Improved Time and Space Complexities
for Transposition Invariant String Matching

Gonzalo Navarro®! Szymon Grabowski” Veli Makinen
Sebastian Deorowicz 42

aCenter for Web Research, Dept. of Computer Science, University of Chile, Chile.
b Computer Engineering Department, Technical University of LodZ, Poland.
¢Department of Computer Science, University of Helsinki, Finland.

dInstitute of Computer Science, Silesian University of Technology, Poland.

Abstract

Given strings A = ajas ... a,, and B = bybs ... b, over a finite alphabet ¥ C 7Z of size
O(o), and a distance d() defined among strings, the transposition invariant version
of d() is d*(A, B) = mingez d(A+t, B), where A+t = (a1 +t)(az+1) ... (am+t). Dis-
tances d() of most interest are Levenshtein distance and indel distance (the dual of
the Longest Common Subsequence), which can be computed in O(mn) time. Recent
algorithms compute d*(A, B) in O(mnloglogmin(m,n)) time for those distances.
In this paper we show how those complexities can be reduced to O(mnloglogo).
Furthermore, we reduce the space requirements from O(mn) to O(c? +min(m,n)).

Key words: longest common subsequence, edit distance, music sequence
comparison, transposition invariance, sparse dynamic programming

1 Introduction

Transposition invariant string matching is the problem of matching two strings
when all the characters of either of them can be “shifted” by some amount ¢.
By “shifting” we mean that the strings are sequences of numbers and we add
or subtract ¢ from each character of one of them.

I Supported by Millennium Nucleus Center for Web Research, Grant P01-029-F,
Mideplan, Chile.
2 Supported by Silesian University of Technology Research Project BK-
203/RAu2/2004.

Preprint submitted to Elsevier Science 11 November 2004

Interest in transposition invariant string matching problems has recently arisen
in the field of music information retrieval (MIR) [2,6,7]. In music analysis and
retrieval, one often wants to compare two music pieces to test how similar
they are. A reasonable way of modeling music is to consider the pitches and
durations of the notes. The durations are however often omitted, since it is
usually possible to recognize the melody from a sequence of pitches. In general,
edit distance measures can be used for matching two pitch sequences. One of
the most widely accepted similarity measures for matching music is the longest
common subsequence (LCS) among the pitch sequences. This is the longest
string that can be obtained by removing characters from each of the two
sequences. A second measure (actually a dissimilarity measure) is Levenshtein
distance, which permits substituting characters by others apart from removing
them.

A particular feature of music retrieval is transposition invariance: The same
melody is perceived even if the pitch sequence is shifted from one key to
another. This is equivalent to adding a constant to all the pitch values of
one sequence. Therefore, the problem of determining similarity of two strings
under transposition invariance is of interest in music retrieval. It also finds
applications in time series comparison [1], image comparison [3], and other
areas [9].

Let m and n be the lengths of the two strings to compare and o the size of their
alphabets. The basic LCS and Levenshtein distance computation algorithms
(without transposition invariance) require O(mn) time and O(min(m,n)) space.
In a recent work [11], O(mn loglog min(m, n)) time algorithms are presented to
compute the transposition invariant versions of these distances. Albeit the time
penalty over the versions that do not handle transposition invariance is mild,
these algorithms require much space, O(mn). In this paper we show how those
algorithms can be improved to O(mnlogloga) time and O(¢? + min(m,n))
space (on Levenshtein distance) or O(o + min(m,n)) (on LCS). This is an
important improvement when the strings to compare are large in comparison
to their alphabet, which happens in several applications.

2 Problem Statement and Our Contribution

Let X C Z be a finite numerical alphabet. For simplicity, we consider > =
{0,...,0} in this paper, although any subset of Z can be handled with little
extra overhead. Let A = aqas...a,, and B = biby...b, be two strings over
¥*, that is, characters a;,b; of the two strings belong to ¥ for all 1 <1 <
m,1 <75 <n.

