
A Parallel GPU-Designed Algorithm
for the Constrained Multiple Sequence
Alignment Problem

Adam Gudyś and Sebastian Deorowicz

Abstract. Modern graphical processing units (GPUs) offer much more computa-
tional power than modern CPUs, so it is natural that GPUs are often used for solving
many computationally-intensive problems. One of the tasks of huge importance in
bioinformatics is sequence alignment. We investigate its variant introduced a few
years ago in which some additional requirement on the alignment is given. As a
result we propose a parallel version of Center-Star algorithm computing the con-
strained multiple sequence alignment at the GPU. The obtained speedup over the
serial CPU relative is in range [20,200].

Keywords: constrained sequence alignment, GPU General Processing.

1 Introduction

Moore’s law shows how the computational power of the top central processing units
(CPUs) has been growing in the past four decades. Currently to sustain this law
CPU vendors use parallelization, as the performance of a single CPU core grew
only slightly in the last decade. Therefore, modern CPUs consist of 4–8 cores and
this number is expected to grow in the near future.

An intensive development of graphical precessing units (GPUs) led to the sit-
uation in which the computational power of a GPU is much larger than the com-
putational power of a CPU. An introduction of CUDA library [13] and OpenCL
language [12] made this power available widely. Moreover, contemporary GPUs
are designed not only for efficient processing of graphics but also (or even primar-
ily) for easy application in general purpose computations. E.g., the 1st, 3rd, and 4th

Adam Gudyś · Sebastian Deorowicz
Institute of Informatics, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland
e-mail: {adam.gudys,sebastian.deorowicz}@polsl.pl

T. Czachorski et al. (Eds.): Man-Machine Interactions 2, AISC 103, pp. 361–368.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{adam.gudys,sebastian.deorowicz}@polsl.pl


362 A. Gudyś and S. Deorowicz

places of the Top 500 list of supercomputers from November 2010 occupy machines
composed in part of NVidia’s GPUs.

The algorithms designed for GPUs were proposed for various problems, some of
them in the field of bioinformatics (e.g., [5, 6, 7, 8, 9, 11, 14, 15]). We investigate a
problem of constrained multiple sequence alignment (CMSA), which is a multiple
sequence alignment (MSA) problem with an additional requirement on the result.
To the best of our knowledge there is no CMSA-solving parallel algorithm for the
GPU. The CMSA is used instead of MSA when we have some prior knowledge on
how the alignment should look like. The CMSA problem was formulated in [16] to
compare RNase sequences.

The paper is organized as follows. Section 2 defines the CMSA problem. In
Sect. 3, tools for using GPU computational power for general processing are dis-
cussed. In Sect. 4, we show Center-Star algorithm [1] which is often used to solve
the CMSA problem. In Sect. 5, we introduce a parallel Center-Star algorithm for
the GPU. Section 6 shows the experimental results. The last section concludes the
paper.

2 Constrained Multiple Sequence Alignment Problem

Let all the sequences from the set S = {S1,S2, . . . ,Sk} be over a finite alphabet
Σ . The elements of Σ are called symbols. The length of each sequence Si is
the number of symbols it contains and is denoted by ni or |Si|. Let si

j be the jth sym-
bol
of Si.

An alignment of two sequences S′ and S′′ is defined as a pair of equal-length
sequences S′ and S′′ such that S′ and S′′ can be obtained from S′ and S′′ respectively
by inserting at some positions special symbols ‘–’ called gaps. Given a distance
function δ (x,y) defined for x,y ∈ Σ ∪ {−} the pair-wise score of two sequences
S′ and S′′, both of length n is defined as ∑1≤ j≤n δ (s′j,s′′j ). The values δ (x,−) =
δ (−,x) = wg for any x ∈ Σ , where wg is a gap cost.

A multiple sequence alignment (MSA) of S is a set of equal-length sequences
possibly with inserted gaps: S = {S1,S2, . . . ,Sk}. There is many more than one
‘quality’ measure of a multiple sequence alignment. In this paper we use the most
popular sum-of-pairs (SP) method (see [3] for other possibilities) in which the
total MSA score is a sum of sequence alignment scores for all sequence pairs:

∑1≤i′<i′′≤k ∑1≤ j≤n δ (si′
j ,s

i′′
j ), where n means the length of each of aligned sequences.

