
Layering and Heterogeneity as Design

Principles for Animated Embedded Agents

A. Szarowicz a, J. Francik a;b;1, M. Mittmann b, P. Remagnino a

aDigital Imaging Research Centre, Kingston University, UK

bInstitute of Informatics, Silesian University of Technology, Gliwice, Poland

Abstract

Animation of three-dimensional digital characters is still a major hurdle in the pro-

duction of �lms and video games. This paper analyzes the technology of autonomous

embedded agents as a solution to this challenge. Multi-layering and heterogeneity

are chosen as desirable principles for the design of digital characters. The FreeWill+

animation framework has been developed with these principles in mind. Its general

structure as well as some of its special features are presented, including communi-

cation issues and learning capability.

Key words: animated agents, multi-layering, lifelike characters, three-dimensional

animation, learning systems

1 Introduction

The animation of three-dimensional characters has become an important issue

for postproduction industries (for instance special e�ects geared for movies and

games) (Parent, 2002). While current computer graphics technology can sup-

ply very realistic results, the control of animated characters (anthropomorphic

or animal-like) is still a problem to be solved. The research community endeav-

ors are mainly focused on the creation of realistic animats 2 . It seems quite

natural to implement autonomous characters as autonomous agents, which we

Email addresses: a.szarowicz@kingston.ac.uk (A. Szarowicz),

jfrancik@ps.edu.pl (J. Francik), mittmann@ps.edu.pl (M. Mittmann),

p.remagnino@kingston.ac.uk (P. Remagnino).
1 Work supported by European Commission as a part of Marie-Curie fellowship.
2 animated characters take many names, we will use all of them interchangeably as

the basic concepts are a common denominator to all proposed de�nitions

Preprint submitted to Elsevier Science 28 July 2004

will call animated agents. Just like any animated creature, they consist of a

body capable of animation, but unlike them they can also be endowed with an

arti�cial mind. As such they are capable of independent planning, and by em-

bedding intelligence they provide a vital augmented level of automation used

to give life to human and animal like characters. This augmentation enables

creativity and greatly enhances the eÆciency and exibility when used with

both commercially available animation packages and dedicated frameworks.

Our 3D digital character can be seen as an intelligent agent embedded in a

virtual body through which it can perceive and act upon its digital surround-

ings. While this approach is similar to robotics, it is free from many problems

typically encountered in robotics research. The behavior and motion princi-

ples to which synthetic characters must obey are limited only by their creator's

imagination and not by real physical constraints. This also alleviates problems

related to uncertain sensing mechanisms and imperfect control and focuses on

creation of a character body and mind. On the other hand, individual be-

havior may by itself be quite diÆcult to model, even in its most elementary

form. Features like environment awareness, purposefulness (goal-orientation),

attitude, and, maybe the most important, the viewer's subjective illusion of

life should be considered crucial, and integrated in the model.

The level of diÆculty increases signi�cantly when several individuals are in-

volved; further increase occurs when a ock (or crowd) animation is modeled.

In this paper we put forward an architecture that combines multiple goal-

oriented communicating individuals and their behaviors to form a group (a

ock or a crowd). More traditional teaming systems promote the collective

(crowd or ock) itself to agent status, creating a holistic semi-autonomous

being, and this is achieved at some expense of the individual autonomy.

This paper presents some aspects of an agent-based architecture called Free-

Will+, which supports creation of autonomous virtual creatures. It is capable

of generating a crowd of digital characters, which are able to autonomously

behave inside a digital scene, ful�ll their goals, maintain beliefs and execute

actions. These actions include both reactive movements as well as more delib-

erate and complex behaviors, with complex, co-operative tasks as the eventual

aim of the project.

In the next section agent technology will be characterized and categorized,

and the main distinctive features will be analyzed in relation to their relevance

to character animation. A couple of agent-based animation solutions will be

reviewed. In Section 3 the leading role of multi-layering and heterogeneity as

design principles will be justi�ed. These principles have been applied in the

FreeWill+ system. Subsequent sections cover the general architectural outline

of the system (Section 4), and a chosen functionality area: the ability of agents

to learn (Section 5).

2

2 Agent Systems and Animated Agents

There are almost so many de�nitions of the notion of agent (or, more pre-

cisely, intelligent agent) as the attempts to de�ne it. An exhaustive review

of de�nitions can be found in (Franklin and Graesser, 1996), and it does not

seem that the situation changed signi�cantly since then. Among this variety

of de�nitions some important features are most commonly pointed. The list

provided below is based primarily on de�nitions given by Russell and Norvig

(1995), Jennings and Woolridge (1998) and Jennings (2001). These are:

� autonomy: an ability to act without the direct intervention of other agents

� reactivity: an ability to perceive (sense) the environment and to act upon it

� pro-activeness: purposefulness, goal oriented operation

� social ability: interaction, communication and collaboration

The crucial role of autonomy is beyond any discussion. The agent's ability

to react within its environment is essential as well, especially when animated

agents are considered. Even in rare cases when animated characters do not

interact with any elements of a virtual world they will at least act upon the

stimuli generated by a human user. A good example may be a translation

agent that interprets written or spoken sentences using sign (gesture) language

(Francik and Fabian, 2002). Normally the agent behaviour should depend on

what it perceives. Otherwise the contribution to automation of the animation

process would be at least questionable. Animation based on this perceive{

act paradigm is usually called behavioural animation (Reynolds, 1987; Tu and

Terzopoulos, 1994). To achieve this, a general decisive structure should be

enough. However, a much wider accepted approach, claimed by Evans (2002)

an orthodoxy of agent technology, is the Belief{Desire{Intention architecture

(Bratman, 1987). The Beliefs are data structures representing agent's knowl-

edge about other objects, grounded in his own perception, the Desires repre-

sent goals that should be attempted, while Intentions may be interpreted as

the actual plans how to achieve them. Technically, the intentions are calcu-

lated as functions of desires analyzed in relation to beliefs (perception). Some

decisive structure is necessary; Evans (2002) calls them Opinions. Actions (re-

actions) are simply a consequence of realising intensions. An example of early

implementation of this model is the BDI system (Rao and George�, 1991),

while more recent achievements may be represented by the IVA{Intelligent

Virtual Agent solution (Monzani, Caicedo and Thalmann, 2001; Monzani,

2002). Another system called Massive, created purposely for The Lord of the

Rings �lm production (Koeppel, 2002) controlled over 50,000 animated �ghters

in the movie's crucial battle scene of Helm's Deep. Similar systems controlled

crowds of animated agents in such productions as DreamWork's Ant Z or

Pixar's Bug's Life.