The Levenshtein distance [8] ed(A, B) between strings A and B is the mini-

mum number of character insertions, deletions, and substitutions, necessary
to make them equal. This distance can be computed in O(mn) time [13] time
with the classical recurrence:

D(i,0) = i, D(0,j) = j
D(i,j) = ifa;=b; then D(i—1,j — 1) (1)
else 1 + min(D(i — 1,),D(i,j — 1), D(i — 1,5 — 1)),

so that ed(A, B) = D(m,n). The indel distance id(A, B) is a variant of the
Levenshtein distance where substitutions of characters are forbidden. It is
computed in similar fashion in O(mn) time as follows [16]:

D(i,0) = 4, D(0,j) = j
D(i,j) = ifa; =b; then D(i —1,j —1) (2)
else 1 +min(D(i — 1,5),D(i,j — 1)),

so that id(A, B) = D(m,n). The length of the longest common subsequence,
les(A, B), is an important similarity measure, and it is the dual of the indel
distance, that is, les(A, B) = 5(m +n —id(A, B)).

A useful alternative formulation of these distance computation problems is
to see them as a shortest path problem on a graph. The graph contains one
node for each matrix cell. For id(A, B), there are (horizontal) edges of cost 1
that connect every cell (i,j — 1) to (i,7), as well as (vertical) edges of cost
1 that connect every cell (i —1,7) to (i,j). Whenever a;, = b;, there is also
a (diagonal) zero-cost cell that connects (i — 1,5 — 1) to (¢, 7). It is not hard
to see that D(m,n) is the minimum path cost that connects cell (0,0) to cell
(m,n). For ed(A, B) this graph has also diagonal edges of cost 1 from every
cell (i —1,7—1) to (4,7).

A transposed copy of a string A, denoted by A + ¢ for some t € Z, is A+t =
(a1 +t)(ag+1t)- - (am +1t). Our goal is, given a distance d(A, B) whose value
is maximum when no characters match between A and B (which is the case
of ed(A, B) and id(A, B)), to compute the transposition invariant version of

d(A, B):

d*(A,B) = rtréiznd(Ath,B) = min d(A+1t,B),

te[—o,0]

where the latter equality is due to the fact that transpositions ¢ outside the
range [—o, o] will not match any character of A to B, and thus d(A +t, B) is
maximum for those t.

For the cases of ed(A, B) and id(A, B), the computation of d*(A, B) can be
done naively in O(mn o) time [7] by considering all transpositions ¢ € [—o, o].

A more sophisticated algorithm, based on the idea that only some characters of
A and B match for each transposition ¢, resorts to sparse dynamic program-
ming to obtain O(mnloglogmin(m,n)) time for both distances [11]. Most
recently [5], an algorithm that backtracks over the set of possible transposi-
tions obtains O((mn + loglog o) logo) in the best case and O((mn +logo)o)
in the worst case.

In this paper we make use of the results on sparse dynamic programming [11] to
obtain O(mn loglog o) time algorithms for transposition invariant Levenshtein
and indel distances. The idea is to split the dynamic programming matrix D
into submatrices and apply sparse dynamic programming at each submatrix.
The result is better than all previous work if ¢ < min(m,n). Moreover, the
sparse dynamic programming algorithms [11] require O(mn) space, whereas
our algorithms need only O(c? + min(m,n)).

3 Using Sparse Dynamic Programming

The results in [11] resort to sparse dynamic programming to solve the trans-
position invariant distance computation problem. For each transposition ¢ €
[—0, 0], the dynamic programming matrix D; is computed to match A + ¢
against B. The key idea is that, for each transposition ¢, there are only a few
matches between A + ¢ and B, that is, a; + ¢ = b;. Added over all possible
t values, there are exactly mn matches. Sparse dynamic programming algo-
rithms compute D;(m,n) by considering only the matching cells (i,7) such
that a; +t = b;. If there are r matches already spotted and in order, the al-
gorithms developed in [11] require O(rloglog min(m,n)) time. Summed over
all transpositions ¢, the cost becomes O(mn loglog min(m,n)).

There is a prior preprocessing work that classifies each cell (i,7) according
to the transposition it belongs to. Hence we initialize 20 + 1 empty lists for
t € [—o,0] and traverse the cells in the desired order, appending each cell (3,)
to the list for ¢ = b; — @;. The extra cost of this preprocessing is O(o + mn).