In a constrained variant of the MSA, there is an additional, constraining, se-
quence P = p1 p2 . . . pr. It is required that there exists an increasing integer sequence
x1, . . . ,xr (1 ≤ x1 < · · · < xr ≤ n) such that ∀1≤ j≤r,1≤i≤ksi

x j
= p j. Thus, if the aligned

sequences are typed one above the other, as an MSA is usually presented, the col-
umn of index x j contains only p j, for all valid js.

The constrained multiple sequence alignment (CMSA) problem is to find the con-
strained alignment of maximal score. For the case of k = 2 the problem can be solved



A Parallel GPU-Designed Algorithm for the CMSA Problem 363

in O(n1n2r) time [1], but in a general case of unbounded number of sequences it
is NP-hard, so it can be solved exactly only for very small values of k and short
sequences. Therefore, various approximate algorithms were proposed. These algo-
rithms were often inspired by MSA-solving methods.

The first approximate algorithm was proposed by Tang et al. [16]. It is a pro-
gressive method, which can be summarized as computing a sequence alignment
(SA) for each pair of sequences (without a constraining sequence) and then merging
the alignments in some way to obtain the CSMA. Its worst-case time complexity
is O(rkn4∗), where n∗ is the longest input sequence length. Center-Star algorithm
by Chin et al. [1] (see Sect. 4 for details) is much faster and gives better scores
also. Its worst-case time complexity is O(Ckn2∗), where C is the total number of oc-
currences of the constraining sequence in all main sequences. Yet other algorithm
was presented in [10]. There were also approaches on exact computation of the
CMSA [1, 4] but they are rather useless for large data due to the worst-case time
complexity O(2krnk∗).

3 General Processing at GPU

CPUs and GPUs are processors of rather different architecture. CPUs are composed
of a few identical and independent cores. Each core has some levels of cache mem-
ory units. The total cache size in a CPU is in order of megabytes, while the global
memory is shared by all cores and is of size of a few gigabytes.

GPUs are composed of multiprocessors.1 Each multiprocessor contains from a
few to a few tens of cores. The cores within a multiprocessor work in a SIMD-like
manner, i.e., each core processes the same instruction on different data. The global
memory is shared by all cores but access to it may be very slow (as is often un-
cached). Moreover, the accesses to the global memory should be made according to
some scenario to maximize performance. There is also a small local memory sepa-
rate for each multiprocessor. It is fast and cached. Finally, the number of registers
per multiprocessor is large (e.g., 32,768 in NVidia GTX 400 series).

The basic execution unit is called a thread. The threads are gathered in blocks
(only the threads from the same block can cooperate). Each block works on a single
multiprocessor but a few blocks can share the multiprocessor. A single execution of
a kernel (a program for a GPU) consists of many blocks, and a thread scheduler al-
locates the blocks to the multiprocessors. The programmer should only prepare the
blocks and pass them to the scheduler. The total number of threads running at a time
should be at least as large as the number of cores but to maximize the performance
it should be a few times larger (which means even 104 threads).

The GPU programming is significantly different than CPU programming (even
for multicore architecture). Therefore, the algorithms for GPUs are usually designed
from scratch rather than are adaptations of serial relatives.

1 There are some differences between the GPUs designed by two dominating vendors: NVidia
and AMD but the big picture is the same.



364 A. Gudyś and S. Deorowicz

Nowadays, there are several alternatives to program the GPUs for general pur-
poses. The most mature is NVidia’s CUDA C/C++ library.2 The main drawback of
CUDA is its low portability. In 2010, the first specification of the OpenCL language
was presented and then implemented by GPU vendors. The OpenCL is a language
for computations in heterogeneous environment which becomes a popular solution.

