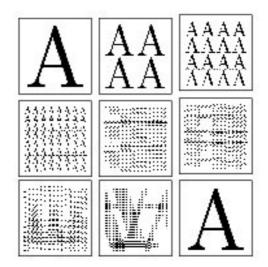


3510 - Pixel Shuffle

Europe - Southwestern - 2005/2006



Shuffling the pixels in a bitmap image sometimes yields random looking images. However, by repeating the shuffling enough times, one finally recovers the original images. This should be no surprise, since "shuffling" means applying a one—to—one mapping (or permutation) over the cells of the image, which come in finite number.

Problem

Your program should read a number n, and a series of elementary transformations that define a ``shuffling" ϕ of $n \times n$ images. Then, your program should compute the minimal number m (m > 0), such that image. applications of always yield the original $n \times n$

For instance if ϕ = 4 is counter-clockwise 90° rotation then m

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

Input is made of two lines, the first line is number n ($2 \le n \le 2^{10}$, n even). The number nis the size of

the agest one simage is the presented interpolation as the interpolation as the row number and j

The second line is a non-empty list of at most 32 words, separated by spaces. Valid words are the keywords id, rot, sym, bhsym, bvsym, div and mix, or a keyword followed by ``-". Each keyword key designates an elementary transform (as defined by Figure 1), and key-designates the inverse of transform key. For instance, rot – is the inverse of counter–clockwise 90° rotation, that is clockwise 90° rotation. Finally, the list $k_1, k_2,...$, transform ϕ . For instance, "bvsym rot—" is the transform that $=k_1\circ k_2\circ \cdots \circ k_p$ rotation and then vertical symmetry on the lower half of the image. $k_{\rm p}$ designates the compound transform ϕ

first performs clockwise 90°

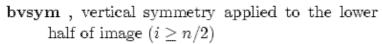
Figure 1: Transformations of image (a^{j}) into image (b^{j})

 ${\bf id}$, identity. Nothing changes : $b_i^j=a_i^j.$

rot, counter-clockwise 90° rotation

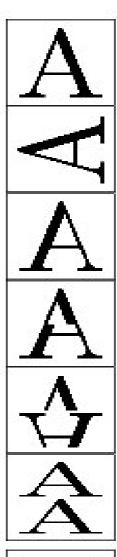
 $\mathbf{sym}\,$, horizontal symmetry : $b_i^j=a_i^{n-1-j}$

bhsym, horizontal symmetry applied to the lower half of image: when $i \geq n/2$, then $b_i^j = a_i^{n-1-j}$. Otherwise $b_i^j = a_i^j$.



div , division. Rows $0,2,\ldots,n-2$ become rows $0,1,\ldots n/2-1$, while rows $1,3,\ldots n-1$ become rows $n/2,n/2+1,\ldots n-1$.

 $\begin{array}{c} \mathbf{mix} \ \ , \mathbf{row} \ \mathbf{mix}. \ \ \mathbf{Rows} \ 2k \ \mathbf{and} \ 2k+1 \ \mathbf{are} \ \mathbf{interleaved}. \\ \mathbf{The} \ \mathbf{pixels} \ \mathbf{of} \ \mathbf{row} \ 2k \ \mathbf{in} \ \mathbf{the} \ \mathbf{new} \ \mathbf{image} \ \mathbf{are} \\ a_{2k}^0, a_{2k+1}^0, a_{2k}^1, a_{2k+1}^1, \cdots a_{2k}^{n/2-1}, a_{2k+1}^{n/2-1}, \ \mathbf{while} \\ \mathbf{the} \ \mathbf{pixels} \ \mathbf{of} \ \mathbf{row} \ 2k+1 \ \mathbf{in} \ \mathbf{the} \ \mathbf{new} \ \mathbf{image} \ \mathbf{are} \\ a_{2k}^{n/2}, a_{2k+1}^{n/2}, a_{2k}^{n/2+1}, a_{2k+1}^{n/2+1}, \cdots, a_{2k}^{n-1}, a_{2k+1}^{n-1}. \end{array}$



Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Your program should output a single line whose contents is the minimal number m (m > 0) such that ϕ^{m} is the identity. You may assume that, for all test input, you have $m < 2^{31}$

Sample Input

```
2
256
rot- div rot div
```

256 bvsym div mix

Sample Output

8

63457

Southwestern 2005–2006