
1

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

Nice to be a chimera:

A hybrid algorithm for the longest common

transposition-invariant subsequence problem
Szymon Grabowski, Sebastian Deorowicz

 Abstract – The longest common transposition-invariant

subsequence (LCTS) problem is a music information

retrieval oriented variation of the classic LCS problem.

There are basically only two known efficient approaches to

calculate the length of the LCTS. In this work, we propose a

hybrid algorithm picking the better of the two algorithms

for individual subproblems. Experiments on music (MIDI)

show that the proposed algorithm outperforms the faster of

the two component algorithms by a factor of 1.4–1.9,

depending on sequence lengths. Also for uniformly random

data, the hybrid is the winner if the alphabet is not too large

(up to 128 symbols).

 Keywords – Longest common transposition-invariant

subsequence (LCTS), bit-parallelism, sparse dynamic

programming, string matching.

I. INTRODUCTION

One of the most important problems in the field of string

matching concerns the longest common subsequence (LCS) of

two sequences. In a weaker version, the LCS problem can be

stated like that: Given two sequences:
m

aaA ,,
1
 and

n
bbB ,,

1
 , over an alphabet  1,,0   , report the

length l of the longest subsequence
liii

aaa ,,,
21
 of A, where

1


kk
ii for all k,

ll jijiji
bababa  ,,,

2211
 , and

1


kk
jj

for all k. A harder version of the problem asks for the sequence

itself (which does not have to be unique), not just its length.

The classic dynamic programming (DP) algorithm for LCS

has  mnO time complexity, and, surprisingly, not much better

complexities are known for this problem for the worst case.

LCS has been thoroughly explored [1]. Also, numerous

variations of the problem have been posed, see, e.g., [2] for

details.

One of the LCS variations, introduced relatively recently [3],

has applications in music information retrieval. An important

trait of similar melodic sequences is that they can differ in the

key, but humans perceive them as same melodies. More

formally, the problem of longest common

transposition-invariant subsequence (LCTS) that we talk about

is to find the length of the longest subsequence
liii

aaa ,,,
21


of A such that tbatbatba
ll jijiji
 ,,,

2211
 , for

some   t . In other words, we look for the length of the

longest subsequence of A and B matching according to any

transposition. This corresponds to a music phrase (melody)

shifted to another key, which is perceived by humans as the

same melody. The alphabet size in music (MIDI) application is

usually 128. As long as this does not lead to confusion, we will

denote the length of LCS (LCTS) by LLCS (LLCTS).

A naïve algorithm for calculating LCTS is to run the dynamic

programming algorithm independently for each transposition,

which yields  mnO time. Almost all existing better solutions

belong to one of the two categories: they are bit-parallel or

based on sparse dynamic programming.

Bit-parallelism [4] is a widely used technique in string

matching, making use of the simple fact that any real CPU

works on several bits in parallel (usually 32 or 64 nowadays).

For LCS, there are known algorithms of  wmnO worst

case time complexity [5,6,7], where w is the machine word size

(in bits). Adopting any of those algorithms for the LCTS

problem is straightforward: it is enough to run the LCS routine

for each of the 2 – 1 transpositions separately, achieving

 wmnO  time complexity, not counting a preprocessing

stage. Experiments show [8] that this approach is quite

practical.

Sparse dynamic programming (SPD) [9] is a technique of

visiting only selected cells of the DP matrix, namely those

corresponding to matching pairs of characters of A and B. For

the LCS problem, this technique was first used in the seminal

paper by Hunt and Szymanski [10], and to apply it for the LCTS

it was basically enough to notice that each cell in the DP matrix

corresponds to exactly one transposition. This technique,

subdued to a couple of refinements, allowed to obtain

 mmnO log ,  mmnO loglog [9],  logmnO [11], and

finally  loglogmnO [12,8] time complexity.

In this paper, we present a hybrid algorithm for LCTS

making use of a simple observation: if the alphabet is small, the

bit-parallel approach is a clear winner, but for large enough

alphabets sparse dynamic programming algorithms starts to

dominate. Our idea is to use the bit-parallel technique for

frequent transpositions and the Hunt–Szymanski algorithm for

the rare ones. Experiments in Section VII on MIDI and random

data confirm attractiveness of this simple approach.