4 Serial Center-Star Algorithm

The popular Center-Star algorithm [3] for the MSA problem has known approxima-
tion ratio 2(z−1)/z < 2, i.e., the obtained score of the MSA given by this algorithm
is guaranteed to be at most 2 times worse than the score of the optimal (unknown)
MSA. The same holds for Center-Star algorithm by Chin et al. for the CMSA prob-
lem [1], which works as follows:

1. For a candidate sequence S′ ∈ S find all r-tuples 〈x1,x2, . . . ,xr〉, where 1 ≤ x1 <
· · · < xr ≤ |S′|, such that s′x1

s′x2
. . . s′xr

= p1 p2 . . . pr. Then, compute a tuple-score
for each r-tuple as a sum of constrained alignments scores between S′ and all
other sequence S′′ ∈ S . The rule for score calculation is:

D(i, j,γ) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(i−1, j −1,γ −1)+ δ (s′i,s′′j ), if xγ = i,s′i = s′′j = pγ ,

D(i−1, j −1,γ)+ δ (s′i,s
′′
j ),

D(i−1, j,γ)+ δ (s′i,−),
D(i, j −1,γ)+ δ (−,s′′j ),

(1)

for 0 < i ≤ |S′|, 0 < j ≤ |S′′|, 0 ≤ γ ≤ r. The boundary conditions are: D(i,0,γ) =
D(0, j,γ) = −∞, D(0, j,0) = j×wg, D(i,0,0) = i×wg for 0 < γ ≤ r, 0 ≤ i < |S′|,
0 ≤ j < |S′′|, where wg is a gap cost. The best r-tuple is the one with maximum
tuple-score.

2. Repeat step 1 for each S′ ∈ S and find a sequence S∗ ∈ S of maximal tuple-
score and the related r-tuple. This is the center sequence.

3. Merge the other sequences with the center sequence (see [1] for details).

The most time-consuming part of Center-Star algorithm is finding the center se-
quence (steps 1–2). In the following subsection, we show how this process can be
parallelized.

5 Our Parallel Algorithm

At the beginning of our parallel Center-Star algorithm, all valid r-tuples for each
sequence of S are determined. This is made at CPU, since this step is very quick.
Then, the descriptions of all possible tasks, each specified by a candidate sequence,
r-tuple and other sequence, are stored in an array and passed to the part of the
algorithm executed at GPU.

2 See www.nvidia.com for a catalog of more than a thousand applications of CUDA.

www.nvidia.com


A Parallel GPU-Designed Algorithm for the CMSA Problem 365

Below we show how the score for a single task is determined at GPU. The
nthr threads compute the constrained sequence alignment (CPSA) score of two se-
quences with assumed positions of constraining symbols in one of these sequences
(specified by r-tuple). To compute the score a 3-dimensional dynamic programming
matrix according to (1) needs to be computed. It is, however, easy to notice that due
to the assumed positions of the constraining symbols the space of the dynamic pro-
gramming matrix are effectively reduced and for each pair of coordinates (i, j) the
value of D(i, j,γ) for exactly one γ must be computed, so we can conceptually treat
D as a 2-dimensional matrix. Moreover, because we are interested only in the score,
not the complete alignment, the necessary space for computations is O(|S′|+ |S′′|).

The 2-dimensional matrix is split into strips of sizes |S′| × |S′′|/nthr and each
thread is responsible for computation of a single strip. Due to the dependences in
the dynamic programming matrix the strips must be computed in an anti-diagonal
manner, i.e., if D(i, j,γ) and D(i, j + 1,γ) belongs to different threads the thread
computing D(i, j + 1,γ) must wait until D(i, j,γ) is known. Figure 1 shows an
example.

Iter. 1
Iter. 2

Iter. 2

Iter. 3
Iter. 3

Iter. 3

Iter. 4
Iter. 4

Iter. 4

Thread no. 1 Thread no. 2 Thread no. 3

Fig. 1 Illustration of the order of computations made by threads computing a dynamic pro-
gramming matrix (only the start of threads is shown). Note that consecutive threads start
computations with a delay.

