

AUTOMATIC ACQUISITION OF ACTIONS FOR ANIMATED AGENTS

Adam Szarowicz 1 Marek Mittmann 1,2 Paolo Remagnino
CIS School, Kingston University Institute of Informatics CIS School, Kingston University

Penrhyn Road Silesian University of Technology Penrhyn Road
Kingston upon Thames, KT1 2EE ul. Akademicka 16 Kingston upon Thames, KT1 2EE

United Kingdom
a.szarowicz@kingston.ac.uk

PL 44-100 Gliwice, Poland
mittmann@ps.edu.pl

United Kingdom
a.szarowicz@kingston.ac.uk

Jarosław Francik 1,2

Institute of Informatics CIS School, Kingston University
Silesian University of Technology Penrhyn Road

ul. Akademicka 16 Kingston upon Thames, KT1 2EE
PL 44-100 Gliwice, Poland United Kingdom

jfrancik@ps.edu.pl

KEYWORDS
Q-learning, intelligent agents, lifelike characters.

ABSTRACT

The generation of animated human figures especially in crowd
scenes has many applications in such domains as the special ef-
fects industry, computer games or for the simulation of the
evacuation from crowded areas. Automation in action creation
eliminates the need for human labour, which shortens the task of
generation of the crowd scenes and also reduces the costs. This
paper addresses a shortcoming of the architectures designed for
creation of animated scenes with autonomous agents by propos-
ing a module for automatic acquisition of new high-level actions.
Agents use reinforcement learning to acquire these actions and
the chosen algorithm is the deterministic version of Q-learning.
This allows for easy definition of the task, since only the ultimate
goal of the learning agent must be defined. Generated actions can
then be used to enrich the animation produced by the animation
system. The paper also compares results achieved when training
agents with forward and inverse kinematics control.

INTRODUCTION

The creation of animated scenes involving interacting characters
is a problem in such applications as film post-production and
special effects, computer games or event simulation in crowded
areas. Crowd scenes, created by dedicated intelligent systems or
by human animators, usually rely on a number of high-level ac-
tions assigned to the avatars and performed at specific times. In
scenes, where the fine detail is not a crucial factor, generation of
those actions could be automated. This paper focuses on rein-
forcement learning as a means of extending such intelligent sys-
tems. The proposed solution addresses the elimination of the

1 Supported by British Council and Polish Committee for Scientific
Research as Polish-British Research Partnership Programme project
no 239.
2 Supported by the Polish Committee for Scientific Research under
the grant no 4 T11C 024 24 (2003).

tedious animation job performed by human animators and direc-
tors to create new sets of more complex actions. It also provides
a way of easy scripting and parameterisation of generated anima-
tion. Such scripting is difficult to achieve when working with
sequences acquired by applying manual animation or motion
capture techniques. On the other hand automatically generated
sequences can later be incorporated into existing animation tools.

The problem of automatic creation of computer characters has
been addressed by researchers trying to make the animated char-
acters more intelligent (Funge 1999; Isla et al. 2001). The main
problem with those architectures is that they miss features needed
to generate realistic crowd scenes (interaction, details of the cog-
nitive architecture (Funge 1999), bias on animal-like creatures in
the C4 architecture (Isla et al. 2001; Blumberg et al. 2002) and
therefore leave a broad scope for research into the problems in-
volved, especially with human-like creatures. The growing popu-
larity of agent-based architectures and methodologies brought
new discoveries into the field of autonomy, distribution and in-
teraction (Rao and Georgeff 1995; Wooldridge et al. 2000;
Wood and DeLoach 2001; Mylopoulos et al. 2001; Winikoff et
al. 2001) and gave a new opportunity to apply recent advances in
AI to the problem of automatic animation generation. However
there has been a very limited application of those systems into
the field of computer animation.

An example of a system trying to solve this problem is FreeWill
(Szarowicz et al. 2002) upon which we based our implementa-
tion. FreeWill proposed an architecture suitable to create intelli-
gent and realistic animation by incorporating elements found in
both animation-driven systems and distributed (multiagent) solu-
tions. Each avatar participating in the animation consists of an
intelligent agent together with a body layer, which is responsible
for handling the visible part of the agent.

FreeWill utilises the idea of high-level actions, which are the
same as plan libraries often used in the agent literature.
These high-level actions (e.g. shaking hands with another
avatar or opening a door) contain sequences of simple ac-
tions, which can be readily copied and pasted into the action
sequence generated by each agent. Therefore the quality of
the simulation highly depends on the number of different

high-level actions an agent has at its disposal. An off-line
automatic acquisition of those actions would greatly improve
the results obtained from the system.

