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Nice to be a chimera:  

A hybrid algorithm for the longest common  

transposition-invariant subsequence problem  
Szymon Grabowski, Sebastian Deorowicz 

 Abstract – The longest common transposition-invariant 

subsequence (LCTS) problem is a music information 

retrieval oriented variation of the classic LCS problem. 

There are basically only two known efficient approaches to 

calculate the length of the LCTS. In this work, we propose a 

hybrid algorithm picking the better of the two algorithms 

for individual subproblems. Experiments on music (MIDI) 

show that the proposed algorithm outperforms the faster of 

the two component algorithms by a factor of 1.4–1.9, 

depending on sequence lengths. Also for uniformly random 

data, the hybrid is the winner if the alphabet is not too large 

(up to 128 symbols). 

 Keywords – Longest common transposition-invariant 

subsequence (LCTS), bit-parallelism, sparse dynamic 

programming, string matching. 

I. INTRODUCTION 

One of the most important problems in the field of string 

matching concerns the longest common subsequence (LCS) of 

two sequences. In a weaker version, the LCS problem can be 

stated like that: Given two sequences: 
m

aaA ,,
1
  and 

n
bbB ,,

1
 , over an alphabet  1,,0   , report the 

length l of the longest subsequence 
liii

aaa ,,,
21
  of A, where 

1


kk
ii  for all k, 

ll jijiji
bababa  ,,,

2211
 , and 

1


kk
jj  

for all k. A harder version of the problem asks for the sequence 

itself (which does not have to be unique), not just its length. 

The classic dynamic programming (DP) algorithm for LCS 

has  mnO  time complexity, and, surprisingly, not much better 

complexities are known for this problem for the worst case. 

LCS has been thoroughly explored [1]. Also, numerous 

variations of the problem have been posed, see, e.g., [2] for 

details. 

One of the LCS variations, introduced relatively recently [3], 

has applications in music information retrieval. An important 

trait of similar melodic sequences is that they can differ in the 

key, but humans perceive them as same melodies. More 

formally, the problem of longest common 

transposition-invariant subsequence (LCTS) that we talk about 

is to find the length of the longest subsequence 
liii

aaa ,,,
21
  

of A such that tbatbatba
ll jijiji
 ,,,

2211
 , for 

some   t . In other words, we look for the length of the 

longest subsequence of A and B matching according to any 

transposition. This corresponds to a music phrase (melody) 

shifted to another key, which is perceived by humans as the 

same melody. The alphabet size in music (MIDI) application is 

usually 128. As long as this does not lead to confusion, we will 

denote the length of LCS (LCTS) by LLCS (LLCTS).  

A naïve algorithm for calculating LCTS is to run the dynamic 

programming algorithm independently for each transposition, 

which yields  mnO  time. Almost all existing better solutions 

belong to one of the two categories: they are bit-parallel or 

based on sparse dynamic programming. 

Bit-parallelism [4] is a widely used technique in string 

matching, making use of the simple fact that any real CPU 

works on several bits in parallel (usually 32 or 64 nowadays). 

For LCS, there are known algorithms of  wmnO  worst 

case time complexity [5,6,7], where w is the machine word size 

(in bits). Adopting any of those algorithms for the LCTS 

problem is straightforward: it is enough to run the LCS routine 

for each of the 2 – 1 transpositions separately, achieving 

 wmnO   time complexity, not counting a preprocessing 

stage. Experiments show [8] that this approach is quite 

practical. 

Sparse dynamic programming (SPD) [9] is a technique of 

visiting only selected cells of the DP matrix, namely those 

corresponding to matching pairs of characters of A and B. For 

the LCS problem, this technique was first used in the seminal 

paper by Hunt and Szymanski [10], and to apply it for the LCTS 

it was basically enough to notice that each cell in the DP matrix 

corresponds to exactly one transposition. This technique, 

subdued to a couple of refinements, allowed to obtain 

 mmnO log ,  mmnO loglog  [9],  logmnO  [11], and 

finally  loglogmnO  [12,8] time complexity.  

In this paper, we present a hybrid algorithm for LCTS 

making use of a simple observation: if the alphabet is small, the 

bit-parallel approach is a clear winner, but for large enough 

alphabets sparse dynamic programming algorithms starts to 

dominate. Our idea is to use the bit-parallel technique for 

frequent transpositions and the Hunt–Szymanski algorithm for 

the rare ones. Experiments in Section VII on MIDI and random 

data confirm attractiveness of this simple approach. 

