Face normalisation

Plan of the lecture

Normalisation – task definition

 testing issues

 Geometric normalisation
 Lighting normalisation
 Advanced normalisation issues

Normalisation – general

- Image preparation for feature extraction
 - similar properties of generated images
 - geometry
 - conditions (e.g.: lighting, expression)
 - occlusions
- Intra-class differences minimised
- Extra-class differences not influenced

Normalisation – general

 Effectiveness criteria
 visual effect
 recognition performance
 Detection error influences normalisation result

Normalisation – general

Perfect detection real location of face and facial features data input by human Elimination of detection error propagation Better assessment of subsequent recognition stages

Geometric normalisation

	Requirements:	
	 constant image size 	
	 fixed eye positions 	
	 frontal orientation (soft requirement) 	
	Frontal faces – goal:	
	 given positions of eyes 	
	 affine transform 	
	Actions:	
	 clipping 	
	 rotation 	
	scaling	
	Time for example	

Geometric normalisation

- Speed optimisation
 - larger image = more time consumed
- Optimal algorithm:
 - 1. Calculate rotation angle
 - 2. Find and clip the ROI
 - 3. Rotate the clipped image
 - 4. Clip again
 - 5. Scale to the defined size

Laboratory reference (ex 2)

Function parameters Eye positions: left (49, 24) right (15, 24) ♦ IPP reference RotateCenter Resize Operations...

Lighting codnitions affect effectiveness
 Normalisation techniques:

- global filtering
- Iocal modifications
- Histogram modifications:
 - stretching
 - equalisation
 - fitting to the average face histogram
- Filtering

M – number of faces in a set

x – a single face vector

With histogram fitting:

Without histogram fitting:

WRITH S.

Brightening filters – example of effects

Directional lighting:

 strong influence on the image
 recognition effectiveness much worse

 Light direction normalisation:

 light angle detection
 compensation to the frontal light conditions

CRI-18

Mirror reflection

- Condition: no information in one image half
- Image half recovery
- Applicable to frontal faces only
- Brightness and angle thresholding

Lighting normalisation - masks

Image-based lighting compensation masks

- dark areas lightened
- highlights darkened
- Mask imposition on the original image:
 - addition
 - multiplication
 - advanced imposition to be investigated...

Lighting normalisation - masks

Symmetric mask

Compensation to the average

Lighting compensation – face model
 Detection of lighting direction

 based on average 3D face model
 classifiers (SVM, PCA)

 Compensation based on 3D model

 mask generation

 Works correctly for artificial data

Light – low frequencies in the image
Low frequencies elimination:

In(c[m,n]) = In(I[m,n]) + In(a[m,n])
HP{In(c[m,n])} ≈ In(a[m,n])
a'[m,n] = exp{HP{In(c[m,n])}

Theory seems nice...

Advanced normalisation

Head rotation normalisation frontal image desired Face expression normalisation neutral expression expression detection Elimination of occlusions glasses beard and moustache

Non-frontal images

- Normalisation (rotation):
 - 3D
 - 2D + depth map

The most serious problem: angle detection