The goal of the presented work is to propose a method for such
an automatic acquisition of high-level actions based on machine
learning. It should be faithful enough to be applied in crowd
scenes thus relieving the human animator of some of the most
tedious tasks. A sample action that we have succeeded to auto-
matically generate and acquire consists of opening a door and
walking through it.

We are assuming that the avatar is able to perform a number of
low-level actions and there is a high-level goal defined for the
agent to achieve. The problem solution will include a sequence
of low-level actions, which allow the agent to achieve the goal.
We will call this sequence a high-level action.

MACHINE-LEARNING BASED
ACTION ACQUISITION

A fully automated acquisition of high-level animation actions
requires very little user intervention. Only goals for the learning
task must be defined, while performance adaptation is unsuper-
vised. Reinforcement Learning (RL) methods (Sutton and Barto
1998; Mitchell 1997) fulfil these criteria. RL is a Machine Learn-
ing technique whereby autonomous software (the agent) learns
by trial and error which action to perform by interacting with the
environment. Explicit precompiled models of the agent or envi-
ronment are not required. It is sufficient to define states and ac-
tions available for them. Although not one of the requirements of
the technique, one can imagine that a priori knowledge could
also be incorporated. For instance both physical and dynamic
constraints could be imposed making states and actions partially
available or completely unavailable. The Machine Learning
technique does learn, incrementally a reactive model for each
one of the defined states, affected only by the models of
neighbouring states. At each discrete time step, the agent selects
an action given the current state and executes the action, causing
the environment to move to the next state. The agent receives a
reward that reflects the value of the action taken given that the
agent is in the current state. The objective of the agent is to
maximise the sum of rewards received when starting from an
initial state and ending in a goal state. One incarnation of RL is
Q-Learning (Watkins 1989). The objective in Q-learning is to
generate Q-values (quality values) for each state-action pair. At
each time step, the agent observes the state st, and takes action a.
The choice of actions in early stages is usually random (any ac-
tion may be selected from the possible actions set) and becomes
more informed as the agent learns more about the environment
(agent prefers actions which give higher rewards thus exploiting
its knowledge). After executing an action the agent then receives
a reward r dependent on the new state st+1. The reward may be
discounted into the future, that is rewards received n time steps
into the future are worth less by a factor γ n than rewards received
in the present (the discount factor expresses the confidence the
agent has in the current policy: the further in the future the
smaller the confidence). Thus the cumulative discounted reward
is given by

R = rt + γ r t+1 + γ 2 r t+2 + … + γ n r t+n (1)

where γ ∈ [0,1) is constant for the entire simulation. If γ = 0 the
agent only considers the immediate results of its actions and thus
the reward is not discounted. The Q-value is updated at each step
using the update equation (1) for a deterministic Markov Deci-
sion Process (MDP) as follows:

Qn(st , a) ← rt + γ max Qn-1(st+1 , a’) (2)
 a'

A sequence of actions ending in a terminal state is called an ep-
och or iteration.

Q-learning can be implemented using a look-up table to store the
values of Q for a relatively small state space. Neural networks
are also used for the Q-function approximation (Bertsekas and
Tsitsiklis 1996; Haykin 1999).

Reinforcement Learning has been applied to create success-
ful board games implementations (Nicol and Schraudolph
1994; Thrun 1995), with unmanageable state spaces. Back-
gammon is the most successful example (Tesauro 1994).
Reinforcement Learning has also been used in robotics to
control one or more robotic arms (Davison and Bortoff 1994;
Schaal and Atkeson 1994) and in animation to create motiva-
tional and emotional states for human-character interaction
(Yoon et al. 2000), no results have hitherto been published
on applying RL to control complex biped actions either in
simulated or robotic environments.

The only architecture of the above-mentioned, which explicitly
employs machine learning is C4, where machine learning tech-
niques allowed the animated creatures to acquire new skills, es-
pecially in the form of training a home pet (a dog).

For the purpose of Q-learning our agent was assigned a number
of simple actions, which are listed below:

• Forward kinematics control

- Rotate arm up / down by ∆α
- Rotate arm forward / backward by ∆α
- Rotate forearm by ∆α
- Move forward / backward by ∆α

• Inverse kinematic control
- Move palm by ∆x, ∆y, ∆z
- Move forward / backward by ∆x

where ∆α = 20 degrees, ∆x = 35 cm for walk (the size of a sin-
gle step) and ∆x = ∆y = ∆z = 5 cm for the motion of a hand, γ =
0.95.