3

A simple autonomous reactive system, with a straightforward decisive engine,

may be considered as an essential minimum for animated agents. Although

helpful, such systems would not be counted among agent systems according

to some stronger de�nitions (e.g. Jennings and Woolridge, 1998). An almost-

indispensable feature of agency is the ability to behave proactively. It involves

structured planning appropriate actions, and cannot be merely based on direct

reacting to the environment stimuli, using a simple decisive structure. Distinc-

tion between reactive and proactive is not strict. Proactive is by some authors

described as purposeful, or goal-oriented (e.g. Franklin and Graesser, 1996). It

is diÆcult however to say that reactive style of behaviour is purposeless or not

goal-oriented. Engaging the agent's own initiative is often stated as essential.

Still it sometimes leads to diÆculties. Shaking hands on meeting a friend is

an own initiative of an agent or merely reaction for perceiving a stimulus?

Unsurprisingly in this context, pro-active behaviour may be well implemented

with the apparatus already mentioned above: the Belief{Desire{Intention ar-

chitecture. The systems mentioned in the previous paragraph, BDI and IVA,

are both capable of pro-active behaviour. On the other hand, the Massive sys-

tem generally reveals reactive actions only; the authors do not have enough

knowledge concerning DreamWorks and Pixar systems, but any manifestation

of pro-active actions may be at most marginal. To summarise, pro-activity

may magni�cently enhance the animation, yet it is not essential, especially

in crowd simulation. In the solution presented further on both reactive and

pro-active approaches are implemented.

The role of social abilities is not so evident. To some extent an interaction

occurs each time agents moving around in their virtual world avoid collisions

between themselves. However this kind of trivial interaction does not go be-

yond a usual behaviour inherent to the reactivity feature; other agents are

treated just as any objects existing in the environment. Still more advanced

forms of interaction may be achieved on the perceiving-acting basis only, what

we will show later. However useful, social ability does not seem to be essential

for animated agents. On the other hand, communication skills may greatly

enhance exibility of an animation system. Examples of communicative ani-

mated agents may be found in (Allbeck and Badler, 2002; Caicedo, Monzani

and Thalmann, 2001; Arafa et al., 2002). Our conception goes even further.

As described in section 3.3, we use smart objects, �rst introduced by Kallman

(2001). All unanimate objects in the virtual world are agents as well; hence

whenever an agent initiates a reactive or pro-active behaviour, an inter-agent

communication is inherently engaged.

Regardless of the features discussed above, autonomous, intelligent agents may

have other attributes; the attendance or lack of them determines further clas-

si�cation, provided as a grid of diagonal subcategories. We will attempt to

identify animated agents within these subcategories. An agent can exist in

isolation (e.g. a data miner agent) or it can be embedded in some environment,

4

probably inhabited by other agents. Obviously animated agents are embedded.

They are also embodied, i.e. they manifest in some kind of a body, in contrast to

dealing directly and exclusively with abstract information. The subcategory of

embedded, embodied agents incorporates also autonomous robots; hence we will

distinguish a subcategory of virtual agents in contrary to the real ones. Last

but not the least subdivision is into believable agents, i.e. providing the illusion

of life, and e�ective agents, focused on e�ective ful�lment of their goals (e.g.

robot simulators). Both subcategories may concern animated agents, however

only the believable agents are in scope of this paper.

Animated agents are therefore: autonomous, reactive, preferably pro-active

and social. They are also: embedded, embodied, virtual and believable. Some

of them are learnable (adaptable): this ability may be treated as an ultimate

form of being pro-active.

Two obvious applications for animated agents are games and �lm produc-

tion (other possibilities are educational systems and simulation systems). For

games, the technology o�ers excellent potential for foreground character steer-

ing; one of the leading examples is the Black & White game. The level of control

and { �rst of all { believability that may be achieved is still highly insuÆcient

to animate foreground characters. However the animated agents have a strong

position in crowd animation, several examples of which have been mentioned

above.

The theory and practice of crowd animation systems has been inspired by the

revolutionary work of Reynolds (1987) on ocks of animals, in his case birds

(or "boids"). His approach adapted some ideas from particle systems: each of

his birds is a particle. The crucial for the whole domain of ocking systems

is the aggregate behaviour. The autonomy of each individual is somewhat

limited by the autonomy of a ock. Tu and Terzopoulos (1994) and Tu (1999)

present a much more behavioural approach. An interesting solution is ViCrowd

(Musse and Thalmann, 2001), in which individuals in a virtual crowd can have

variable levels of autonomy, i.e. rule-based, scripted or guided interactively by

the user.

3 Design Principles for Animated Agent Systems

Animating a virtual character is such a complex task that it should be decom-

posed into simpler elements. Multi-layered architectures are not new in this

domain. In fact almost every practical implementation is divided into a num-

ber of parts or layers. We will analyze just two examples of such architectures.

5

Monzani, Caicedo and Thalmann (2001) propose an architecture that is gen-

erally divided in two parts: the body and the brain. This division is made

primarily according to the abstraction criterion (low level: the body and high

level: the brain). The authors claim however that low level does not mean in

this case being simpler or easier. Both parts are almost equally complex. The

body part is responsible not only for the geometric and kinematical (physi-

cal) aspects, but also incorporates low behavioural level, including actions like

walking, grasping etc. In other words it extends to the domain of actions that

- in case of humans - are made unknowingly, without a deliberate activity of

the brain. The mind part is limited to "consciousness": deliberate planning

and emotions. A characteristic feature of their approach is a very strict bor-

der between two parts. They communicate through a general-purpose network

TCP/IP connection only and therefore they may be physically distributed on

separate machines.