II. THE HUNT–SZYMANSKI ALGORITHM FOR LCS

A simple idea proposed in 1977 by Hunt and Szymanski [10]

has become the departure point for the theoretically best LCS

algorithms [13,14], and also for the best LCTS algorithms

based on sparse dynamic programming. In this section, we

present the HS algorithm in detail.

Szymon Grabowski – Politechnika Lodzka, Katedra Informatyki

Stosowanej, al. Politechniki 11, 90-924 Lodz, POLAND. E-mail:

sgrabow@kis.p.lodz.pl.

Sebastian Deorowicz – Politechnika Śląska, Instytut Informatyki, ul.

Akademicka 16, 44-100 Gliwice, POLAND. E-mail:

sebastian.deorowicz@polsl.pl.

2

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

We start with a definition. We will say that a cell  ji, of the

dynamic programming matrix M stores a match of rank k iff

ji
ba  and LLCS(

ji
bbaa ,,,,,

11
) = k. Now we can present

the algorithm.

Let the matrix M have 1m rows and 1n columns.

W.l.o.g. we assume nm . We also assume  nO .

In the preprocessing, we create lists of successive

occurrences of all alphabet symbols in the shorter sequence, A.

This requires  mO space and time, which is bounded by

 nO in our case. Note that after this stage for each character of

B we can perform a  1O -time lookup to access the occurrence

list of this character in A. Traversing a list clearly requires  1O

time per item. For some practical benefits we will scan the lists

in the reverse order, i.e., corresponding to right-to-left scans

(with skips) over the rows of M.

We also maintain an array T  m,1 , which stores at position j

the leftmost seen-so-far column with a match of rank j.

At the beginning this array is zeroed. Throughout the whole

processing we store the index of the last non-zero cell in T in a

variable
max

k .

Now, we visit the matching cell of M, rowwise and from right

to left in rows, using the lists obtained in the preprocessing

stage. Let a considered match be at cell  ji, , where i denotes

the row and j denotes the column. We look for the minimum

index t such that T   jt  . If there is no such index t, that is,

T   jh  , for
max

,,1 kh  , then we set T   jk  :1
max

 and

increment
max

k by one. In the opposite case, we distinguish

between T   jt  and T   jt  . The equality means that the

current match has the same rank as some match at the same

column but in an earlier row, i.e., the current match does not

yield any update to T. If, however, T   jt  , then we set

T   jt : , as there hasn’t been yet a match with rank t in the jth

(or earlier) column. Note that because of the right-to-left scan

order, there can be several updates to a single cell of T within a

single row of M. The desired LLCS is the value of
max

k after

finishing the last row.

Let us denote the number of all matches in M with the symbol

r. It is easy to notice that the time complexity of the algorithm

depends on how fast we can find, for each of r matches, the

proper t to satisfy the aforementioned inequality. The plain

binary search immediately leads to  mrnO log time (the

additive term n is from visiting all the matrix cells, even if

empty), but since the non-empty range of T never has more than

l = LLCS(A,B) elements, it is more precise to express the worst

case complexity with  lrnO log . Note that we can ignore the

preprocessing cost since it is never dominating.

III. THE DEOROWICZ REFINEMENT

The Hunt–Szymanski concept was inspiration for a number

of subsequent algorithms for LCS calculation. Finding the rank

of a match can be performed in a more refined way than with a

binary search, in particular, using the van Emde Boas (vEB)

dynamic data structure [15] which is applicable if the universe

of keys is nicely bounded. In our problem, this translates to

 mrnO loglog worst case complexity. The possibility of

using the vEB structure was noticed already by Hunt and

Szymanski in their original work. There are even better (and

more complex) theoretical algorithms [13,14] based on the idea

of Hunt-Szymanski, where for example the symbol r is replaced

with D, the number of so-called dominant matches (D  r).

In this section, we are going to present a practical HS

variation by Deorowicz [8], which was used in the cited work

for calculating LCTS in  wmnO loglog worst-case time (in

an algorithm denoted there as OUR-3).

The HS routine is based on finding the successor of the

current column index in the array T. The idea that we cite was to

support the successor queries with a w-ary tree, where w is the

size of the machine word (in bits). More precisely, the w-ary

tree is a complete tree of arity w, storing unique keys from

 1,0 v range, in which each node is an array of exactly w bits.

The height of this tree is  wvO loglog . In the RAM model of

computation,  nw log , where n is, roughly speaking, the

length of the longest addressable text. Because of its regularity,

the w-ary tree can be implemented without any pointers (note

also that the keys do not hold any satellite information).

