Liga Zadaniowa termin 6 15 maj 2002

Task 13 — Evaluating Simple C Expressions

The task in this problem is to evaluate a sequence of simple C expressions, but you need not know
C to solve the problem! Each of the expressions will appear on a line by itself and will contain no more
than 80 characters. The expressions to be evaluated will contain only simple integer variables and a
limited set of operators; there will be no constants in the expressions. There are 26 variables, which may
appear in our simple expressions, namely those with the names a through z (lower-case letters only). At
the beginning of evaluation of each expression, these 26 variables will have the integer values 1 through
26, respectively (that is, a = 1, b = 2, ...). Each variable will appear at most once in an expression and
many variables may not be used at all.

The operators that may appear in expressions include the binary (two-operand) + and -, with the
usual interpretation. Thus the expression a 4+ ¢ - d + b has the value 2 (computed as 1 + 3 - 4 4+ 2). The
only other operators that may appear in expressions are ++ and ——. These are unary (one-operand)
operators, and may appear before or after any variable. When the ++ operator appears before a variable,
that variable’s value is incremented (by one) before the variable’s value is used in determining the value
of the entire expression. Thus the value of the expression ++ ¢ - b is 2, with ¢ being incremented to 4
prior to evaluation the entire expression. When the ++ operator appears after a variable, that variable is
incremented (again, by one) after its value is used to determine the value of the entire expression. Thus
the value of the expression ¢ ++ - b is 1, but c¢ is incremented after the complete expression is evaluated;
its value will still be 4. The —— operator can also be used before or after a variable to decrement (by
one) the variable; its placement before or after the variable has the same significance as for the ++
operator. Thus the value of the expression —— ¢ + b —— has the value 4, with variables b and ¢ having
the values 1 and 2 following the evaluation of the expression.

Here’s another, more algorithmic, approach to explaining the ++4 and —— operators. We’ll consider
only the ++ operator, for brevity:

1. Identify each variable that has a +4 operator before it. Write a simple assignment statement that
increments the value of each such variable, and remove the +4 from before that variable in the
expression.

2. In a similar manner, identify each variable that has a ++ operator after it. Write a simple
assignment statement that increments the value of each of these, and remove the ++ operator
from after that variable in the expression.

3. Now the expression has no ++ operators before or after any variables. Write the statement that
evaluates the remaining expression after those statements written in step 1, and before those written
in step

4. Execute the statements generated in step 1, then those generated in step 3, and finally the one
generated in step 2, in that order.

Using this approach, evaluating the expression ++ a + b ++ is equivalent to computing a = a + 1
(from step 1 of the algorithm) expression = a + b (from step 3) b = b + 1 (from step 2) where expression
would receive the value of the complete expression.

Your program is to read expressions, one per line, until line 0 is read. Display each expression exactly
as it was read, then display the value of the entire expression, and on separate lines, the value of each
variable after the expression was evaluated. Do not display the value of variables that were not used in
the expression. The samples shown below illustrate the desired output format.

Blanks are to be ignored in evaluating expressions, and you are assured that ambiguous expressions
like a+++b (ambiguous because it could be treated as a++ + b or a + ++b) will not appear in the
input. Likewise, ++ or —— operators will never appear both before and after a single variable. Thus
expressions like ++4a++ will not be in the input data.



Liga Zadaniowa termin 6

Sample Input

a+b
b -2z
atb-—-+c++
ctf-—+--a
f-- + c-- + d-++e

Sample Output

Expression: a + b

value = 3

a=1

b =2

Expression: b - z
value = -24

b =2

z = 26

Expression: at+b--+c++
value = 6

a=1
b=1
c =4

Expression: c+f--+--a
value = 9

a=20
c =3
f=5
Expression: f-- + c—— + d-++e

value = 7
c =2
d =4
e =6
f 5

15 maj 2002