It was also assigned a goal of getting itself behind a closed door.
Its task was to learn a way of doing so. The only represented
states were those of the agent, the state of the door was repre-
sented externally as a variable to reduce the size of the state
space. The door knob was not rotated in the experiments, al-
though it is relatively easy to add such an action without much
increase in the simulation time (in another task currently under
investigation the agent has to grab an object).

Positive rewards were given to the agent whenever it man-
aged to get through the door successfully, whereas negative
rewards were used to prevent it from performing illegal

moves, e.g. outstretching a joint or colliding with an obsta-
cle. For this purpose a quick and efficient way of detecting
collisions was necessary, as collision detection algorithms
were not a part of the animation package.

The agent's perception of the ambient environment was limited to
detecting the collisions between its arms and exterior objects.
This approach is sufficient in most cases, as the collisions practi-
cally determine constrains for the physically possible movements
(at least these not resulting from internal, i.e. biomechanical con-
ditions). The desired collision detection algorithm should avoid
testing all the polygonal faces in both objects for overlap. In-
stead, much more efficient solutions are based on spatial vol-
umes (volumes that entirely enclose objects). Tightness of fit
between an object and its bounding volume is crucial for the
precision of the collision test. The simplest, yet widely used
bounding volumes are spheres. However, when objects are in
close proximity this approach is imprecise or it requires strong
spatial subdivision techniques applied in a hierarchical manner.
Another solution is axis aligned bounding boxes method
(AABB). This method also produces relatively large bounding
boxes if the underlying objects are not axis-aligned, and that was
the case with the avatar's arms. Therefore we have chosen the
OBB (oriented bounding boxes) approach (Arvo and Kirk 1989)
as a good trade-off: they are a snug fit and the method is not very
computationally intensive. Applying the separating axis theorem
proposed by Gottschalk (1996; Gottschalk et al. 1996) it is
enough to make just 15 tests to determine if the boxes overlap.

Two ways of character control were tested: forward kinematics
and inverse kinematics. The state space for the first case con-
sisted of approximately 12000 states distributed across 4 dimen-
sions (2 degrees of freedom for the left arm, 1 for the forearm
and 1 for backward/forward walk). The second simulation com-
prised less than 50000 states (a 3-dimensional cube of x,y,z posi-
tions around the avatar's hand, the last dimension was walk along
one axis), eight simple actions were available at each time step.
These were three rotations -- two for the arm and one for the
forearm -- in two directions and walk along one axis for the for-
ward kinematics case (2*3+2) and hand motion along 3 spatial
axes in two directions for each axis plus walk for the inverse
kinematics case (2*3+2). The difference in the number of states
for the two modes was caused by the necessity for greater sam-
pling of the space in the case of inverse kinematics control.
Number of states across each dimension was chosen to provide
sufficient sensitivity but also to eliminate as many unnecessary
states as possible. Therefore only reasonable angles for joint
movements were selected, these were taken from human joint
contraints: forarm can only rotate by about 180 degrees around
the x-axis, arm 270 degress around the x-axis (for-
ward/backward) and 180 degrees around the y-axis (up/down).
Two additional states were added for each joint to represent the
illegal motions, so called forbidden states (e.g. for the forarm
rotation -20 degrees and 200 degrees would be the forbidden
states). For walking only the route through the door was repre-
sented as walking to the door could easily be achieved within the
FreeWill system.

THE FRAMEWORK

The experimental apparatus consists of an application communi-
cating with 3DStudio Max software package, which was used to
model the three-dimensional scene. The characters were created
by the Biped Plugin.

The main part of the framework is an external application written
in C++ that processes all simulations. It controls the scene and
acquires information about object interactions through the COM
interface, which is exposed from within the 3DStudio package by
means of a dedicated script (a max script). This script contains
definitions of functions for manipulating the objects and defines
the appearance and initial positions of objects placed in the
scene. Since the communication through COM interfaces is not
fast enough, some critical components have been moved to a
plug-in, that directly communicates with the max script engine.
This solution is very efficient, but inconvenient to implement, so
only necessary functions have been implemented in this way.
The final sequence of actions is saved as a script controlling the
avatar and the scene objects. Animation created with that script
can then be rendered.

Recently another software architecture has emerged. The KINE+
framework (Francik 2003) makes the main application inde-
pendent of the 3DStudio Max concerning the simulation task.
The new framework contains a biped model compatible with
3DStudio, and has collision detection built-in. However it is not
yet fully integrated with the main solution, we have strong
grounds to believe that it will significantly improve its efficiency.
Additionally, it supports animation output format compatible
with MoCap.