In Deorowicz’s LCTS algorithm, one w-ary tree (Fig. 1,

taken from [8]) is used for each transposition, and the invariant

is that each tree stores the values of the T array for the

corresponding transposition. To check if j is in the tree, it is

enough to examine one particular bit in a certain leaf, which

takes O(1) time. Inserting or removing a value needs to set or

reset the corresponding bit in the leaf and update the nodes

upward the tree, with the overall complexity of O(log v / log w).

The successor operation for j requires looking for the next set

bit in the leaf corresponding to value j (which can be done in

constant time), and if there is no such set bit, moving upward the

tree and following analogously until such a bit is found (or it

appears that there is no value greater than j in the tree). Because

each node is handled in O(1) time, the overall time complexity

is again O(log v / log w). A straightforward solution would take

v = m, but in the cited work it was shown how to decrease v to ,

which is beneficial both for speed and storage occupancy.

Fig. 1. Sample w-ary tree (w=4) [8] storing integers from [0, 63].

The integers 0, 3, 4, 5, 6, 10, 40, 46 are stored in leaves.

IV. BIT-PARALLEL APPROACH

Two adjacent values in a row (or in a column) of the matrix

M differ by at most 1. This simple observation was the starting

point of the first bit-parallel LCS solving algorithm, invented by

Allison and Dix [5]. If the length of the shorter of the two

sequences is not greater than the machine word size (in bits),

then the algorithm runs in linear time (not counting the

preprocessing). This is not always the case, of course, but

longer bit-vectors, representing one of the sequences can be

3

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

simulated using several machine words. In general, the time

complexity of this algorithm is   nwmO and does not

depend on the content of A and B sequences.

ö [7], were to simplify and speed-up the bit-parallel

computation formulae, but the algorithm complexity remained.

All those variants are based on preprocessing using

  mwmO  time and  mO  bits of space. In that phase, 

bit vectors PM of size m are generated, where for any alphabet

symbol , the bit PM[i] is set iff Ai = .

In the main loop of the Allison–Dix algorithm, there are six

operations (here and later: assignment operations not counted)

per a character of B. This was reduced to five operations in the

ö

PM

Fig. 2. ö’s bit-parallel algorithm

In ö’s experiments, the Allison–Dix algorithm was the

slowest among the three bit-parallel variants, but the

V. FROM LCS TO LCTS

Mäkinen et al. [9] made a simple observation: each cell in M

corresponds to exactly one transposition in the LCTS problem.

This means that the technique of Hunt–Szymanski (in virtually

any possible variation) can be separately applied for each of 2

– 1 transpositions. The total amount of matches is exactly mn,

and this easily implies the time complexity of  lnmO log , or

 mnmO loglog in a more theoretical version (we neglect the

preprocessing here, which is also not problematic under typical

assumptions). More recent results, including the practical

Deorowicz’s algorithm described in the previous section, have

been listed in Section 1; they all are based on sparse dynamic

programming.

It is even simpler to switch from LCS to LCTS using the

bit-parallel algorithms: the procedure is run for each

transposition separately, yielding the extra  multiplicative

factor. Albeit this can be called a brute-force technique, it fares

surprisingly well for the MIDI domain.

VI. OUR ALGORITHM

It is easy to notice that the two presented approaches

significantly differ in their characteristics: the algorithms from

the Hunt-Szymanski family are efficient when matches in the

dynamic programming table are infrequent, while bit-parallel

algorithms are insensitive to the distribution of the input data.

When we focus on LCTS rather than LCS, however, it is wiser

to say that those two approaches are not simply different: they

can be complementary. The bit-parallel (BP) approach for LCS

adapted for the LCTS problem runs in time directly

proportional to the alphabet size, but its running time for each

alphabet symbol (i.e., transposition in that case) is

approximately the same. This is not the case with HS, where

processing infrequent transpositions is faster than the frequent

ones.

Here comes our simple idea: use HS for transpositions with

small enough number of occurrences, and the bit-parallel

approach for the remaining ones. Now, we have to find a

relevant threshold to properly distinguish between

“HS-friendly” and “BP-friendly” transpositions.

