	2663 - Intervals Europe - Central - 2002/2003				
	PDF	PostScript	<u>Submit</u>		Ranking

You are given *n* closed, integer intervals $[a_i, b_j]$ and *n* integers $c_1, ..., c_n$.

Write a program that:

- reads the number of intervals, their endpoints and integers $c_1, ..., c_n$ from the standard input,
- computes the minimal size of a set Z of integers which has at least c_i common elements with interval $[a_i, b_i]$, for each i = 1, 2, ..., n,
- writes the answer to the standard output.

Input

The first line of the input cointains an integer indicating the number of datasets. It's followed by a blank line. The first line of each dataset contains an integer n ($1 \le n \le 50000$) - the number of

intervals. The following *n* lines describe the intervals. The line i + 1 of the dataset contains three integers a_i, b_i, c_i separated by single spaces and such that $0 \le a_i \le b_i \le 50000$ and $1 \le c_i \le b_i - a_i + 1$. There is a blank line between datasets.

Output

The output for each dataset contains exactly one integer equal to the minimal size of a set Z sharing at least c_i elements with interval $[a_i, b_i]$, for each i = 1, 2, ..., n. Print a blank line between datasets.

Sample Input

Sample Output

б

Central 2002-2003