II. THE HUNT–SZYMANSKI ALGORITHM FOR LCS  

A simple idea proposed in 1977 by Hunt and Szymanski [10] 

has become the departure point for the theoretically best LCS 

algorithms [13,14], and also for the best LCTS algorithms 

based on sparse dynamic programming. In this section, we 

present the HS algorithm in detail. 
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We start with a definition. We will say that a cell  ji,  of the 

dynamic programming matrix M stores a match of rank k iff 

ji
ba   and LLCS(

ji
bbaa ,,,,,

11
 ) = k. Now we can present 

the algorithm. 

Let the matrix M have 1m  rows and 1n  columns. 

W.l.o.g. we assume nm . We also assume  nO . 

In the preprocessing, we create lists of successive 

occurrences of all alphabet symbols in the shorter sequence, A. 

This requires  mO  space and time, which is bounded by 

 nO  in our case. Note that after this stage for each character of 

B we can perform a  1O -time lookup to access the occurrence 

list of this character in A. Traversing a list clearly requires  1O  

time per item. For some practical benefits we will scan the lists 

in the reverse order, i.e., corresponding to right-to-left scans 

(with skips) over the rows of M. 

We also maintain an array T  m,1 , which stores at position j 

the leftmost seen-so-far column with a match of rank j. 

At the beginning this array is zeroed. Throughout the whole 

processing we store the index of the last non-zero cell in T in a 

variable 
max

k . 

Now, we visit the matching cell of M, rowwise and from right 

to left in rows, using the lists obtained in the preprocessing 

stage. Let a considered match be at cell  ji, , where i denotes 

the row and j denotes the column. We look for the minimum 

index t such that T   jt  . If there is no such index t, that is, 

T   jh  , for 
max

,,1 kh  , then we set T   jk  :1
max

 and 

increment 
max

k  by one. In the opposite case, we distinguish 

between T   jt   and T   jt  . The equality means that the 

current match has the same rank as some match at the same 

column but in an earlier row, i.e., the current match does not 

yield any update to T. If, however, T   jt  , then we set 

T   jt : , as there hasn’t been yet a match with rank t in the jth 

(or earlier) column. Note that because of the right-to-left scan 

order, there can be several updates to a single cell of T within a 

single row of M. The desired LLCS is the value of 
max

k  after 

finishing the last row. 

Let us denote the number of all matches in M with the symbol 

r. It is easy to notice that the time complexity of the algorithm 

depends on how fast we can find, for each of r matches, the 

proper t to satisfy the aforementioned inequality. The plain 

binary search immediately leads to  mrnO log  time (the 

additive term n is from visiting all the matrix cells, even if 

empty), but since the non-empty range of T never has more than 

l = LLCS(A,B) elements, it is more precise to express the worst 

case complexity with  lrnO log . Note that we can ignore the 

preprocessing cost since it is never dominating. 

III. THE DEOROWICZ REFINEMENT  

The Hunt–Szymanski concept was inspiration for a number 

of subsequent algorithms for LCS calculation. Finding the rank 

of a match can be performed in a more refined way than with a 

binary search, in particular, using the van Emde Boas (vEB) 

dynamic data structure [15] which is applicable if the universe 

of keys is nicely bounded. In our problem, this translates to 

 mrnO loglog  worst case complexity. The possibility of 

using the vEB structure was noticed already by Hunt and 

Szymanski in their original work. There are even better (and 

more complex) theoretical algorithms [13,14] based on the idea 

of Hunt-Szymanski, where for example the symbol r is replaced 

with D, the number of so-called dominant matches (D  r). 

In this section, we are going to present a practical HS 

variation by Deorowicz [8], which was used in the cited work 

for calculating LCTS in  wmnO loglog  worst-case time (in 

an algorithm denoted there as OUR-3). 

The HS routine is based on finding the successor of the 

current column index in the array T. The idea that we cite was to 

support the successor queries with a w-ary tree, where w is the 

size of the machine word (in bits). More precisely, the w-ary 

tree is a complete tree of arity w, storing unique keys from 

 1,0 v  range, in which each node is an array of exactly w bits. 

The height of this tree is  wvO loglog . In the RAM model of 

computation,  nw log , where n is, roughly speaking, the 

length of the longest addressable text. Because of its regularity, 

the w-ary tree can be implemented without any pointers (note 

also that the keys do not hold any satellite information). 

In Deorowicz’s LCTS algorithm, one w-ary tree (Fig. 1, 

taken from [8]) is used for each transposition, and the invariant 

is that each tree stores the values of the T array for the 

corresponding transposition. To check if j is in the tree, it is 

enough to examine one particular bit in a certain leaf, which 

takes O(1) time. Inserting or removing a value needs to set or 

reset the corresponding bit in the leaf and update the nodes 

upward the tree, with the overall complexity of O(log v / log w). 