We used a simple criterion for the split between the

HS-friendly and BP-friendly transpositions. Namely, we sorted

the transpositions by frequency (i.e., number of matches for

each individual transposition), and used the cumulative fraction

of all matches in those transpositions, as the threshold (more

frequent transpositions are submitted to the BP algorithm); the

value of this threshold was set experimentally for each dataset

(see next section).

VII. EXPERIMENTAL RESULTS

We have run several experiments to evaluate the performance

of our algorithm against its strongest competitors. The

experiments were carried out on an AMD Athlon64 X2 5000+

(CPU clock 2600 MHz) machine with 2 GB of RAM, running

Windows Vista64 operating system. We have implemented all

the algorithms in C++, and compiled with Microsoft Visual

C++ 2005™.

We considered two cases: running the algorithms on music

data, and running them on uniformly random data, for varying

alphabet size.

For the first set of experiments we used a concatenation of

7543 music pieces, obtained by extracting the pitch values from

MIDI files. The total length is 1,828,089 bytes. The pitch values

are in the range 0...127, which corresponds to 255 possible

transpositions. This data is far from random: the six most

frequent pitch values occur 915,082 times, which is

approximately 50% of the whole text, and the total number of

different pitch values is just 55. Consequently, the number of

possible existing “transpositions”, i.e., differences between any

pairs of characters from two different excerpts of this file, is

much lower than the theoretical maximum of 255. This dataset

was previously used in the literature (e.g., [8,16]), for various

MIR-oriented problems, including LCTS.

A set of 101 pairs of randomly extracted excerpts from the

text was generated. We varied the lengths, n and m, of those

sequences, but always set n = m. The reported times are the

medians over all 101 trials.

Fig. 3 demonstrates the relation between the (percentage)

amount of most frequent transpositions and the amount of

matches covered by them. The two curves (for n = 256 and

n = 1024) are similar. We can see, for example, that the top

20% of the existent transpositions (sorted by frequency) already

4

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

cover at least half of the matches, while 60% of the existent

transpositions are enough to cover over 90% of matches.

Fig. 3. MUSIC data. Cumulative amount of matches in the

transpositions sorted by frequency.

Figs 4–9 show the overall processing time of our hybrid in

the function of the percentage of the matches handled by the

bit-parallel component. In Figs 4–6, the sequences are taken

from the music data, and their length n is set to 256, 1024 and

4096, respectively. Figs 7–9 illustrate the behavior on random

data (again, tested sequence lengths of 256, 1024 and 4096),

where also the alphabet size was a parameter, from 16 to 256,

and apart from that, the test methodology was identical.

As one can see, for the music data, the best split is to have

about 80% matches (from the most frequent transpositions)

handled by the BP algorithm, while the remaining 20% matches

handled by the HS variant. In other words, less than 40% of the

most frequent transpositions should be processed by BP. Note

also that the BP component is faster by about 25% (i.e., needs

about 20% less time) than the HS component, if applied

exclusively.

The speedup factor of the hybrid algorithm, using the best

threshold for each case, over the better of the two components

(i.e., BP) on the music data varies from 1.37 (n = 256) to 1.93 (n

= 4096), i.e. improves with growing n. If we use the 80%

threshold for all experiment with the music dataset, then the

speedup factors drop only slightly, if at all: to 1.34 and 1.93,

respectively. Note that we skip non-existent transpositions in

the BP algorithm, which boosts its performance on the music

data very significantly.

Fig. 4. MUSIC, n = 256. Processing time in function of the % of

matches handled by the bit-parallel component.

Fig. 5. MUSIC, n = 1024. Processing time in function of the % of

matches handled by the bit-parallel component.

Fig. 6. MUSIC, n = 4096. Processing time in function of the % of

matches handled by the bit-parallel component.

5

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

Fig. 7. RANDOM, n = 256. Processing time in function of the % of

matches handled by the bit-parallel component.

Fig. 8. RANDOM, n = 1024. Processing time in function of the % of

matches handled by the bit-parallel component.

Fig. 9. RANDOM, n = 4096. Processing time in function of the % of

matches handled by the bit-parallel component.