RESULTS

The results obtained are depicted below. Figure 1 shows a few
shots from the actual animation generated from the sequence of
simple actions learned by the agent. At the beginning of the
simulation the agent has no knowledge about the appropriate
actions, and as the simulation progresses it gradually improves its
performance. Figure 2 shows an average number of low-level
actions performed per epoch as a function of time. Initially the
numbers are low: `inexperienced' agent immediately encounters
negative terminal states: collisions and forbidden states (see Sec-
tion 2). It then gradually explores the state space until eventually
the best path is found. This is when the number of actions per-
formed stabilises (until perhaps the agent finds an even better
path or decides to explore again).

The stabilisation is more stable in the case of the forward kine-
matics (FK) control (for this method of control the agent had
fewer ways of fulfilling the goal) and the solution size is about 5
simple actions. For the state space defined above (4 dimensions,
12000 states) the solution was found in about 250 iterations (ep-
ochs), on a computer with Pentium 4 1,50GHz processor, 0,5GB
RAM, and with the scene redraw switched off this was about 30
seconds. Because the animation obtained still relied on unnatural
moves (lack of arm rotation) which could not be eliminated
within the action set given a bigger state space was also investi-
gated. Two additional degrees of hand freedom (hand and arm
rotation around the z-axis) were added which made the total

number of states of over 2 million and 12 actions per state. In this
case the solution was usually found in about 1500 iterations (80
seconds), but some initial exploration was enforced on the agent
-- for the first several hundred iterations the agent started each
iteration in a different, randomly chosen state. The obtained solu-
tions were very similar.

For the inverse kinematics the stabilisation threshold is slightly
higher than in the previous case: 6-7 simple actions (more actions
are necessary because of smaller steps). Inverse kinematics gen-
erates more natural motion (joint angles, position of limbs in
space) during the simulation thus implicitly rejecting some of the
unnecessary states. It also requires fewer constraints to be
checked against during the simulation (e.g. in terms of limits on
joint angles), the representation was more natural and no exten-
sions to it were necessary. However it takes longer to learn
(approx. 800 iterations in 90 seconds). Also, decreasing the sam-
pling rate for the IK control was increasing the number of itera-
tions necessary to find the solution. We believe this was due to

loss of precision by the avatar when performing the actions, that
is, because of the rare sampling of the space, the avatar had to be
very `lucky' to come across the door knob, open the door and
fulfil the goal. The solution found was comparable to that ac-
quired for the FK control - both the general motion of the agent
and the timing were similar.

Although adding just two degrees of freedom increased the
learning time from 30 to 80 seconds the resulting state descrip-
tion allows to simulate most manoeuvres of a single upper limb.
Therefore further extensions of simulations involving one hand
will not turn this solution intractable. Current experiments with
an avatar learning how to lift an object confirm this statement.

CONCLUSIONS AND FUTURE WORK

In this paper a way of learning sequences of low-level actions to
achieve a goal of an animated agent has been explained. The
agent has been controlled using both forward and inverse kine-

Figure 1: Learning avatar (above), animation derived from the best solution found (below)

Figure 2: Learning curves (left – forward kinematics control, 12000 states; right – inverse kinematics, 50000 states)

matics and the learning algorithm applied was Q-learning. This
algorithm proved to be sufficiently effective to learn new actions
by a virtual agent with several degrees of freedom. Another
benefit given by this technique is that automatically generated
sequences can easily be scripted and parameterised and used in
other animation tools. Application of a solution to a different
character could be done by adjustment of the resultant motion
parameters (e.g. for some types of motions only some of the an-
gles have to be modified), it is also possible to learn a new se-
quence for each distinct character.

The created animation sequences are faithful enough to be ap-
plied in a crowd scene. Additionally our results can also be ap-
plied in the field of robotics, provided that the robot can already
perform more basic actions such as walking. The experiments
show that although inverse kinematics control takes longer to
reach the solution it is easier to program (fewer dimensions in the
state space, less different low-level actions). On the other hand
scaling up is easier for the forward kinematics (the representation
of states is more consistent). Additionally, because the technique
generates multiple solutions, different sequences can be used by
the avatars in the final crowd scene to perform the same task.
This way of introducing randomness into the scene would gener-
ate more realistic results than the current techniques relying on
phase offseting.

However, adding too many degrees of freedom to the presented
technique will eventually create a very substantial state space
with long simulation times and therefore a more compact repre-
sentation is required. Therefore our next step will be an applica-
tion of neural networks for state approximation. Other learning
techniques (such as genetic programming) will also be applied to
the constructed framework to compare results achieved from
different methods.

