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ABSTRACT 
 
The generation of animated human figures especially in crowd 
scenes has many applications in such domains as the special ef-
fects industry, computer games or for the simulation of the 
evacuation from crowded areas. Automation in action creation 
eliminates the need for human labour, which shortens the task of 
generation of the crowd scenes and also reduces the costs. This 
paper addresses a shortcoming of the architectures designed for 
creation of animated scenes with autonomous agents by propos-
ing a module for automatic acquisition of new high-level actions. 
Agents use reinforcement learning to acquire these actions and 
the chosen algorithm is the deterministic version of Q-learning. 
This allows for easy definition of the task, since only the ultimate 
goal of the learning agent must be defined. Generated actions can 
then be used to enrich the animation produced by the animation 
system. The paper also compares results achieved when training 
agents with forward and inverse kinematics control. 
 
INTRODUCTION 
 
The creation of animated scenes involving interacting characters 
is a problem in such applications as film post-production and 
special effects, computer games or event simulation in crowded 
areas. Crowd scenes, created by dedicated intelligent systems or 
by human animators, usually rely on a number of high-level ac-
tions assigned to the avatars and performed at specific times. In 
scenes, where the fine detail is not a crucial factor, generation of 
those actions could be automated. This paper focuses on rein-
forcement learning as a means of extending such intelligent sys-
tems. The proposed solution addresses the elimination of the 
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tedious animation job performed by human animators and direc-
tors to create new sets of more complex actions. It also provides 
a way of easy scripting and parameterisation of generated anima-
tion. Such scripting is difficult to achieve when working with 
sequences acquired by applying manual animation or motion 
capture techniques. On the other hand automatically generated 
sequences can later be incorporated into existing animation tools. 
 
The problem of automatic creation of computer characters has 
been addressed by researchers trying to make the animated char-
acters more intelligent (Funge 1999; Isla et al. 2001). The main 
problem with those architectures is that they miss features needed 
to generate realistic crowd scenes (interaction, details of the cog-
nitive architecture (Funge 1999), bias on animal-like creatures in 
the C4 architecture (Isla et al. 2001; Blumberg et al. 2002) and 
therefore leave a broad scope for research into the problems in-
volved, especially with human-like creatures. The growing popu-
larity of agent-based architectures and methodologies brought 
new discoveries into the field of autonomy, distribution and in-
teraction (Rao and Georgeff 1995; Wooldridge et al. 2000; 
Wood and DeLoach 2001; Mylopoulos et al. 2001; Winikoff et 
al. 2001) and gave a new opportunity to apply recent advances in 
AI to the problem of automatic animation generation. However 
there has been a very limited application of those systems into 
the field of computer animation. 
 
An example of a system trying to solve this problem is FreeWill 
(Szarowicz et al. 2002) upon which we based our implementa-
tion. FreeWill proposed an architecture suitable to create intelli-
gent and realistic animation by incorporating elements found in 
both animation-driven systems and distributed (multiagent) solu-
tions. Each avatar participating in the animation consists of an 
intelligent agent together with a body layer, which is responsible 
for handling the visible part of the agent. 
 
FreeWill utilises the idea of high-level actions, which are the 
same as plan libraries often used in the agent literature. 
These high-level actions (e.g. shaking hands with another 
avatar or opening a door) contain sequences of simple ac-
tions, which can be readily copied and pasted into the action 
sequence generated by each agent. Therefore the quality of 
the simulation highly depends on the number of different 



 

 

high-level actions an agent has at its disposal. An off-line 
automatic acquisition of those actions would greatly improve 
the results obtained from the system.  
 
The goal of the presented work is to propose a method for such 
an automatic acquisition of high-level actions based on machine 
learning. It should be faithful enough to be applied in crowd 
scenes thus relieving the human animator of some of the most 
tedious tasks. A sample action that we have succeeded to auto-
matically generate and acquire consists of opening a door and 
walking through it. 
 
We are assuming that the avatar is able to perform a number of 
low-level actions and there is a high-level goal defined for the 
agent to achieve. The problem solution will include a sequence 
of low-level actions, which allow the agent to achieve the goal. 
We will call this sequence a high-level action. 
 