Sparse dynamic programming is based on the following lemmas regarding the
computation of id(A, B) or ed(A, B), whose basic version is proved in [11].
We prove slightly stronger versions here, by following the original proofs. In
addition to the concept of matching cells M = {(7,j), a; = b;}, we define the
input cells of matrix D as In = {(4,0), 0 <i<m}U{(0,7), 0<j <n}and
the output cells as Out = {(i,n), 0 <i <m}U{(m,j), 0 <j <n}.

Lemma 1 Let D(0...m,0...n) be the matriz that computes distance id(A, B).
Let M, In, and Out be the set of matching, input, and output cells of D, re-
spectively. Then, any matching cell (i,j) € M can be computed using the

recurrence
D(i,j) = min{D(¢, j") +i—i'+j—75' =2, (i',7)) € MUIn,i" <i,5 <j}, (3)

and any output cell (i,7) € Out can be computed using the above formula for
D(+1,j+1).

PROOF. Let us regard the computation of matrix D as a shortest path
computation on a graph. Every path from an input cell to a matching cell
(1,7), that is, to the target of a zero-cost edge, can be divided into two parts:
(a) from the input cell until a cell (¢, ;') that is the target of the last zero-
cost edge traversed before reaching (7,), and (b) from cell (¢, ;") until cell
(i, 7). The path from (7', j') to (i, j) moves first to (i — 1, j — 1) traversing only
horizontal and vertical cost-1 edges, and then moves for free from (i —1,7—1)
to (4,7) (Eq. (1)). Overall, (i — 1) — 4’ vertical and (j — 1) — ;" horizontal edges
are traversed, for a total cost of i — i + j — 7/ — 2. Hence the cost of this
particular path is D(¢', j') +i—4'+j — 7' — 2. M contains all the cells that are
targets of zero-cost edges, and therefore minimizing over all cells (i/, ') € M
yields the optimal cost, except for the possibility that the optimal path does
not use any zero-cost edge before (i,7). This last possibility is covered by
letting any input cell (¢', ;) € In that can influence (i — 1, j — 1) participate in
the minimization. The output cells (¢, j) € Out can be obtained by pretending
that (i + 1,7 + 1) is the target of a zero-cost edge, as the above computation
effectively determines D(i,j) = D(i+ 1,7 +1). O

Lemma 2 Let D(0...m,0...n) be the matriz that computes distance ed(A, B).
Let M, In, and Out be the set of matching, input, and output cells of D, re-
spectively. Then, any matching cell (i,j) € M can be computed using the
recurrence

(D@, j)+j—7 =1, (I"j) e MUIni <i,j =i <j—i}
(D@, j") +i—i" =1, (i",j') € MUIn,j’ <j,j —i' > j—i}

(4)
and any output cell (i,7) € Out can be computed using the above formula for
D(@i+1,7+1).

D(i,7) = min

PROOF. Following the proof of Lemma 1 it is enough to show that the
minimum path cost to reach cell (i — 1,7 — 1) from match point (¢, ;') is
j—j —1when j'—i < j—i,and i — i — 1 otherwise. The reason is that,
in both cases, we use as many diagonal edges as possible and the rest are
horizontal or vertical edges, depending on the case. O

Y

The sparse dynamic programming algorithms in [11] operate via a data struc-
ture where cell values can be inserted and other cell values can be queried,
considering only the values of already inserted cells and assuming that all the
unknown cells are not matching cells. The values in M U In are traversed in
reverse column-by-column order, where cell (i, j') precedes (i, j) if j < j, or if
j' = j and i’ > i. This guarantees correctness and simplifies the operation of
the algorithms (condition j' < j in Egs. (3) and (4) is automatically satisfied
when i’ < 7). For each matching cell (i,7), a query to the data structure is
performed in order to get the minimum over the relevant (',) cells, and then
the resulting value, computed according to Lemma 1 or 2, is inserted as the
value for cell (i, j).