Bruce Blumberg and his team propose a multi-level brain for their C4 system

of synthetic creatures (Russell and Blumberg, 1999; Isla et al., 2001). It is

divided into distinct systems, which communicate through common access to

an internal mental blackboard. The brain consists of several distinctive lay-

ers which are: sensory system, perception system, action system, navigation

system and motor system, all with assistance of working (perception) mem-

ory and aforementioned blackboard. The C4 architecture incorporates direct

support for multi-level direction.

However relevant is the argument of complexity management to the applica-

tion of multi-layered architecture in animation systems, there are even more

important arguments for the multi-layered, heterogeneous architecture. Wini-

ko� (2001) notes that the inherent property of an agent is having many goals

and many ways of ful�lling them. Our intention is to enable various ways for

achievement of the same task. Which way will be chosen depends on various

factors, like the actual context, availability of resources, working mode (e.g.

real-time animation and o�-line generation), not excluding pseudo-randomised

factor. Our main design objectives are: open architecture, diversity of internal

solutions, exibility, interoperability and adaptability.

The architectures mentioned above, although multi-layered, contain �xed, ded-

icated structural parts. This type of internal structure does not facilitate the

exibility of the way, in which goals are performed. It tends to behave in a

�xed way and special care is needed to maintain diversity and exibility.

6

3.1 The FreeWill+ Framework

The proposed, new framework is called FreeWill+ (Francik and Trybicka-

Francik, 2003) and it is an evolution of its predecessor system, FreeWill

(Szarowicz et al., 2001). It provides general means for co-operation of various

(heterogeneous) agents. The only condition for them to operate is the accep-

tance of common interfaces (or: protocols) for communication. This does not

rule out the common use of some low level tools and mechanisms, however

there are no (or almost no) �xed, dedicated parts in the higher levels.

The project's main design principle is a multilayered architecture dealing with

an increasing level of abstraction in each part of the character's design (graph-

ical representation of the body, motion description, intelligence). A similar

architectural principle is also applied when modelling di�erent aspects of the

simulation (simulation engine, digital world, objects, characters, agents). Soft-

ware components responsible for the body and mind parts may be diversi�ed.

However, on a more detailed level, the system consists almost entirely of loosely

coupled modules, that arrange themselves into temporary, ad hoc created as-

sociations.

All high level functionality is entirely maintained by an open set of loosely

coupled components which hold a common name of actions. Actions are soft-

ware components providing common interfaces to allow communication in a

uniform way. They are capable of ful�lling partial tasks and goals required by

the agents. This is the outcome of a collective work of the action components

on various levels of abstraction. The highest level involves both reactive and

pro-active operation modes and is capable to make use of arti�cial intelligence

to create and consolidate plans. The plans are subsequently decomposed into

simpler tasks performed by the middle level. In the lowest level action com-

ponents control the underlying virtual body in a straightforward, procedural

way.

The agents in this structure should be considered simply as the entities that

have { besides their virtual bodies { the access to a society of available actions.

Agents are free to choose any of them, and on any level of organisation, so

that to gain their goals 3 . It may be completed entirely by a single action

component, but it is a rather rare case. Usually the task is decomposed into a

sequence of simpler operations, which are redirected to lower-levels. Moreover,

the situation, in which a single task may be successfully performed by many

action components, is normal. Therefore, usually it is not straightforward to

determine which one of them should be chosen for a given task; even then, there

is still a question of which actions will be taken to perform sub-tasks after the

3 Agents may manifest some preferences in this matter just to amplify their indi-

viduality.

7

decomposition. The whole structure is highly dynamic, with individual action

components easy to interchange. There are no �xed hierarchies besides the

ones created ad hoc, on temporary basis, just to ful�l a given task 4 .

The intelligence of agents in FreeWill+ architecture is distributed among a

society of action components. This resembles an architecture with agents and

sub-agents; although some of such sub-agents are quite intelligent, we should

notice that still the majority of actions do not meet the de�nition of agency:

they happen to be very simple and show no autonomy at all. The presented

design principles ensure exible operation in heterogeneous environment, with

components easy to interchange, which gives the solution the essential diversity

of behaviour.

Future work involves maintenance of various levels of details (LoD) based

on control of suitability factors. This work is inspired by the achievements of

Sullivan et al. (2002) in obtaining di�erent LoD on, among others, behavioural

basis.

3.2 Action Components and their Instant Associations

The FreeWill+ only distinct set of �xed components is the low level body. It

is signi�cantly narrower than the Monzani's body. It incorporates kinematical

(skeleton) model, mesh model for the �nal rendering and some tools for colli-

sion detection and path �nding (A* component). Future extensions can also

accommodate a component for dynamic physics-based modelling. An extra

part of the solution is a real-time renderer and set of import-export plug-ins.

A question comes to mind: how action components are associated to establish a

temporary hierarchy? To achieve this functionality, the action main interface

(in our solution { IAction, Fig. 1) provides a query function that makes it

possible to check { on a symbolic basis { if the action is capable to ful�l a

given task, and if it is, how much suitable it is.

In Fig. 2 the collaboration between actions is shown. The request to perform

a task comes from a higher level action (1); it may come from the agent itself

as well. The calling level action identi�es necessary sub-tasks and requests

a dedicated component called context to associate lower level actions for the

given task (2). The context queries actions against their suitability (3) and,

�nally, the most suitable components are chosen to perform the subtasks (4).

