments

Class Computer

Dim Id As String

Dim Type As String

Public Sub New(ByVal aId As String,

Optional ByVal aType As String = "PC")

Id = aId : Type = aType

End Sub

End Class

' ...

Dim C1 As Computer = New Computer("C001") ' Type = "PC"

Dim C2 As Computer = New Computer("C002", "Notebook")

28

Overloading
Class Point

Public X As Short = 0

Public Y As Short = 0

Overloads Public Sub SetXY(ByVal X As Short, _

ByVal Y As Short)

Me.X = X

Me.Y = Y

End Sub

Overloads Public Sub SetXY(ByRef Pt As Point)

X = Pt.X

Y = Pt.Y

End Sub

End Class

29

Inheritence

' Base class

Class GraphObject

Public Name As String

Public Sub New(ByVal Name As String)

Me.Name = Name

End Sub

End Class

' Derived class

Class Point

Inherits GraphObject

Public X As Short = 0 : Public Y As Short = 0

Public Sub New(ByVal Name As String, _

ByVal X As Short, ByVal Y As Short)

MyBase.New(Name)

Me.X = X : Me.Y = Y

End Sub

Public Sub Show()

Console.WriteLine("({0}, {1})", X, Y)

End Sub

End Class
30

Virtual methods

Class GraphObject

Public Name As String

Public Sub New(ByVal Name As String)

Me.Name = Name

End Sub

' virtual method in base class

Public Overridable Sub Show()

Console.WriteLine("{0}", Name)

End Sub

End Class

Class Point

Inherits GraphObject

Public X As Short = 0

Public Y As Short = 0

Public Sub New(ByVal Name As String, _

ByVal X As Short, ByVal Y As Short)

MyBase.New(Name)

Me.X = X : Me.Y = Y

End Sub

' virtual method in derived class

Public Overrides Sub Show()

Console.WriteLine("{0}:({1}, {2})", Name, X, Y)

End Sub

End Class

6

31

Abstract classes

' abstract class

MustInherit Class GraphObject

Public Name As String

Public Sub New(ByVal Name As String)

Me.Name = Name

End Sub

' pure-virtual method

Public MustOverride Sub Show()

End Class

32

Interfaces
Interface IGraphObject

Sub Show()

End Interface

Class Point

Implements IGraphObject

'...

Public Sub Show() Implements IGraphObject.Show

Console.WriteLine("({0}, {1})", X, Y)

End Sub

End Class

Dim Pt As Point = New Point(2, 5)

Dim graphObj As IGraphObject = Pt

If Not graphObj Is Nothing Then graphObj.Show()

33

Members accessibility

� Accessibility modifiers for classes
� Friend – accessible from the same module

� Public – accessible from anywhere

� Accessibility modifiers for class members
� Public – accessible from anywhere
� Protected – accessible from the same class and
from inherited classes

� Private – only from within the same class
� Friend – from the same module

� Protected Friend – from the same module and
from inherited classes

34

Constructor and destructor

Class ResourceWrapper

Dim Handle As Integer = 0

' Constructor

Public Sub New()

Handle = GetWindowsResource()

End Sub

' Destructor

Protected Overrides Sub Finalize()

' Doesn't known, when it will be called

FreeWindowsResource(Handle)

MyBase.Finalize()

End Sub

End Class

35

Interface IDisposable
Class ResourceWrapper : Implements IDisposable

' ...

Private Sub DoDispose()

FreeWindowsResource(Handle)

Handle = 0

End Sub

Public Sub Dispose() Implements IDisposable.Dispose

DoDispose()

GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

DoDispose()

End Sub

End Class 36

Shared members

Class GraphObject

Shared Counter As Integer = 0

Public Name As String

Public Sub New()

Counter += 1

Me.Name = "GraphObject" + Counter.ToString()

End Sub

Public Shared Sub ResetCounter()

Counter = 0

End Sub

End Class

7

37

Properties

Class Point

Dim X As Short = 0

Dim Y As Short = 0

Public Property X() As Short

Get

Return X

End Get

Set(ByVal Value As Short)

X = Value

End Set

End Property

End Class

38

Default propert ies
Class Worksheet

Dim Data(20, 20) As Double

Default Public Property Value(ByVal Col As String, _

ByVal Row As Integer) As Double

Get

Return Data(Row, ColToIndex(Col))

End Get

Set(ByVal Value As Double)

Data(Row, ColToIndex(Col)) = Value

End Set

End Property

End Class

' ...

Dim sheet As Worksheet = New Worksheet()

Sheet("A", 10) = 20.5

39

Delegates

Delegate Sub MyDelegate(ByVal Arg As String)

Class Tester

Sub Proc(ByVal Arg As String)

Console.WriteLine("Proc({0})", Arg)

End Sub

End Class

Sub Main(ByVal CmdArgs() As String)

Dim C As Tester = New Tester()

Dim D As MyDelegate = AddressOf C.Proc

D.Invoke(CmdArgs(0)) ' calls procedure

' pointed by delegate

End Sub
40

Events
Class Button

Public Event ClickEvent() ' points the event

Public Sub PerformClick() ' raises the event

RaiseEvent ClickEvent()

End Sub

End Class

Public Sub OnClick() ' event handler

Console.WriteLine("Button clicked")

End Sub

Sub Main()

Dim Bt As Button = new Button()

AddHandler Bt.ClickEvent, AddressOf OnClick

Bt.PerformClick()

End Sub

41

Event handlers

Friend WithEvents Button1 As Windows.Forms.Button

Protected Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

MsgBox("Button clicked")

End Sub

42

Summary of classes, structures

and interfaces

� Class

� defines a set of properties, methods and events

� reference type (allocated on the heap)

� Structure

� like class can contains data and methods

� value type (stored on the stack)

� may not be inherited from

� Interface

� similar to class, but do not provide implementation

8

Questions?

