

There are many different ways of saying things and also of writing things. Sometimes there are much
more different ways of saying things than things that are worth to be said. Sometimes people invent
funny ways of telling things, sometimes people find complicated ways of not telling anything. This
is true not only of people professionally engaged in the communication business, but also of
everyone else. It is hard to communicate (do you see what we mean?).

To help you correlate what some people may want to say (or not) you decided to workout a tool that
may be used to compare two texts with gaps, and tell whether the patches may be filled so that the
resulting texts will become the same. Gaps in the text are named by strings and have a length
attached. For example, the sequence of characters <firstname:10> identifies a gap named
"firstname" of length 10. Here is an example of texts with gaps (just to clarify, we identify here
blank spaces in the input with the symbol _ , but this symbol doesn't exist in the input file, that
matches exactly the Sample Input below's format).

<name:3>'s _boat _is _no_longer _than _Anne's. _If _Joe _likes
_<food:7> _then _so _do_I. _Usually, _<food:7> _are _yellow.

<thing:10> _is _no_longer _than _Anne's. _If _<name:3> _likes
_bananas _then _so _do_I. _Usually, _bananas _are _<color:6>.

The texts may be matched by consistently replacing each named gap by some string of the
appropriate length. The same named gap may appear in either text, always with the same associated
length. In the example above, we may set:

color yellow
food bananas
name Joe
thing Joe's boat

Your goal is to write a program that given two texts with gaps will determine if the texts can be
matched, in which case it must list how to fill the gaps, or not.

Input
The input will contain several test cases, each of them as described below. Consecutive test
cases are separated by a single blank line.

The input consists of two texts, in sequence. A text is given as a sequence of printable characters, for
convenience split into several lines. Each text is specified by an integer N, in a single line, indicating
how many lines the text has, followed by precisely N lines. To obtain the text from its lines, you
should just concatenate the contents of all the lines, in order. The text may contain the usual
alphabetic and punctuation characters, and also sequences of the form <identifier: integer>
indicating a gap in the text. The identifier is a sequence of alphabetic characters, with the name
of the gap, and integer is an integer (between 0 and 32), with the length of the gap. Every gap
identifier in a gap is always associated to the same integer. The number of lines in each test
does not exceed 100 lines, and each line does not exceed 400 characters.

3650 - Gap
Europe - Southwestern - 2006/2007

 Submit Ranking

Page 1 of 2http://acmicpc-live-archive.uva.es/nuevoportal/data/problem.php?p=3650

Output
For each test case, the output must follow the description below. The outputs of two
consecutive cases will be separated by a blank line.

If the texts can be matched, the output will contain "yes " in the first line, followed by the strings
that have been chosen to fill the gaps. For each gap, you should list the gap identifier, followed by a
single space, and the text selected to fill the given gap. This list should appear by alphabetic order of
the gap identifiers. If your matching is not able to identify some character precisely, then such
character must be printed as "* " in the output.
If the texts cannot be matched, the output should contain "no" in a single line.

Sample Input

2
<name:3>'s boat is no longer than Anne's. If Joe li kes
 <food:7> then so do I. Usually, <food:7> are yello w.
2
<thing:10> is no longer than Anne's. If <name:3> li kes
 bananas then so do I. Usually, bananas are <color: 6>.

1
potato<bingo:6>.
1
po<bobo:6> ppp.

Sample Output

yes
color yellow
food bananas
name Joe
thing Joe's boat

yes
bingo ** ppp
bobo tato**

Southwestern 2006-2007

Tests-Setter: Arne Alex

Page 2 of 2http://acmicpc-live-archive.uva.es/nuevoportal/data/problem.php?p=3650