These data structures permit inserting and querying an arbitrary number
of cells, albeit for correct results we require that insertions and queries are
performed in reverse column-by-column order. Let r be the number of cells
inserted or queried, then the data structures used perform the r operations in
O(rloglogmin(m,n)) time.

In this paper we will use these algorithms over submatrices of D. These sub-
matrices will have their input cells In initialized at arbitrary values, and we
will want to obtain the values of all their output cells Out. For this sake,
all the cells in In U M will be inserted and all the cells in M U Out will be
computed with the proper query. Cells in In will be inserted with their initial
values (at the proper time according to the reverse column-by-column order);
those (4, 7) in M will be inserted after querying for the minimum over relevant
(7', 7") values; and the output cells will be obtained (at the proper time) via
the proper query, but instead of inserting them we will use their values to
compute the bottom and rightmost borders of the matrix.

Figure 1 gives the pseudocode. The data structure is S. After initialization,
it permits adding cell values D(i,j) = d using S.Add(4, j, d), and computing
cell values according to Eq. (3) or (4) using S.Compute(i, j). This processing
takes time O(rloglog min(m,n)), where r = |M U In U Out]|.

4 The Algorithm

We compute a dynamic programming matrix D;(0...m,0...n) for each trans-
position ¢t € [—o, o], which corresponds to d(A+t, B). We divide the dynamic
programming matrices Dy(0...m,0...n) into O(mn/k?) blocks of k x k cells.
Blocks will be labeled (1, s), for 0 < r < [m/k] and 0 < s < [n/k], corre-
sponding to Dy(kr+1...kr+k,ks+1...ks+k). The bottom and rightmost
blocks may not be full but we ignore that for simplicity.

FillMatrix (D, In, M, Out)
S.Initialize()
for (i,j) € M U In U Out in reverse column-by-column order do
if (i,7) € In then S.Add(i, 7, D(i, j))
else if (i,j) € M then S.Add(i, j, S.Compute(i, j))
else // (i,j) € Out and it actually refers to (i — 1,7 — 1)
D(i—1,7—1) «— S.Compute(i,)

ANl

Fig. 1. Algorithm to fill matrix D with input, matching, and output cells In, M, and
Out, respectively, already sorted in reverse column-by-column order. Cells (i, j) € In
are already computed in D(i,j). Cells (i,7) € Out are shifted by one, as they are
used to compute D(i — 1,5 — 1).

We compute all the D; matrices simultaneously, row by row of blocks, each
row from left to right. When we compute each block, we assume that its
input cells (top row and leftmost column) are already computed, and after
the computation we write its output cells (bottom row and rightmost column).
Note that the input cells do not belong to the block itself.

Let us focus on the computation of a single block (r, s). The initial values of the
input cells (top row and column) D, (kr, ks+7) and D;(kr+i, ks), for 0 <i,j <
k, are already known: Either D;(0, ks +j) = ks+j and Dy(kr +1,0) = kr+1
(because of Eq. (1) or (2)), or they have already been computed as output
cells of previously processed blocks (D;(kr, ks+j) = Dy(k(r — 1)+ k, ks + j),
in block (r — 1,s), and D(kr + i,ks) = Dy(kr + i,k(s — 1) + k), in block
(r,s —1)).

Therefore, each block (r, s) is processed by sparse dynamic programming ac-
cording to the algorithms of the previous section (Figure 1), in O(rloglog k)
per transposition. Since there are 2k — 1 input cells and 2k — 1 output cells
per transposition, and the matching cells add up k2 over all transpositions, we
have O((ck-+k?)loglog k) time per block. To this we must add the (negligible)
O(o + k?) time to collect transpositions and sort the cells. Figure 2 gives the
pseudocode to compute a single block and Figure 3 the whole scheme.

By adding the above complexity over all the O(mn/k?) blocks, we get O(mn(o/k+
1) loglog k), which is optimized in complexity for k = o, to obtain O(mn loglog o).
That is, we split the matrix into ¢ x o blocks. Note that we are assuming

o < min(m,n), as otherwise the optimal block size cannot be attained. We
return later to this case.