The capability of an action to perform the given task depends on a number of

conditions. Obviously the most important is the inherent ability to perform

4 To optimise, some hierarchies may be cached for later use.

8

interface IAction : IFreeObject

f

// the context object

[propget] HRESULT Context([out] IFreeContext**);

[propput] HRESULT Context([in] IFreeContext*);

// query functions

HRESULT Query(

[in] IFreeSymbol *pTask, // task to be performed

[in] ULONG nFlags, // additional flags

[out] ULONG *pnSuitability); // answer: suitablity factor

// performing

HRESULT Perform(

[in] IAction *pInitiator, // initiating action or agent

[in] IFreeSymbol *pTask, // task to perform

[in] IFreeParams*); // action per-task params

// more functions not listed...

g;

Fig. 1. IDL/ODL interface de�nition for an action component

the particular type of tasks; moreover the capability is a recursive function

dependent on the capabilities of all the lower-level actions, as well as of other

necessary resources. Still all capable actions may di�er in the degree of suit-

ability. More specialised actions are usually supposed to be more suitable than

generic ones. There may be a number of other factors to have an inuence;

one of more important is if the mode of operation is o�-line or on-line. There

is a metric of suitability provided, that makes it possible to compare di�erent

actions and choose the best suited. Still, the task performance may fail; a next

best action is then chosen to retry.

3.3 Communication, Interaction and Perceiving

A broad set of action components existing in the system gives the necessary

means for maintaining the inter-agent communication in a uniform way. The

overall communication is based on message-passing paradigm. Sending a mes-

sage is reduced to requesting a speci�c action component to perform its task

on behalf of the receiving agent. These requests are carried out indirectly:

a dedicated scheduler is involved. Its responsibility is to locate the receiving

agents and their particular actions, but also dealing with the message-passing

9

 : Context
higherLevelAction :

Action

lowerLevelAction :
Action

callingLevelAction :
Action

3. Query()

1. Perform()

2. Associate()

4. Perform()

Fig. 2. Diagram of collaboration between action components.

in both temporal and spatial way (see Bandini, Manzoni and Simone, 2002,

for spatial processing in agent systems). Message delivery may be individual,

simply broadcast or broadcast to a limited area. Messages can be delayed or

suspended, and triggered automatically on occurring an event or satisfying a

precondition, for instance after completion a given task or entering a given

state or a given area.

FreeWill+ uses the concept of smart objects, �rst introduced by Kallman

(2001). The notion of smart objects refers to inanimate objects that are repre-

sented by agents, very much like virtual characters. Smart objects are usually

not so "smart" as the animats, however they inherently introduce diversity

into the virtual world. They can interactively instruct the "living" agents how

to use them; therefore the latter require no knowledge on how to use objects

in a smart way. Generally, every object in FreeWill+ is potentially smart

(built with agent-enabled components), therefore the intelligence in that vir-

tual world really corresponds to an animated environment. Almost all inter-

actions of an animated agent with its surroundings are in fact of inter-agent

nature. The only exception to that rule is collision detection - this kind of

geometrically-based interaction is implemented as a low-level feature.

A distinctive feature of FreeWill+ is the lack of any special components dedi-

cated to sensing/perceiving the surrounding world. Such components are quite

10

natural in robotic agents, for which separate sensing devices are essential, and

are consequently adopted in a vast majority of animation systems. Unlike

them, FreeWill+ perception takes place by the activation of one of its action

components, exactly like any other high-level activity. They include "sensing

statement actions" (you can sense me) as well as "sensing question actions"

(can I sense you? or which of you can I sense?). The overall perception is re-

duced just to passing messages between such formulated action components.

An important addition to this schema is the mechanism of �lters, that limits

sensing according to physical constraints (distance, orientation etc.).

As was shown in this section, the entire agent activity, including communi-

cation, interaction and sensing, is made on the basis of utilising the loosely

layered structure of heterogeneous action components.

4 The Layered Structure of FreeWill+

The FreeWill+ system consists of several modules. Their structure and gen-

eral relations are depicted in Fig. 3 as a simpli�ed UML diagram. The es-

sential agent architecture, as described in the previous Section, is entirely

encapsulated in a single module called ACTION+. This module implements

the whole actual agent behaviour; all the other modules provide the low level

body (MESH+, KINE+, NAVI+), the renderer (RENDER+), and some vital,

although rather marginal instrumentation utilised by the actions (FREE+).

The detailed description of the FreeWill+ modules is as follows:

� MESH+ module encapsulates support for vertex meshes. It is a very low

level component, operating close to the hardware abstraction level (HAL),

and therefore highly dependent on the platform. The current implementa-

tion supports Microsoft DirectX version 9.0. The module contains vertex

and face bu�ers, realised normally as strictly platform-dependent, and a

more abstract mesh object that incorporates some higher-level operations.

The latter supports vertex blending for single-mesh animation of multi-bone

systems, resulting in exible animation of deformable bodies. Both indexed

and �xed vertex blending is implemented, with subdivision of larger meshes

in case of insuÆcient number of bones supported by the hardware.

� KINE+ module provides a bone (skeletal) system to drive motions of the

embodied agents. It incorporates a general interface for 3D transformations,

with implementation of both matrix and quaternions, as well as a set of

interfaces for hierarchical system of 3D objects called bones. A single bone

represents in fact just a transformation, capable to operate in hierarchy.

KINE+ makes it easy to move and rotate various parts of the agent's body.

Sophisticated agents, like virtual humans, may contain more than 50 bones

11

KINE+

DirectX

TMatrix

ITransform

TQuat

RENDER+

Bone NameSpace

IChild

MESH+

MeshDX

FaceDX
Buffer

VertexDX
Buffer

Mesh

NAVI+

PathFinder

BBox

IPath

Finder

IBBox

Transform Node3D

RealTime
Renderer

MoCap
Exporter

MAXExporter

Open set of
platform
dependent
renderers

FREE+

ACTION+

GenericAction

precondition
postcondition
type

Query()
Perform()

Action

IRenderee

Scheduler

Agent

Context

IAction

1

0..n

1

0..n

IObj3D INode

Renderee

IVertBuffer IFaceBuffer IMesh

Renderer

Importer

1

1

1

1

Fig. 3. An UML diagram of the FreeWill+ system construction.

in a highly hierarchical structure, while inanimate objects (represented by

smart object agents) usually contain just single bones, which determine

their position and orientation in space. The KINE+ module is platform-

independent.