So far we have only experimented with avatars interacting with
static objects. A bigger challenge would be to try to learn interac-
tion between agents – e.g. passing an object. The experiments
presented in this paper provide good foundation for attempting
that challenge.

REFERENCES

Arvo J. and D. Kirk. 1989. A survey of ray tracing acceleration tech-
niques. An Introduction.

Bertsekas D. P. and J. N. Tsitsiklis. 1996. Neuro-Dynamic Program-
ming. Athena Scientific.

Blumberg B. M., M. Downie, Y. Ivanov, M. Berlin, M. P. Johnson and
B. Tomlinson. 2002. “Integrated learning for interactive synthetic
characters”. ACM Transactions on Graphics Vol. 21, No 3, pp.
417–426.

Davison D. E. and S. A. Bortoff. 1994. "Acrobot software and hardware
guide”. Technical Report Number 9406. Systems Control Group,
University of Toronto, Toronto, Canada.

Francik. 2003. “A Framework for Programmatic Control of Animation
of Human Avatars”. Studia Informatica, to appear.

Funge J. D. 1999. AI for Games and Animation. A Cognitive Modeling
Approach. A K Peters Natick.

Gottschalk S., M. C. Lin and D. Manocha. 1996. “OBBTree: A Hierar-
chical Structure for Rapid Interference Detection”. Proceedings of
ACM SIGGRAPH, New Orleans, Lopp. 171–180.

Gottschalk S.. 1996. "Separating axis theorem”. Technical report TR96-
024. Dept. of Computer Science, UNC, Chapel Hill.

Haykin S. 1999. Neural Networks. Prentice Hall.
Isla D., R. Burke, M. Downie and B.M. Blumberg. 2001. “A Layered

Brain Architecture for Synthetic Creatures”. Proc. of 17th Joint
Conf. on Artificial Intelligence IJCAI-01, Seattle, USA, pp. 1051–
1058.

Mitchell T. M. 1997. Machine Learning. McGraw Hill.
Mylopoulos J., M. Kolpand and J. Castro. 2001. “UML for Agent-

Oriented Software Development: The Tropos Proposal”. Proc. of
the 4th Inmt. Conf. on the Unified Modeling Language, Toronto,
Canada.

Nicol N., Schraudolph, P. Dayan and T.J. Sejnowski. 1994. “Temporal
difference learning of position evaluation in the game of Go”. In
Proceedings of Advances in Neural Information Processing Systems
Conference, San Mateo, CA, pp. 817–824.

Rao A. S. and M. O. Georgeff. 1995. “BDI Agents: From Theory to
Practice”. Proc. of the 1st Conf. Conference on Multiagent Systems
ICMAS95.

Schaal S. and Christopher Atkeson. 1994. “Robot juggling: An imple-
mentation of memory-based learning”. Control Systems Magazine
No 14.

Sutton R. S. and A. G. Barto. 1998. Reinforcement Learning: an Intro-
duction. MIT Press.

Szarowicz A., J. Amiguet-Vercher, P. Forte, J. Briggs, P.A.M. Gele-
pithis and P. Remagnino. 2001. “The Application of AI to Auto-
matically Generated Animation”. Advances in AI, Proceedings of
the 14th Australian Joint Conf. on Artificial Intelligence, Springer
LNAI 2256, pp. 487–494.

Tesauro G. 1994. “TD-Gammon, a self-teaching backgammon program,
achieves master-level play”. Neural Computation Vol. 6, No 2, pp.
215–219.

Thrun S. 1995. “Learning to play the game of chess”. Advances in Neu-
ral Information Processing Systems (G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors), The MIT Press, Cambridge, MA.

Winikoff M., L. Padgham and J. Harland. 2001. “Simplifying the De-
velopment of Intelligent Agents”. Advances in AI, Proceedings of
the 14th Australian Joint Conf. on Artificial Intelligence, Springer
LNAI 2256, pp. 557–568.

Wood M. and S. A. DeLoach. 2001. “An Overview of the Multiagent
Systems Engineering Methodology”. In Agent-Oriented Software
Engineering, LNAI 1957, Springer.

Wooldridge M., N. R. Jennings and David Kinny. 2000. “The Gaia
Methodology for Agent-Oriented Analysis and Design”. Autono-
mous Agents and Multi-Agent Systems, Vol. 3, No 3, pp 285–312.

Yoon S.-Y., B. M. Blumberg and GG. E. Schneider. 2000. “Motivation
Driven Learning for Interactive Synthetic Characters”. In Proceed-
ings of Autonomous Agents Conference, 2000.