One of the limitations on the number of threads per a single block is a size of
fast local memory. Our algorithm uses blocks of maximal possible size. This size
depends on the number of threads designated to work on a single task and the length
of the sequences. A block of threads usually solves more than one task. The value
nthr is a parameter of the algorithm, so we can even set nthr = 1.

6 Experimental Results

The experiments were performed on a computer equipped with Intel Q6600 CPU
clocked at 2.4 GHz and NVidia GTX 480 clocked at 1.4 GHz with 1.5 GB of
global memory and 480 cores. The implementation was prepared in OpenCL lan-
guage. We performed two sets of experiments. In the first, we used the randomly



366 A. Gudyś and S. Deorowicz

generated main sequences of lengths: 100,150, . . . ,350, where the numbers of se-
quences were 4,5, . . . ,10, and the constraining sequence lengths were 2, 3, 4, 5.
Symbols from Σ were uniformly distributed along sequences but the main sequences
were guaranteed to contain a constraint. The obtained results are presented at Fig. 2.
The parallel algorithm was run for various number of threads per single task and
this number appended to GPU- string in figures shows the actual value of nthr.

2 3 4 5 6
0

50

100

150

200

CPU

GPU-1

GPU-8
GPU-16

GPU-32

r

Sp
ee

du
p

2 3 4 5 6

0

50

100

150

200

CPU

GPU-1

GPU-8

GPU-16
GPU-32

r

Sp
ee

du
p

k = 8, n = 200 k = 6, n = 300

4 6 8 10
0

50

100

150

200

CPU

GPU-1

GPU-8

GPU-16

GPU-32

k

Sp
ee

du
p

4 6 8 10

0

50

100

150

200

CPU

GPU-1

GPU-8

GPU-16

GPU-32

k

Sp
ee

du
p

r = 5, n = 200 r = 4, n = 300

100 150 200 250 300 350

0

50

100

150

200

CPU
GPU-1

GPU-8

GPU-16

GPU-32

n

Sp
ee

du
p

100 150 200 250 300 350

0

50

100

150

200

CPU
GPU-1

GPU-8

GPU-16
GPU-32

n

Sp
ee

du
p

r = 3, k = 8 r = 4, k = 6

Fig. 2 Experimental results for the artificial sequences.



A Parallel GPU-Designed Algorithm for the CMSA Problem 367

The results show how many times our parallel algorithm for GPU is faster than
the serial CPU algorithm. The observed speedups are in the range from 20 to 200. In
general, the larger the data the better the speedup. It is caused by two facts. Firstly,
the larger number of sequences means much more tasks to compute at GPU and the
computational power of GPU can be better utilized. Secondly, the larger the main
sequences the lesser is the relative waste caused by the delayed startup of threads in
the anti-diagonal computations of a dynamic programming matrix. We can also note
that the speedup for nthr = 1 was rather moderate. In this special case, the number of
threads that can be allocated per each block is small, often smaller than the recom-
mended minimal value and the computational power of multiprocessors is partially
wasted. The best results are usually obtained for the case of nthr = 16.

In the second experiment we used the real data of RNase sequences, the same
as used in [1]. For the characteristics of the data please consult [2]. The results are
presented in Table 1. The observations are similar here. The best is to take 16 threads
for computation of each task and the speedups for this case are from 36 to 109.

Table 1 Experimental results for the real-data set. Times are in ms. Speedups (typed in bold)
are calculated according to serial algorithm for CPU.

Serial Parallel (GPU)
(CPU) 1 thr. per set 8 thr. per set 16 thr. per set 32 thr. per set
time time speedup time speedup time speedup time speedup

data set ds0, P = HKH (7 sequences, 732 tasks)
157.15 8.93 17.6 4.46 35.3 4.12 38.1 4.33 36.3

data set ds1, P = HKH (6 sequences, 1850 tasks)
695.68 31.63 22.0 8.80 79.1 16.09 43.2 14.23 48.9

data set ds2, P = HKSH (6 sequences, 2185 tasks)
625.62 20.91 29.9 11.31 55.3 11.01 56.8 11.62 53.8

data set ds3, P = HKH (5 sequences, 3188 tasks)
3153.82 365.38 8.63 41.53 75.9 28.92 109.0 28.56 110.4

data set ds4, P = DGGG (7 sequences, 8034 tasks)
1280.12 59.45 21.5 33.04 38.7 34.83 36.8 39.09 32.7