� NAVI+ is a small component strictly co-operating with KINE+ models

to support navigation in 3D space. It covers implementation of collision

avoidance (based on OBB algorithm - oriented bounding boxes) as well as

A* algorithm for path-�nding.

� RENDER+module is another platform-dependent component that incor-

porates a mesh and a skeletal model into a single object enabled to render (a

renderee), and thus constitutes a complete visual representation of an agent.

Single mesh instances may be shared by numerous agents, while each agent

should use its individual skeleton. Additional features like lighting and cam-

eras are also supported. The module currently contains an implementation

of an instant (real-time) renderer for DirectX compatible graphics acceler-

ators. As an alternative, the animation may be streamed to the output �le,

which may be written in BIOVISION Motion Capture standard format ()

12

or 3DStudioMAX Script format (3ds max URL, 2004). The generated �les

are easy to be imported by a majority of commercially available 3D graphics

packages for o�-line rendering. The RENDER+ co-operates also with ad-

ditional tools that make it possible to import 3D models from the external

packages. Only plug-ins for the 3DStudioMAX are currently available.

� FREE+module is a surprisingly small component acting as a kernel for the

whole FreeWill+ framework. It provides a cooperative environment and con-

text for the agents and is capable of determining which agent is best suited

for a given task. It also co-ordinates (schedules) the messages sent between

them, including an event-like queuing and both individual and broadcasted

messages. Messages are delivered in respect to temporal and spatial con-

strains (Bandini, Manzoni and Simone, 2002), and �nally are subject to

�ltering. It is to ensure that the whole engine eÆciently simulates natural

perceiving processes. This is also the module where the Agent main class is

de�ned, however in FreeWill+ almost all agent functionality is delegeted to

the action components described below.

� ACTION+ is the main, largest and most complicated part of the whole

framework. Its general design principles - multi-layering and heterogeneity -

have been discussed in the previous section. The module consists of an open

set of highly autonomous components called actions, that are free to be used

by agents, an that are capable to construct instant, hierarchical structures

to ful�l their (or agents') goals. Majority of the system activity related to

performing various animated tasks is supported by the actions. Although

action layering is achieved ad-hoc during the run time, some levels still may

be distinguished. These are:

� Forward Kinematics Actions realising simple motions of the body's skele-

ton by directly setting the angles between bones in the joints.

� Inverse Kinematics Actions that make it possible to move parts of the

body just by imposing the target spatial position and orientation.

� Behaviour Pattern Actions relate to behaviours that are well described

algorithmically. Examples are walking (Boulic, Glardon and Thalmann,

2003) and grasping (Nebel, 2000; Kallman et al., 2003). They make use of

forward and inverse kinematics actions.

� Navigation Actions use mainly the walking behaviour pattern to roam

around the digital surroundings, with extensive use of NAVI+ module for

collision avoidance and path �nding.

� Intelligent Actions are a general term for high-level actions that usually

apply AI techniques to perform. The �rst action of this category to be

implemented was a Belief-Desire-Intention general model encapsulation.

� Learnt Actions are distinguished subcategory of intelligent actions that

apply machine learning algorithms, refer to section 5 for an example.

The actual set of actions is open and currently under development.

FreeWill+ implementation is based on Microsoft COM (Component Object

Model), with all the major modules and components, including the actions,

13

being COM in-process servers. This approach facilitates creation and use of

uniform interfaces, gives also a standard implementation platform that may

be easily extended by independent developers. Potentially COM-based archi-

tecture gives a chance to distribute the solution over a local network, however

such a possibility has not been explored yet.

5 How Animated Agents can learn Actions

Machine Learning techniques o�er interesting ways of constructing new actions

to improve, automatically, the repertoire of agent behaviours. In particular,

Reinforcement Learning methods (Sutton and Barto, 1998; Mitchell, 1997)

appear most suitable for control of motion tasks. This is the case for those

tasks that can be easily formulated as a sequence of movements necessary to

ful�l a given goal. Examples might include approaching objects, grabbing and

manipulating items or moving about in a virtual room. The current implemen-

tation of the FreeWill+ system (Szarowicz et al., 2003; Szarowicz, Mittmann

and Francik, 2004) includes both the deterministic and non-deterministic

Q-learning algorithms (Watkins, 1989; Mitchell, 1997). The objective of Q-

learning is to �nd an optimal solution to a hard problem by learning how

to act in a state space. Quality values (Q-values) are associated with each

state-action pair. At present FreeWill+ has been tested on simple examples of

actions in a discretized problem space. At each time step, an agent observes

the state st, and takes action a. The choice of actions in early stages is usually

chosen at random (any action may be selected from the possible actions set),

while, as the agent becomes more informed about its surroundings, the choice

becomes more guided/controlled and actions which give higher rewards are

preferred. This human-like selection strategy forms what is usually called the

policy of the agent, for a speci�c task, and the policy is a result of a controlled

balance between exploitation and exploration. After executing an action the

agent receives a reward r which depends on the new state st+1. The reward

is usually discounted into the future, that is rewards received n time steps

into the future are worth less by a factor n < 1 than rewards received in the

present. The deterministic algorithm uses the following update:

Q(st; at) � rt+1 + max
a

Q(st+1; a)

where Q(s; a) is the quality table (Q-table) entry for state s and action a, st
is the state visited at time t and st+1 is the state resulting from executing

action a in state st, r is the reward received by the agent and is a discount

factor expressing the agent decreasing commitment on the outcome of future

actions.