MACHINE-LEARNING BASED  
ACTION ACQUISITION 
 
A fully automated acquisition of high-level animation actions 
requires very little user intervention. Only goals for the learning 
task must be defined, while performance adaptation is unsuper-
vised. Reinforcement Learning (RL) methods (Sutton and Barto 
1998; Mitchell 1997) fulfil these criteria. RL is a Machine Learn-
ing technique whereby autonomous software (the agent) learns 
by trial and error which action to perform by interacting with the 
environment. Explicit precompiled models of the agent or envi-
ronment are not required. It is sufficient to define states and ac-
tions available for them. Although not one of the requirements of 
the technique, one can imagine that a priori knowledge could 
also be incorporated. For instance both physical and dynamic 
constraints could be imposed making states and actions partially 
available or completely unavailable. The Machine Learning 
technique does learn, incrementally a reactive model for each 
one of the defined states, affected only by the models of 
neighbouring states. At each discrete time step, the agent selects 
an action given the current state and executes the action, causing 
the environment to move to the next state. The agent receives a 
reward that reflects the value of the action taken given that the 
agent is in the current state. The objective of the agent is to 
maximise the sum of rewards received when starting from an 
initial state and ending in a goal state. One incarnation of RL is 
Q-Learning (Watkins 1989). The objective in Q-learning is to 
generate Q-values (quality values) for each state-action pair. At 
each time step, the agent observes the state st, and takes action a. 
The choice of actions in early stages is usually random (any ac-
tion may be selected from the possible actions set) and becomes 
more informed as the agent learns more about the environment 
(agent prefers actions which give higher rewards thus exploiting 
its knowledge). After executing an action the agent then receives 
a reward r dependent on the new state st+1. The reward may be 
discounted into the future, that is rewards received n time steps 
into the future are worth less by a factor γ n than rewards received 
in the present (the discount factor expresses the confidence the 
agent has in the current policy: the further in the future the 
smaller the confidence). Thus the cumulative discounted reward 
is given by 
 

R = rt + γ r t+1 + γ 2 r t+2  + … + γ n r t+n           (1) 

where γ ∈ [0,1) is constant for the entire simulation. If γ = 0 the 
agent only considers the immediate results of its actions and thus 
the reward is not discounted. The Q-value is updated at each step 
using the update equation (1) for a deterministic Markov Deci-
sion Process (MDP) as follows: 
 

Qn(st , a) ←  rt + γ  max  Qn-1(st+1 , a’)        (2) 
                                                    a' 

A sequence of actions ending in a terminal state is called an ep-
och or iteration. 
 
Q-learning can be implemented using a look-up table to store the 
values of Q for a relatively small state space. Neural networks 
are also used for the Q-function approximation (Bertsekas and 
Tsitsiklis 1996; Haykin 1999).  
 
Reinforcement Learning has been applied to create success-
ful board games implementations (Nicol and Schraudolph 
1994; Thrun 1995), with unmanageable state spaces. Back-
gammon is the most successful example (Tesauro 1994). 
Reinforcement Learning has also been used in robotics to 
control one or more robotic arms (Davison and Bortoff 1994; 
Schaal and Atkeson 1994) and in animation to create motiva-
tional and emotional states for human-character interaction 
(Yoon et al. 2000), no results have hitherto been published 
on applying RL to control complex biped actions either in 
simulated or robotic environments. 
 
The only architecture of the above-mentioned, which explicitly 
employs machine learning is C4, where machine learning tech-
niques allowed the animated creatures to acquire new skills, es-
pecially in the form of training a home pet (a dog). 
 
For the purpose of Q-learning our agent was assigned a number 
of simple actions, which are listed below: 
 
• Forward kinematics control 

- Rotate arm up / down by ∆α 
- Rotate arm forward / backward by ∆α 
- Rotate forearm by ∆α 
- Move forward / backward by ∆α 

• Inverse kinematic control 
- Move palm by ∆x, ∆y, ∆z 
- Move forward / backward by ∆x 

 
where ∆α = 20 degrees, ∆x = 35 cm for walk (the size of a sin-
gle step) and ∆x = ∆y = ∆z = 5 cm for the motion of a hand, γ  = 
0.95. 
 
It was also assigned a goal of getting itself behind a closed door. 
Its task was to learn a way of doing so. The only represented 
states were those of the agent, the state of the door was repre-
sented externally as a variable to reduce the size of the state 
space. The door knob was not rotated in the experiments, al-
though it is relatively easy to add such an action without much 
increase in the simulation time (in another task currently under 
investigation the agent has to grab an object). 
 
Positive rewards were given to the agent whenever it man-
aged to get through the door successfully, whereas negative 
rewards were used to prevent it from performing illegal 



 

 

moves, e.g. outstretching a joint or colliding with an obsta-
cle. For this purpose a quick and efficient way of detecting 
collisions was necessary, as collision detection algorithms 
were not a part of the animation package. 
 