On random data, the situation is somewhat different. For

small to moderate  (up to 64) the bit-parallel algorithm is much

faster than the HS one (note the scale on Figs 7–9), even over

four times in case of  = 16 and n = 4096, but the picture

changes for  = 128 and  = 256. Interestingly, for small

alphabets the HS component beats the BP component on some

(few) transpositions, so the hybrid, with the optimal threshold,

again appears better than both its components (with the speedup

of 7–18% over BP), but for a large enough alphabet ( = 256)

the BP algorithm can win on no transposition with the HS

algorithm, hence the “optimal” hybrid degenerates into the HS

component. The border case is  = 128 where HS takes the lead

but its advantage over BP is quite moderate; in that case the

hybrid algorithm is faster than HS by 13–19%. A different

threshold should be selected for each alphabet size.

VIII. CONCLUSIONS

We presented a simple hybrid algorithm for the longest

common transposition-invariant problem, choosing “the best of

the two worlds”: bit-parallel and sparse dynamic programming

approaches. Experiments confirm practicality of this idea,

especially on real music (MIDI) data, where the LCTS problem

has a natural application. Our further work will be focused on

finding more elegant ways to separate the domains of individual

components. We also intend to repeat the experiment with

64-bit machine words, and we hope to optimize a little more the

component algorithm codes.

REFERENCES

[1] Bergroth L., Hakonen H., Raita T.: A Survey of Longest

Common Subsequence Algorithms, Proc. of the 7th Int.

Symp. on String Processing and Information Retrieval

(SPIRE), pp. 39–48, 2000.

[2] Gusfield D.: Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology,

Cambridge University Press, 1997.

[3] Lemström K., Ukkonen E.: Including interval encoding

into edit distance based music comparison and retrieval,

Proc. of the AISB’2000 Symp. on Creative & Cultural

Aspects and Applications of AI & Cognitive Science, pp.

53–60, Birmingham, UK, 2000,

[4] Baeza-Yates R.A.: Efficient Text Searching, PhD thesis,

Dept. of Computer Science, University of Waterloo, May

1989. Also as Research Report CS-89-17.

[5] Allison L., Dix T.L.: A bit-string longest common

subsequence algorithm, Information Processing Letters

23(6):305–310, 1986.

[6] Crochemore M., Iliopoulos C.S., Pinzon Y.J., Reid J.F.: A

fast and practical bit-vector algorithm for the longest

common subsequence problem, Proc. of the 11th

Australasian Workshop on Combinatorial Algorithms

(AWOCA), pp. 75–86, University of Newcastle, NSW,

Australia, 2000.

[7] ö

roc. of the 15th Australasian Workshop on Combinatorial

Algorithms (AWOCA), pp. 16–27, University of Sydney,

Australia, 2004.

6

TCSET’2008, February 19-23, 2008, Lviv–Slavsko, UKRAINE

[8] Deorowicz, S.: Speeding up Transposition-Invariant

String Matching, Information Processing Letters, 100(1):

14–20, 2006.

[9] Mäkinen V., Navarro G., Ukkonen E.: Transposition

Invariant String Matching, J. of Algorithms,

56(2):124–153, 2005.

[10] Hunt J.W., Szymanski T.G.: A Fast Algorithm for

Computing Longest Common Subsequences, Comm.

ACM, 20(5):350–353, 1977.

[11] Grabowski Sz., Navarro G.: O(mn log σ) Time

Transposition Invariant LCS Computation, Technical

Report TR/DCC-2004-6, University of Chile, Department

of Computer Science, September 2004. Available at: ftp://

ftp.dcc.uchile.cl/pub/users/gnavarro/transpszymon.ps.gz

[12] Navarro G., Grabowski Sz., Mäkinen V., Deorowicz S.,

Improved Time and Space Complexities for Transposition

Invariant String Matching, Technical Report

TR/DCC-2005-4, University of Chile, Department of

Computer Science, March 2005. Available at:

ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/mnloglogs.ps.gz

[13] Apostolico A., Guerra C.: The Longest Common

Subsequence Problem Revisited, Algorithmica,

2(1):316–336, 1987.

[14] Eppstein D., Galil Z., Giancarlo R, Italiano G.F.: Sparse

dynamic programming I: linear cost functions, J. of the

ACM, 39(3):519–545, 1992.

[15] van Emde Boas P., Kaas R., Zijlstra E.: Preserving order

in a forest in less than logarithmic time and linear space,

Information Processing Letters, 6(3):80–82, 1977.

[16] Fredriksson K., Mäkinen V., Navarro G.: Flexible Music

Retrieval in Sublinear Time, International Journal of

Foundations of Computer Science, 17(6):1345–1364,

2006.