14

In case of a non deterministic solution the environment is subject to unex-

pected changes and both the actions and rewards of the agents may be non-

deterministic. The algorithm uses the following update:

Qn(st; at) = (1� �n)Q(st; at) + �n[rt+1 + max
a

Q(st+1; a)]

where is �n de�ned as:

�n =
1

1 + visitsn(s; a)

s and a are respectively the state and action updated during n
th iteration

and visitsn(s; a) is the total number of times this state-action pair has been

visited up to and including the nth iteration. The non-deterministic update is

very interesting because it gives an agent the possibility to learn even when the

world is not entirely predictable: this makes the animated agent more realistic.

Both its own actions and the world might not react as the agent would like

to. For instance, a movement of an arm of an anthropomorphic agent might

be slightly or grossly di�erent from what the mind-body command wanted.

The training phase, during which an agent learns a policy, entails rehearsing

a task or set of tasks in a number of iterations, also called epochs. Each

iteration terminates when the agent reaches a goal state and receives a reward

(negative or positive), or perhaps, when the agent gets completely lost in

local minima for a long time (temporal thresholds can be devised to limit the

training phase computations). Positive rewards are assigned to the agent when

it successfully completes the task at hand. Negative rewards are assigned to

the agent whenever it collides with an obstacle or outstretches a joint (hand

moved beyond the legal boundaries de�ned by the state space, corresponding

to a bio-mechanical physical model).

FreeWill+ embeds a number of tasks that can be learnt using the Q-learning

technique. The teapot-lifting task is one of them (see Szarowicz et al. (2003);

Szarowicz and Remagnino (2004) for another experiment results). The de-

terministic update was employed to learn the action for two control modes,

forward (FK) and inverse kinematics (IK). The non-deterministic update was

simulated using the inverse kinematics mode of control.

5.1 Learning using the deterministic algorithm

An example is shown in this section to introduce the idea of learning simple

tasks. The task of the agent is to lift a teapot (z represents the co-ordinate

of the teapot height that has to be increased). The elementary movements

15

available to the agent were selected from shown in Figure 4 and combined by

example to solve the task. All available movements are graphically depicted

in Figure 5. For the FK these were actions 1 { 5, and in this mode of control

two experiments were conducted.

Forward kinematics control Inverse kinematics control

1. Rotate arm up/down by �alpha 1. Move palm by (�x, �y, �z)

2. Rotate arm forward/backward �alpha

3. Rotate forearm by �alpha

4. Rotate hand along Z axis by �alpha

5. Perform the grabbing action 2. Perform the grabbing action

Fig. 4. Low-level actions used to train the avatar

Fig. 5. Low-level actions used to train the avatar

The learning parameters include �� set to 20 degrees in Experiment 1 and to

10 degrees in Experiment 2, while was set to 0.95. The di�erence between

Experiment 1 and 2 is not in the size of the state-space but its sampling.

The space axes were sampled more densely and thus the state space size of

the second task results larger. Therefore, the state-space in the Experiment 1

consists of about 13000 states, while it is ten times larger in the Experiment

2 (121 000 states). The dimensionality of both tasks equals 5 - 2 degrees of

freedom for the left arm, 1 for the left forearm, 1 for hand rotation and 1 for

the state of the teapot. The respective size of these dimensions were 7, 12,

11, 7, 2 for the Experiment 1 and 12, 20, 18, 14, 2 for the Experiment 2. Ten

simple actions were available to the agent at each time step (2 for each state

space dimension, ie rotation or motion in 2 opposite directions for each degree

of freedom). The minimum number of iterations for the Experiment 1 was

about 4 000 and 20 500 for the second one. Thus, despite the tenfold growth

of the state-space, the minimum number of iterations increases by a factor of

about 5. The lengths of the best solutions are respectively 9 and 14.

16

D ND

Experiment

(TeaPot)

FK-1 FK-2 IK IK

State space 12936 (5D) 120960 (5D) 2240 (4D) 2240 (4D)

Actions per

state

10 10 8 8

Min. no of iter-

ations to �nd a

solution

4000 20500 800 500

Approx. conver-

gence

15000 80000 3000 800

Shortest se-

quence found

9 14 10 10

Fig. 6. Summary of the learning experiment (deterministic algorithm)

Similarly an experiment with biped control using inverse kinematics was also

conducted. The simple movements available to the agent in this case are 1 and

2 shown in Fig. 4 (inverse kinematics column), and �x = �y = �z = 8cm for

the motion of a hand, = 0:95. Therefore the state-space was 4-dimensional

and the agent could choose from 8 simple actions - hand motion along 3 spatial

axes in two opposite directions for each axis plus the grabbing/releasing action.

The total size of state space was 2240 (8*14*10*2). The algorithm needs about

800 iterations to �nd a solution, and the best solution found is 10 actions long.

The number of states along each dimension was chosen to provide suÆcient

sensitivity but also to eliminate as many unnecessary states as possible. There-

fore only reasonable angles for joint movements were selected, these were taken

from human joint constraints: forearm can only rotate by about 180 degrees

around the x-axis, arm 270 degrees around the x-axis (forward/backward) and

180 degrees around the y-axis (up/down). Two additional states were added

for each joint to represent the illegal motions, so called forbidden states (e.g.

for the forearm rotation -20 degrees and 200 degrees would be the forbidden

states). Finally in all experiments the Q-table was represented as a lookup

table and the values were initialized to 0 before the simulation.

Results of the experiment are summarized in Fig. 6. Convergence graphs for

the teapot simulation in each experiment are depicted in Fig. 7 and 8. They

represent a sum of all Q-values as a function of epochs.

17

-40000000

-30000000

-20000000

-10000000

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5000 10000 15000 20000 25000

Epoch no.

T
ot

al
 Q

-v
al

ue

Fig. 7. Convergence for the FK teapot deterministic problem (experiment 1)

-6000000

-4000000

-2000000

0

2000000

4000000

6000000

8000000

10000000

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch no.

T
ot

al
 Q

 v
al

ue

Fig. 8. Convergence for the IK teapot deterministic problem

-250

-200

-150

-100

-50

0
1 501 1001 1501

Epoch no.