The successor operation for j requires looking for the next set 

bit in the leaf corresponding to value j (which can be done in 

constant time), and if there is no such set bit, moving upward the 

tree and following analogously until such a bit is found (or it 

appears that there is no value greater than j in the tree). Because 

each node is handled in O(1) time, the overall time complexity 

is again O(log v / log w). A straightforward solution would take 

v = m, but in the cited work it was shown how to decrease v to , 

which is beneficial both for speed and storage occupancy. 

 

 
Fig. 1. Sample w-ary tree (w=4) [8] storing integers from [0, 63].  

The integers 0, 3, 4, 5, 6, 10, 40, 46 are stored in leaves. 

 

IV. BIT-PARALLEL APPROACH 

Two adjacent values in a row (or in a column) of the matrix 

M differ by at most 1. This simple observation was the starting 

point of the first bit-parallel LCS solving algorithm, invented by 

Allison and Dix [5]. If the length of the shorter of the two 

sequences is not greater than the machine word size (in bits), 

then the algorithm runs in linear time (not counting the 

preprocessing). This is not always the case, of course, but 

longer bit-vectors, representing one of the sequences can be 
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simulated using several machine words. In general, the time 

complexity of this algorithm is   nwmO  and does not 

depend on the content of A and B sequences.  

ö [7], were to simplify and speed-up the bit-parallel 

computation formulae, but the algorithm complexity remained. 

All those variants are based on preprocessing using 

  mwmO   time and  mO   bits of space. In that phase,  

bit vectors PM of size m are generated, where for any alphabet 

symbol , the bit PM[i] is set iff Ai = . 

In the main loop of the Allison–Dix algorithm, there are six 

operations (here and later: assignment operations not counted) 

per a character of B. This was reduced to five operations in the 

ö 

PM 

 
 

Fig. 2. ö’s bit-parallel algorithm 

 

 

In ö’s experiments, the Allison–Dix algorithm was the 

slowest among the three bit-parallel variants, but the 

 

V. FROM LCS TO LCTS  

Mäkinen et al. [9] made a simple observation: each cell in M 

corresponds to exactly one transposition in the LCTS problem. 

This means that the technique of Hunt–Szymanski (in virtually 

any possible variation) can be separately applied for each of 2 

– 1 transpositions. The total amount of matches is exactly mn, 

and this easily implies the time complexity of  lnmO log , or 

 mnmO loglog  in a more theoretical version (we neglect the 

preprocessing here, which is also not problematic under typical 

assumptions). More recent results, including the practical 

Deorowicz’s algorithm described in the previous section, have 

been listed in Section 1; they all are based on sparse dynamic 

programming. 

It is even simpler to switch from LCS to LCTS using the 

bit-parallel algorithms: the procedure is run for each 

transposition separately, yielding the extra  multiplicative 

factor. Albeit this can be called a brute-force technique, it fares 

surprisingly well for the MIDI domain. 

VI. OUR ALGORITHM 

It is easy to notice that the two presented approaches 

significantly differ in their characteristics: the algorithms from 

the Hunt-Szymanski family are efficient when matches in the 

dynamic programming table are infrequent, while bit-parallel 

algorithms are insensitive to the distribution of the input data. 

When we focus on LCTS rather than LCS, however, it is wiser 

to say that those two approaches are not simply different: they 

can be complementary. The bit-parallel (BP) approach for LCS 

adapted for the LCTS problem runs in time directly 

proportional to the alphabet size, but its running time for each 

alphabet symbol (i.e., transposition in that case) is 

approximately the same. This is not the case with HS, where 

processing infrequent transpositions is faster than the frequent 

ones. 

Here comes our simple idea: use HS for transpositions with 

small enough number of occurrences, and the bit-parallel 

approach for the remaining ones. Now, we have to find a 

relevant threshold to properly distinguish between 

“HS-friendly” and “BP-friendly” transpositions. 

We used a simple criterion for the split between the 

HS-friendly and BP-friendly transpositions. Namely, we sorted 

the transpositions by frequency (i.e., number of matches for 

each individual transposition), and used the cumulative fraction 

of all matches in those transpositions, as the threshold (more 

frequent transpositions are submitted to the BP algorithm); the 

value of this threshold was set experimentally for each dataset 

(see next section). 

VII. EXPERIMENTAL RESULTS 

We have run several experiments to evaluate the performance 

of our algorithm against its strongest competitors. The 

experiments were carried out on an AMD Athlon64 X2 5000+ 

(CPU clock 2600 MHz) machine with 2 GB of RAM, running 

Windows Vista64 operating system. We have implemented all 

the algorithms in C++, and compiled with Microsoft Visual 

C++ 2005™.  

We considered two cases: running the algorithms on music 

data, and running them on uniformly random data, for varying 

alphabet size. 