The space requirements have also decreased significantly. Whereas the original
algorithms [11] require O(mn) space, we use O(k?) space to process each block.
If we process the matrix row by row, then we need only to remember the values
of the bottom row cells of the previous row of blocks in order to process the

ComputeBlock (A, B, D,r, s, k)
1. fort € [—o,0] do M, Initialize()
2. forjel...kdo

3 forieck...1do

4. Mbks+j_akr+i'Add(i7j>

5. In.Initialize()

6. forie€k...0do In.Add(:,0)

7. for jel...kdo In.Add(0,7)

8. Out.Initialize()

9. forjel...k—1do Out.Add(k+1,j+1)

10. forie€k...1do Out.Add(i+ 1,k +1)

11. for t € [—o,0] do FillMatrix(Dy(kr...kr + k,ks... ks + k), In, My, Out)

Fig. 2. Algorithm to compute block (r,s) for all transpositions ¢. Lines 1-10 deal
with the initializations of sets In, M;, and Out, and line 11 does the real sparse
dynamic programming over the block (extended to include its input cells).

ComputeAll (A, B,m,n, k)
1. forte[—o,0]do

2 forie€0...mdo D (i,0) «—i

3. for j€1...ndo Dy0,75) < j

4. forre0.../m/k] —1do

5 for s€0...[n/k] —1do

6 ComputeBlock(A, B, D, r, s, k)
7. Return miny[_, 5 Di(m,n)

Fig. 3. Algorithm to compute d*(A, B). It assumes that k divides m and n, otherwise
some obvious but cumbersome twists are required.

current row of blocks (as well as the rightmost cells of the preceding block in
the current row). This amounts to O(n) space. Now, we can switch A and B
if m < n, so as to ensure O(min(m,n)) space. Overall, the space requirement
is O(k® + min(m,n)), which is O(c? + min(m, n)) if we choose k = o.

It is possible to distinguish among transpositions that appear in a block from
those that do not. For the latter, the output cells can be filled in O(k) time
both for indel and Levenshtein distance, using the algorithms for “different
letter boxes” of [10]. This, however, does not improve the complexity of our
algorithm.

5 Conclusions

We have presented an O(mnloglogo) time algorithm to compute indel and
Levenshtein distance with transposition invariance. The algorithm is simple
and builds over a previous O(o + mnloglog min(m,n)) solution, whose large
O(mn) space complexity is also lowered here to O(a? 4+ min(m,n)). Our algo-
rithm applies to the case 0 < min(m,n), where it is better than any existing
solution.

For the case min(m,n) < o < max(m,n), we can adapt our algorithm so
that, even when it does not improve the time complexity of [11], it can greatly
reduce its space. Assume w.l.o.g. m < n. We can partition the matrix into
a horizontal strip of m x k blocks. Only m input/output cells need to be
read/written by each block. The optimal choice is again k = o, which yields
O(mnloglog min(m,n)) time and O(o min(m,n)) space.

Just like in [11], the algorithms are easily extended to the search problem,
where one seeks for all the substrings of B that are similar enough to A.
Only a small change in the initial matrix conditions is necessary, D;(0,7) =0
for 1 < j < n, to ensure that D;(m,j) = min; .;d(A +¢,b; ...b;). Since our
algorithms compute the whole bottom rows of the matrices, it is easy to detect
all the positions j where the (transposition invariant) distance between A and
a substring of B ending at j is below some desired threshold.

Non-contiguous alphabets ¥ C Z can be handled by assuming that the alpha-
bet is ¥’ = [min(X), max(X)], or even better, ¥’ = [min{a;, b; }, max{a;, b;}|.
Very sparse cases can be better addressed by considering only transpositions
t € {b; — a;}. This set can be collected in O(¢’ + mn) or in O(mnlog(mn))
time, and its size can be as bad as ¢” = O(mn). This technique permits
managing general alphabets, not only integer ones, but the usefulness of our
approach depends on the size o”.