T
ot

al
 Q

 v
al

ue

Fig. 9. Convergence for the IK teapot non-deterministic problem

5.2 Learning using the non-deterministic algorithm

The teapot task was also implemented using inverse kinematics control and the

non-deterministic updating. The state space is the same as in the determinis-

18

tic implementation, and the length of the shortest solution is also 10 simple

actions. The convergence was reached faster - in approximately 800 iterations

as opposed to about 3000 in the deterministic case and the time necessary to

reach the optimum solution was shorter as well - about 90 minutes on average

(550 iterations). The convergence is also more stable (Fig. 9). This suggests

that the non-deterministic version of the algorithm generates comparable re-

sults in a shorter amount of time. An example resulting animation sequence

is presented in Fig. 10.

5.3 Learnt Actions in the FreeWill+ Framework

The presented results con�rm that learning can be embedded and the outcome

of the testing performed with the FreeWill+ architecture is a good example.

In this speci�c example the agent learns incrementally how to use a set of

relatively low-level movements. It is envisaged that a number of more advanced

experiments can be attempted to utilise more complex actions, for instance to

enter a building opening doors and move objects around.

The Reinforcement Learning Actions (RLA) are embedded into the society

of FreeWill+ action components, and thus may be triggered to work in their

instant associations, as described in Subsection 3.2. Queried by a higher-level

action component about the suitability to perform a given sub-task, RLA

components check if they are able to transform that task into the desired �nal

state in a discretized problem space, and to de�ne this problem space itself.

The latter problem appears even harder in practice: it has to be kept small

enough to be computable. We have also imposed severe limitations on the

repertoire of the available low-level actions: currently we use the set shown in

Fig. 4, optionally completed with simple walking forward and backwards. If,

despite all these limitations, the component is able to give a positive answer to

the query, the action may be performed. If possible, the results of previously

executed learning passes are reused, so RLA components do not necessarily

perform actual learning each time when triggered to use.

Application of RLA has several pros and cons. They signi�cantly shorten a

usual multi-stage chain of associated actions: they use directly the lowest-

level components, namely the FK and IK action components that control

the animated body and its bones without an intermediation of any other

system components. The obvious gain is that learnt actions are generic: no

previous knowledge is needed to perform any (possible to formulate) action.

In non-predictable or hardly predictable environments (e.g. massive crowd

simulations) they behave more realistically and thus prove that our embedded

intelligence indeed can cope with uncertainty in the actions and changes in

the environment. An important issue is also that agents behaviour may be

19

Fig. 10. A generated animation sequence

generated fully automatically.

The RLA components make it possible to successfully perform operations

that are otherwise not known to the system intelligent control. Theoretically

it could bring the solution's capabilities beyond any limitations. In practice it

cannot go too far. The most important weakness is the lack of implementation

of the physical rules; an example may be a task of jumping over an obstacle,

which is impossible to learn with the RLA, at least until the component of

physical dynamics is �nished.

Another limitation is the eÆciency. Learning takes a lot of time, therefore

the RLA component is suitable to perform actions only in o�-line animation

mode.

6 Conclusion

Animators want their digital characters to be realistic, but also alive. Living

creatures adapt themselves to a changing environment. The paper proposes

an architecture for animated agents that makes possible the embedding of

intelligence, ensures exibility and diversity of behaviour and enables them

to solve tasks and to learn. A principled design is put forward and an initial

study on how learning can be embedded in animated agents.

20

Behaviour can be decoupled and made modular. Tasks requiring complex ac-

tions can be decomposed into simpler actions and can also be learnt. This

makes a multi-layered structure of heterogeneous actions, with an essential

additive of learning-capable components.

Learning techniques such as Reinforcement Learning lend themselves very well

to the sought purpose: the automatic action acquisition with a minimal user

intervention. Animations require an environment that can collaborate with the

animated agents through its smart objects (we might call these inanimats as

opposed to animats).The animated environment teaches FreeWill+ animats

by rewarding positively or negatively according to how the task is or is not

accomplished. These are the �rst steps towards autonomous animation engines

that can learn how to act, behave and interact by following simple rules.

References

3DS Maxr 6, product home page. Discreetr.

http://www.discreet.com/3dsmax/

Allbeck, J. and N. Badler, Toward representing agent behaviors modi�ed by

personality and emotion. Workshop on Embodied Conversational Agents {

Let's specify and evaluate them! at AAMAS 2002, Bologna, Italy.

Arafa, Y., K. Kamyab, E. Mamdani, S. Kshirsagar, N. Magnenat-Thalmann,

A. Guye-Vuilleme and D. Thalmann, Two Approaches to Scripting Char-

acter Animation. Workshop on Embodied Conversational Agents { Let's

specify and evaluate them! at AAMAS 2002, Bologna, Italy.

Bandini, S., S. Manzoni and C. Simone, Dealing with Space in Multi-Agent

Systems: a model for Situated MAS. ACM AAMAS, Bologna, Italy 2002,

pp. 1183-1193.

Boulic, R., P. Glardon and D. Thalmann, From Measurements to Model: the

Walk Engine. Proc. of 6th Conf on Optical 3D Measurement Techniques.

Zurich International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 2003.

Bratman, M., Intention, Plans and Practical Reason. Harvard University

Press, 1987.

Caicedo, A., J.-S. Monzani and D. Thalmann, Toward Life-Like Agents: Inte-

grating Tasks, Verbal Communication And Behavioural Engines. The Vir-

tual Reality Journal, Springer 2001.

Evans, R., Varieties of Learning in Steve Rabin (Ed.), AI Game Programming

Wisdom, Charles River Media, Hingham, Ma, USA 2002, pp. 567-578.

Francik, J. and K. Trybicka-Francik, A Framework for Program Control of

Animation of Human and Animal Characters. Studia Informatica, Vol. 24,

No. 4 (56), 2003, pp. 55-65.