The agent's perception of the ambient environment was limited to 
detecting the collisions between its arms and exterior objects. 
This approach is sufficient in most cases, as the collisions practi-
cally determine constrains for the physically possible movements 
(at least these not resulting from internal, i.e. biomechanical con-
ditions). The desired collision detection algorithm should avoid 
testing all the polygonal faces in both objects for overlap. In-
stead, much more efficient solutions are based on spatial vol-
umes (volumes that entirely enclose objects). Tightness of fit 
between an object and its bounding volume is crucial for the 
precision of the collision test. The simplest, yet widely used 
bounding volumes are spheres. However, when objects are in 
close proximity this approach is imprecise or it requires strong 
spatial subdivision techniques applied in a hierarchical manner. 
Another solution is axis aligned bounding boxes method 
(AABB). This method also produces relatively large bounding 
boxes if the underlying objects are not axis-aligned, and that was 
the case with the avatar's arms. Therefore we have chosen the 
OBB (oriented bounding boxes) approach (Arvo and Kirk 1989) 
as a good trade-off: they are a snug fit and the method is not very 
computationally intensive. Applying the separating axis theorem 
proposed by Gottschalk (1996; Gottschalk et al. 1996) it is 
enough to make just 15 tests to determine if the boxes overlap.  
 
Two ways of character control were tested: forward kinematics 
and inverse kinematics. The state space for the first case con-
sisted of approximately 12000 states distributed across 4 dimen-
sions (2 degrees of freedom for the left arm, 1 for the forearm 
and 1 for backward/forward walk). The second simulation com-
prised less than 50000 states (a 3-dimensional cube of x,y,z posi-
tions around the avatar's hand, the last dimension was walk along 
one axis), eight simple actions were available at each time step. 
These were three rotations -- two for the arm and one for the 
forearm -- in two directions and walk along one axis for the for-
ward kinematics case (2*3+2) and hand motion along 3 spatial 
axes in two directions for each axis plus walk for the inverse 
kinematics case (2*3+2). The difference in the number of states 
for the two modes was caused by the necessity for greater sam-
pling of the space in the case of inverse kinematics control. 
Number of states across each dimension was chosen to provide 
sufficient sensitivity but also to eliminate as many unnecessary 
states as possible. Therefore only reasonable angles for joint 
movements were selected, these were taken from human joint 
contraints: forarm can only rotate by about 180 degrees around 
the x-axis, arm 270 degress around the x-axis (for-
ward/backward) and 180 degrees around the y-axis (up/down). 
Two additional states were added for each joint to represent the 
illegal motions, so called forbidden states  (e.g. for the forarm 
rotation -20 degrees and 200 degrees would be the forbidden 
states). For walking only the route through the door was repre-
sented as walking to the door could easily be achieved within the 
FreeWill system. 
 

THE FRAMEWORK 
 
The experimental apparatus consists of an application communi-
cating with 3DStudio Max software package, which was used to 
model the three-dimensional scene. The characters were created 
by the Biped Plugin. 
 
The main part of the framework is an external application written 
in C++ that processes all simulations. It controls the scene and 
acquires information about object interactions through the COM 
interface, which is exposed from within the 3DStudio package by 
means of a dedicated script (a max script). This script contains 
definitions of functions for manipulating the objects and defines 
the appearance and initial positions of objects placed in the 
scene. Since the communication through COM interfaces is not 
fast enough, some critical components have been moved to a 
plug-in, that directly communicates with the max script engine. 
This solution is very efficient, but inconvenient to implement, so 
only necessary functions have been implemented in this way. 
The final sequence of actions is saved as a script controlling the 
avatar and the scene objects. Animation created with that script 
can then be rendered. 
 
Recently another software architecture has emerged. The KINE+ 
framework (Francik 2003) makes the main application inde-
pendent of the 3DStudio Max concerning the simulation task. 
The new framework contains a biped model compatible with 
3DStudio, and has collision detection built-in. However it is not 
yet fully integrated with the main solution, we have strong 
grounds to believe that it will significantly improve its efficiency. 
Additionally, it supports animation output format compatible 
with MoCap. 
 
RESULTS 
 
The results obtained are depicted below. Figure 1 shows a few 
shots from the actual animation generated from the sequence of 
simple actions learned by the agent. At the beginning of the 
simulation the agent has no knowledge about the appropriate 
actions, and as the simulation progresses it gradually improves its 
performance. Figure 2 shows an average number of low-level 
actions performed per epoch as a function of time. Initially the 
numbers are low: `inexperienced' agent immediately encounters 
negative terminal states: collisions and forbidden states (see Sec-
tion 2). It then gradually explores the state space until eventually 
the best path is found. This is when the number of actions per-
formed stabilises (until perhaps the agent finds an even better 
path or decides to explore again).  
 