7 Conclusions

We presented the algorithm that computes in parallel at GPU the first and second
(most time-consuming) stages of Center-Start algorithm for the constrained multiple
sequence alignment problem. The experimental results show that in practice our
algorithm is tens times faster (even up to 200 times) than the serial algorithm for
a CPU. The results look very promising and we plan to parallelize also the last
step of Center-Star algorithm to obtain a fully parallel Center-Star algorithm for the
GPU.

Acknowledgements. This work was partially supported by the European Community from
the European Social Fund.



368 A. Gudyś and S. Deorowicz

References

1. Chin, F., Ho, N., Lam, T., Wong, P.: Efficient constrained multiple sequence alignment
with performance guarantee. Journal of Bioinformatics and Computational Biology 3(1),
1–18 (2005)

2. Deorowicz, S., Obstój, J.: Constrained longest common subsequence computing algo-
rithms in practice. Computing and Informatics 29(3), 427–445 (2010)

3. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge (1997)

4. He, D., Arslan, A., Ling, A.: A fast algorithm for the constrained multiple sequence
alignment problem. Acta Cybernetica 17(4), 701–717 (2006)

5. Khajeh-Saeed, A., Poole, S., Perot, J.: Acceleration of the Smith–Waterman algorithm
using single and multiple graphics processors. Journal of Computational Physics 229,
4247–4258 (2010)

6. Kloetzli, J., Strege, B., Decker, J., Olano, M.: Parallel longest common subsequence
using graphics hardware. In: Favre, J., Ma, K., Weiskopf, D. (eds.) Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization. Eurographics Associ-
ation (2008)

7. Ligocki, L., Rudnicki, W.: An efficient implementation of Smith Waterman algorithm on
GPU using CUDA, for massively parallel scanning of sequence databases. In: Proceed-
ings of the IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8.
IEEE Computer Society, Washington, USA (2009)

8. Liu, W., Schmidt, B., Voss, G., Müller-Wittig, W.: GPU-ClustalW: Using graphics hard-
ware to accelerate multiple sequence alignment. In: Robert, Y., Parashar, M., Badri-
nath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 363–374. Springer,
Heidelberg (2006)

9. Liu, W., Schmidt, B., Voss, G., Schroder, A., Müller-Wittig, W.: Bio-sequence database
scanning on a GPU. In: Proceedings of the 20th International Parallel and Distributed
Processing Symposium, pp. 274–281 (2006)

10. Lu, C., Huang, Y.: A memory-efficient algorithm for multiple sequence alignment with
constraints. Bioinformatics 21(1), 20–30 (2004)

11. Manavski, S., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators
for Smith–Waterman sequence alignment. BMC Bioinformatics 9(suppl. 2), S10 (2008)

12. Munshi, A. (ed.): The OpenCL Specification. Khronos OpenCL Working Group (2010),
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

13. NVidia Corporation: NVidia CUDATMProgramming Guide, version 2.1 (August 12,
2008), http://www.nvidia.com/object/cuda_get.html

14. Schatz, M., Trapnell, C., Delcher, A., Varshney, A.: High-throughput sequence alignment
using graphics processing units. BMC Bioinformatics 8(474), 1–10 (2007)

15. Suchard, M., Rambaut, A.: Many-core algorithms for statistical phylogenetics. Bioinfor-
matics 25, 1370–1376 (2009)

16. Tang, C., Lu, C., Chang, M.T., Tsai, Y.T., Sun, Y.J., Chao, K.M., Chang, J.M., Chiou,
Y.H., Wu, C.M., Chang, H.T., Chou, W.I.: Constrained multiple sequence alignment tool
development and its application to RNase family alignment. In: Proceedings of the 1st
IEEE Computer Society Bioinformatics Conference, pp. 127–137. IEEE Computer So-
ciety, Washington, USA (2002)

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.nvidia.com/object/cuda_get.html