Francik, J. and P. Fabian, Animating Sign Language in the Real Time. 20th

21

IASTED International Multi-Conference Applied Informatics AI 2002, Inns-

bruck, Austria 2002, pp. 276-281.

Franklin, S. and A. Graesser, Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents. Proceedings of the Third International Workshop

on Agent Theories, Architectures and Languages. Budapest, Hungary, 1996,

pp. 193-206.

Gleicher, Michael. Making Motion Capture Useful. SIGGRAPH'01 Course.

Available on-line at http://online.cs.nps.navy.mil/DistanceEducation/

/online.siggraph.org/2001/Courses/cd2/courses/51, accessed on

14/02/2004.

Isla, D., R. Burke, M. Downie and B. M. Blumberg, A Layered Brain Ar-

chitecture for Synthetic Creatures. Proc. of 17th Joint Conf. on Arti�cial

Intelligence IJCAI-01, Seattle, USA, 2001, pp. 1051-1058.

Jennings, N. R., An agent-based approach for building complex software sys-

tems. Communications of the ACM, 44(4), 2001, pp. 35-41.

Jennings, N. R. and M. J. Woolridge, Applications of Intelligent Agents, in N.

R. Jennings and M. J. Woolridge (eds.) Agent Technology - Foundations,

Applications and Markets. Springer Verlag, 1998, pp. 3-28.

Kallmann, M., Object Interaction in Real-Time Virtual Environments. PhD

Thesis, �Ecole Polytechnique F�ed�erale de Lausanne, Switzerland, 2001.

Kallmann, M., A. Aubel, T. Abaci and D. Thalmann, Planning Collision-

Free Reaching Motions for Interactive Object Manipulation and Grasping.

Eurographics 2003.

Nebel, J.-C., Realistic collision avoidance of upper limbs based on neuro-

science models. Proceedings of Eurographics 2000, Vol. 19, issue 3, Inter-

laken, Switzerland, 2000.

Koeppel, D., Massive Attack. Popular Science (2002), accessed from Internet

on 9/02/2004,

http://www.popsci.com/popsci/science/article/0,12543,390918-1,00.html

Mitchell, T., Machine Learning, McGraw Hill, 1997.

Monzani, J.-S., A. Caicedo and D. Thalmann, Integrating Behavioural Anima-

tion Techniques. Proceedings of Eurographics 2001, vol. 20, issue 3, Manch-

ester, UK, 2001.

Monzani, J.-S., An architecture for the Behavioural Animation of Virtual Hu-

mans. PhD Thesis, Ecole Polytechnique Fdrale de Lausanne, 2002.

O'Sullivan, C., J. Cassell, H. Vilhjalmsson, J. Dingliana, S. Dobbyn, B. Mac-

Namee, C. Peters and T. Giang, Levels of Detail for Crowds and Groups.

Computer Graphics Forum, 21(4) 2002 pp. 733-742.

Rick Parent. Computer Animation, Algorithmes and Techniques. Morgan

Kaufmann Publishers, San Francisco 2002.

Raupp Musse, S. and D. Thalmann, Hierarchical Model for Real Time Simu-

lation of Virtual Human Crowds. IEEE Transactions on Visualization and

Computer Graphics, V. 7, N.2 2001 pp. 152-164.

Rao, A. S. and M. P. George�, Modeling Rational Agents within a BDI-

Architecture. Proceedings of the 2nd International Conference on Principles

22

of Knowledge Representation and Reasoning. Cambridge, MA, USA, 1991,

pp. 473-484.

Reynolds, C. W., Flocks, herds, and schools: A distributed behavioral model.

Computer Graphics, SIGGRAPH '87 Conference Proceedings, vol. 21(4),

ACM SIGGRAPH 1987 pp. 25-34.

Russell, K. B. and B. M. Blumberg, Behaviour-Friendly Graphics. Computer

Graphics International. 1999.

Russell, S. and P. Norvig, Arti�cial Intelligence. A Modern Approach. Prentice

Hall, 1995.

Sutton, R. S. and A. G. Barto, Reinforcement Learning: an Introduction. MIT

Press, 1998.

Szarowicz, A., J. Amiguet-Vercher, P. Forte, J. Briggs, P. Gelepithis and P.

Remagnino, The Application of AI to Automatically Generated Animation.

Advances in AI, Proceedings of the 14th Australian Joint Conf. on Arti�cial

Intelligence, Springer LNAI 2256, 2001, pp. 487-494.

Szarowicz, A., M. Mittmann, J. Francik and P. Remagnino, Automatic Acqui-

sition of Actions for Animated Agents. Proc. of 4th International Conference

on Intelligent Games and Simulation IJICS London 2003 pp. 170-174.

Szarowicz, A., M. Mittmann and J. Francik, Intelligent Action Acquisition for

Animated Learning Agents, in: Lakhmi C. Jain (Ed.) Learning Coordina-

tion and Communication in MultiAgent Systems, Theory and Applications.

World Scienti�c, to appear in 2004.

Szarowicz A. and Remagnino P., Avatars That Learn How to Behave. Euro-

pean Conference on Arti�cial Intelligence ECAI 2004, Springer, Valencia,

Spain, 2004.

Tu, X. and D. Terzopoulos, Arti�cial Fishes: Physics, Locomotion, Perception

and Behavior. Proc. of SIGGRAPH'94, Computer Graphics, Vol. 28, Annual

Conf. Series 1994, pp. 43-50.

Tu, X., Arti�cial Animals for Computer Animation: Biomechanics, Locomo-

tion, Perception and Behavior. LNCS 1635. Springer Verlag, Berlin 1999.

Watkins, C. J. C. H., Learning from Delayed Rewards. PhD thesis, University

of Cambridge, Psychology Department, 1989.

Winiko�, M., L. Padgham, and J. Harland, Simplifying the Development of

Intelligent Agents. Advances in Arti�cial Intelligence. 14th Australian Joint

Conference on Arti�cial Intelligence AI2001, LNAI 2256, Adelaide, Aus-

tralia 2001, pp. 557-568.

23