Alternatively, for sparse integer alphabets, we can insert all the existing trans-
positions in a van Emde Boas tree [14,15] and then collect them all with the
successor operation, in overall time O(mn loglog¢’). This requires additional
space O(¢”) (which is allocated but not necessarily written), which can be re-
duced to O(¢’) for any constant € > 0 [4]. By using randomization the space
can be brought back to O(mn) [12]. The idea is also relevant for the case of
a contiguous alphabet [0, o], where the original algorithm [11] can be made
O(mn(loglog o + loglogmin(m,n))) instead of O(c + mnloglog min(m,n)).
Yet another solution, if O(mn) space is available, is to radix-sort all the mn
transpositions by successive stages of O(logmax(m,n)) bits each, to obtain
O(mnlog(c’)/logmax(m,n)) time.

Another kind of matching relaxation of interest in music retrieval is the so-

called d-matching, where characters a; and b; match for all transpositions
bj—a;—9d <t <bj—a;+6. In [11] this is handled in O(dmn loglog min(m,n))
time. By choosing k = ¢ /4, we achieve O(dmn loglog(c/d)) time.

It is not clear whether it is possible to achieve O(mn) time on transposition
invariant distance computation, so that no penalty in complexity is paid for
the transposition invariance. This has been achieved for a distance that per-
mits only deletions [11] (episode matching), but it remains open for indel and
Levenshtein distances. Other open problems are to obtain O(mn polylog o)
complexity for the case of a-limited distances, where the distance between two
consecutive matching characters in A and B cannot exceed . Complexities of
the form O(mn polylog m) are obtained in [11], but the matrix partitioning
technique cannot be immediately applied to that case.

References

[1] B. Bollobés, G. Das, D. Gunopulos, and H. Mannila. Time-series similarity
problems and well-separated geometric sets. Nordic Journal of Computing,
8(4):409-423, 2001.

[2] T. Crawford, C. Hliopoulos, and R. Raman. String matching techniques for
musical similarity and melodic recognition. Computing in Musicology 11:71—
100, 1998.

[3] K. Fredriksson, V. Mékinen, and G. Navarro. Rotation and Lighting Invariant
Template Matching. In Proc. LATIN 2004, pp. 39-48. LNCS v. 2976, 2004.

[4] D. Johnson. A priority queue in which initialization and queue operations take
time O(loglog D). Math. Systems Theory 15, 295-209, 1982.

[b] K. Lemstrom, G. Navarro, and Y. Pinzon. Practical algorithms for
transposition-invariant string matching. Journal of Discrete Algorithms (JDA),
2004. Elsevier Science. To appear. Abstract in Proc. SPIRE’04, LNCS, to
appear.

[6] K. Lemstrom and J. Tarhio. Searching monophonic patterns within polyphonic
sources. In Proc. RIAO 2000, pp. 1261-1279 (vol 2), 2000.

[7] K. Lemstréom and E. Ukkonen. Including interval encoding into edit distance
based music comparison and retrieval. In Proc. AISB 2000, pp. 53-60, 2000.

[8] V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 6:707-710, 1966.

[9] H. Mannila and H. Toivonen, and A. I. Verkamo. Discovering frequent episodes
in sequences. In Proc. 1st International Conference on Knowledge Discovery
and Data Mining (KDD’95), AAAI Press, pp. 210-215, 1995.

10

[10] V. Mékinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length
compressed strings. Algorithmica 35:347-369, 2003.

[11] V. Mékinen, G. Navarro, and E. Ukkonen. Algorithms for transposition
invariant string matching. In Proc. STACS’03, LNCS 2607, pp. 191-202,
2003. Full version as Technical Report TR/DCC-2002-5, Dept. of Comp.
Science, Univ. of Chile, July 2002, To appear in Journal of Algorithms.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/timatching.ps.gz.

[12] K. Mehlhorn and S. Néher. Bounded ordered dictionaries in O(loglog V) time
and O(n) space. Information Processing Letters 35, 183-189, 1990.

[13] P. Sellers. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4):359-373, 1980.

[14] P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an
efficient priority queue. Math. Systems Theory, 10:99-127, 1977.

[15] P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Inf. Proc. Letters 6(3):80-82, 1977.

[16] R. Wagner and M. Fisher. The string-to-string correction problem. J. of the
ACM 21(1):168-178, 1974.

11