The stabilisation is more stable in the case of the forward kine-
matics (FK) control (for this method of control the agent had 
fewer ways of fulfilling the goal) and the solution size is about 5 
simple actions. For the state space defined above (4 dimensions, 
12000 states) the solution was found in about 250 iterations (ep-
ochs), on a computer with Pentium 4 1,50GHz processor, 0,5GB 
RAM, and with the scene redraw switched off this was about 30 
seconds. Because the animation obtained still relied on unnatural 
moves (lack of arm rotation) which could not be eliminated 
within the action set given a bigger state space was also investi-
gated. Two additional degrees of hand freedom (hand and arm 
rotation around the z-axis) were added which made the total 



 

 

number of states of over 2 million and 12 actions per state. In this 
case the solution was usually found in about 1500 iterations (80 
seconds), but some initial exploration was enforced on the agent 
-- for the first several hundred iterations the agent started each 
iteration in a different, randomly chosen state. The obtained solu-
tions were very similar. 
 
For the inverse kinematics the stabilisation threshold is slightly 
higher than in the previous case: 6-7 simple actions (more actions 
are necessary because of smaller steps). Inverse kinematics gen-
erates more natural motion (joint angles, position of limbs in 
space) during the simulation thus implicitly rejecting some of the 
unnecessary states. It also requires fewer constraints to be 
checked against during the simulation (e.g. in terms of limits on 
joint angles), the representation was more natural and no exten-
sions to it were necessary. However it takes longer to learn 
(approx. 800 iterations in 90 seconds). Also, decreasing the sam-
pling rate for the IK control was increasing the number of itera-
tions necessary to find the solution. We believe this was due to 

loss of precision by the avatar when performing the actions, that 
is, because of the rare sampling of the space, the avatar had to be 
very `lucky' to come across the door knob, open the door and 
fulfil the goal. The solution found was comparable to that ac-
quired for the FK control - both the general motion of the agent 
and the timing were similar. 
 
Although adding just two degrees of freedom increased the 
learning time from 30 to 80 seconds the resulting state descrip-
tion allows to simulate most manoeuvres of a single upper limb. 
Therefore further extensions of simulations involving one hand 
will not turn this solution intractable. Current experiments with 
an avatar learning how to lift an object confirm this statement. 
 
CONCLUSIONS AND FUTURE WORK 
 
In this paper a way of learning sequences of low-level actions to 
achieve a goal of an animated agent has been explained. The 
agent has been controlled using both forward and inverse kine-

   
 

   
 

Figure 1: Learning avatar (above), animation derived from the best solution found (below) 
 

 
 

Figure 2: Learning curves (left – forward kinematics control, 12000 states; right – inverse kinematics, 50000 states) 



 

 

matics and the learning algorithm applied was Q-learning. This 
algorithm proved to be sufficiently effective to learn new actions 
by a virtual agent with several degrees of freedom. Another 
benefit given by this technique is that automatically generated 
sequences can easily be scripted and parameterised and used in 
other animation tools. Application of a solution to a different 
character could be done by adjustment of the resultant motion 
parameters (e.g. for some types of motions only some of the an-
gles have to be modified), it is also possible to learn a new se-
quence for each distinct character. 
 
The created animation sequences are faithful enough to be ap-
plied in a crowd scene. Additionally our results can also be ap-
plied in the field of robotics, provided that the robot can already 
perform more basic actions such as walking. The experiments 
show that although inverse kinematics control takes longer to 
reach the solution it is easier to program (fewer dimensions in the 
state space, less different low-level actions). On the other hand 
scaling up is easier for the forward kinematics (the representation 
of states is more consistent). Additionally, because the technique 
generates multiple solutions, different sequences can be used by 
the avatars in the final crowd scene to perform the same task. 
This way of introducing randomness into the scene would gener-
ate more realistic results than the current techniques relying on 
phase offseting. 
 
However, adding too many degrees of freedom to the presented 
technique will eventually create a very substantial state space 
with long simulation times and therefore a more compact repre-
sentation is required. Therefore our next step will be an applica-
tion of neural networks for state approximation. Other learning 
techniques (such as genetic programming) will also be applied to 
the constructed framework to compare results achieved from 
different methods. 
 
So far we have only experimented with avatars interacting with 
static objects. A bigger challenge would be to try to learn interac-
tion between agents – e.g. passing an object. The experiments 
presented in this paper provide good foundation for attempting 
that challenge. 
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