For the first set of experiments we used a concatenation of 

7543 music pieces, obtained by extracting the pitch values from 

MIDI files. The total length is 1,828,089 bytes. The pitch values 

are in the range 0...127, which corresponds to 255 possible 

transpositions. This data is far from random: the six most 

frequent pitch values occur 915,082 times, which is 

approximately 50% of the whole text, and the total number of 

different pitch values is just 55. Consequently, the number of 

possible existing “transpositions”, i.e., differences between any 

pairs of characters from two different excerpts of this file, is 

much lower than the theoretical maximum of 255. This dataset 

was previously used in the literature (e.g., [8,16]), for various 

MIR-oriented problems, including LCTS. 

A set of 101 pairs of randomly extracted excerpts from the 

text was generated. We varied the lengths, n and m, of those 

sequences, but always set n = m. The reported times are the 

medians over all 101 trials. 

Fig. 3 demonstrates the relation between the (percentage) 

amount of most frequent transpositions and the amount of 

matches covered by them. The two curves (for n = 256 and 

n = 1024) are similar. We can see, for example, that the top 

20% of the existent transpositions (sorted by frequency) already 
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cover at least half of the matches, while 60% of the existent 

transpositions are enough to cover over 90% of matches. 

 

 
Fig. 3. MUSIC data. Cumulative amount of matches in the 

transpositions sorted by frequency. 

 

Figs 4–9 show the overall processing time of our hybrid in 

the function of the percentage of the matches handled by the 

bit-parallel component. In Figs 4–6, the sequences are taken 

from the music data, and their length n is set to 256, 1024 and 

4096, respectively. Figs 7–9 illustrate the behavior on random 

data (again, tested sequence lengths of 256, 1024 and 4096), 

where also the alphabet size was a parameter, from 16 to 256, 

and apart from that, the test methodology was identical. 

As one can see, for the music data, the best split is to have 

about 80% matches (from the most frequent transpositions) 

handled by the BP algorithm, while the remaining 20% matches 

handled by the HS variant. In other words, less than 40% of the 

most frequent transpositions should be processed by BP. Note 

also that the BP component is faster by about 25% (i.e., needs 

about 20% less time) than the HS component, if applied 

exclusively. 

The speedup factor of the hybrid algorithm, using the best 

threshold for each case, over the better of the two components 

(i.e., BP) on the music data varies from 1.37 (n = 256) to 1.93 (n 

= 4096), i.e. improves with growing n.  If we use the 80% 

threshold for all experiment with the music dataset, then the 

speedup factors drop only slightly, if at all: to 1.34 and 1.93, 

respectively. Note that we skip non-existent transpositions in 

the BP algorithm, which boosts its performance on the music 

data very significantly. 

 
Fig. 4. MUSIC, n = 256. Processing time in function of the % of 

matches handled by the bit-parallel component. 

 
Fig. 5. MUSIC, n = 1024. Processing time in function of the % of 

matches handled by the bit-parallel component. 

 
Fig. 6. MUSIC, n = 4096. Processing time in function of the % of 

matches handled by the bit-parallel component. 
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Fig. 7. RANDOM, n = 256. Processing time in function of the % of 

matches handled by the bit-parallel component. 

 

 
Fig. 8. RANDOM, n = 1024. Processing time in function of the % of 

matches handled by the bit-parallel component. 

 

 
Fig. 9. RANDOM, n = 4096. Processing time in function of the % of 

matches handled by the bit-parallel component. 

 

On random data, the situation is somewhat different. For 

small to moderate  (up to 64) the bit-parallel algorithm is much 

faster than the HS one (note the scale on Figs 7–9), even over 

four times in case of  = 16 and n = 4096, but the picture 

changes for  = 128 and  = 256. Interestingly, for small 

alphabets the HS component beats the BP component on some 

(few) transpositions, so the hybrid, with the optimal threshold, 

again appears better than both its components (with the speedup 

of 7–18% over BP), but for a large enough alphabet ( = 256) 

the BP algorithm can win on no transposition with the HS 

algorithm, hence the “optimal” hybrid degenerates into the HS 

component. The border case is  = 128 where HS takes the lead 

but its advantage over BP is quite moderate; in that case the 

hybrid algorithm is faster than HS by 13–19%. A different 

threshold should be selected for each alphabet size. 

VIII. CONCLUSIONS 

We presented a simple hybrid algorithm for the longest 

common transposition-invariant problem, choosing “the best of 

the two worlds”: bit-parallel and sparse dynamic programming 

approaches. Experiments confirm practicality of this idea, 

especially on real music (MIDI) data, where the LCTS problem 

has a natural application. Our further work will be focused on 

finding more elegant ways to separate the domains of individual 

components. We also intend to repeat the experiment with 

64-bit machine words, and we hope to optimize a little more the 

component algorithm codes. 
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