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WEB LOG COMPRESSION 

ABSTRACT. Web log data store client activity on a particular server, usually in form of one-line 
“hits” with information like the client’s IP, date/time, requested file or query, download size in bytes 
etc. Web logs of popular sites may grow at the pace of hundreds of megabytes a day, or even more. It 
makes sense to archive old logs, to analyze them further, e.g. for detecting attacks or other server 
abuse patterns. In this work we present a specialized lossless Apache web log preprocessor and test it 
with combination of several popular general-purpose compressors. The test results show the proposed 
transform improves the compression efficiency of general-purpose compressors on average by 65% in 
case of gzip and 52% in case of bzip2. 
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1. Introduction 

Surprisingly perhaps, in recent years plain text has become a prominent medium for data 

conveyance and storage. It is enough to mention the XML format and web languages 

(HTML, XHTML, CSS, web scripts etc.) to easily support this claim, but a more complete 

list should also include DNA and protein sequence databases, mail folders, plain text news-

group archives, IRC archives, and so on. Human-readable textual data are easy to analyze, 

edit, extract snippets from, etc. It is also easier to find and fix occasional errors in textual 

rather than in binary form. An interesting feature of “texts” of the mentioned kinds, how-

ever, is their redundancy, typically much greater than the redundancy of natural language 

texts, e.g. fiction books with no markup. Redundancy is obviously harmful as it increases 

the costs of data transmission and storage; what is less obvious perhaps is that it can also 

slow down query handling. Dealing with redundant data may require substantial amounts of 

main memory, which can pose trouble in the notoriously multitasking and multiuser sys-

tems. 

To overcome the verbosity of textual data, compression techniques can, of course, be 

applied. In fact, the number of published papers dedicated to specialized XML compression 

only up to this moment (May 2007) is about 50 (according to a thorough bibliography listed 

at http://www.ucalgary.ca/~grleight/research/xml-comp.html), and compression of some 

other data-oriented text formats has also been considered in the literature. It should be 

stressed that specialized methods, even if limited to text preprocessing before running a 

general-purpose compressor, can achieve compression ratios significantly better than uni-

                                                                                                                     

  * dr, Katedra Informatyki Stosowanej Politechniki Łódzkiej, Łódź, Polska 

 ** dr inż., Instytut Informatyki Politechniki Śląskiej, Gliwice, Polska 



 

versal compression algorithms, at more or less retained (and sometimes decreased) compu-

tational requirements for the process of data encoding and decoding [5]. 

In this paper we point out for the need of compressing log data: a rather vague cate-

gory of files documenting human and machine activity. Many log types can be met in eve-

ryday practice: database operation logs, file system access logs, installation logs, etc. 

Among the most important ones we should definitely mention web logs, storing page re-

quests at a given web server. Logging the activity at popular sites can easily add even hun-

dreds of megabytes a day, which needs disk space, makes log data analysis and searches 

slow and cumbersome etc. Here is where, we believe, compression should enter the stage. 

We assume that in many scenarios queries or log data analyses are not performed often 

enough to make queriable compression necessary. Our compression techniques are devised 

for succinct storage and efficient backuping. Prior to handling any queries, the log archive 

must be decompressed. This is a disadvantage of course, but on the other hand, non-

queriable compression algorithms enable reaching better compression ratios and are sim-

pler. We show that it is often possible to compress log data 40 or even 80 times, preserving 

very fast decompression. A side goal of the current work is to stress on how inappropriate 

the widely used (also in log storage and analysis systems) Deflate method is, if the data to 

compress are typical large log files. 

2. Redundancy sources in web logs 

Typically, web logs have regular structure. Even across different web server log formats 

(Apache, IIS, etc.) we can easily track down common characteristics. First, we assume a 

single event (page request) is recorded in one line and each line corresponds to a single 

event only. Second, several pattern types are very frequent: IP addresses, timestamps (in 

some chosen format), URL’s. Third, there are (long) text sequences which occur many 

times, e.g. clients’ web browser ID strings, clients’ OS platform names, names of fre-

quently accessed files, IP’s of those users who frequently visit a given site, or request many 

files in a single session (which is almost always the case). Fourth, there is a strong spatial 

correlation of log entries: successive lines tend to store requests from the same user, and 

thus their IP addresses and the client machine information will repeat. Also, the timestamps 

of the successive lines are often very similar, which suggests differential encoding as an 

effective means to squeeze out the redundancy. Fifth, web log files are similar to tables in a 

relational database: lines are composed of fields (attributes) in a fixed order, typically sepa-

rated with blank spaces. The knowledge of a given field domain (built into a specialized 

compressor or inferred during the compression process) is certainly beneficial for both the 

compression effectiveness and the compression efficiency. Sixth, like in tables of real-

world databases, there exist strong correlations across fields, e.g. between user’s IP and his 

web browser (a subsequent request from the same IP, even if thousands of lines farther in 

the log file, is very likely to be followed by the “old” web browser ID string). Seventh, logs 

are usually in plain ASCII, i.e. the character values do not exceed 127 (also, most of the 

symbols with ASCII codes below 32 are unused). The unused symbols could be utilized for 

cheap substitution of frequent sequences. 



 

 

3. Related work 

As mentioned in Section 1, most open-source and commercial utilities for archiving and 

analyzing log data use gzip (Deflate) compression, while some make use of a newer and 

stronger compressor bzip2 (Web Log Mixer is an example). We know about only one non-

research application, SafeLog (http://www.solution-soft.com/safelog.shtml), incorporating 

a proprietary compression format, which is claimed to produce up to twice smaller log ar-

chives than gzip. No details on the algorithm are disclosed. 

Differentiated Semantic Log Compression (DSLC) presented by Rácz and Lukács in 

[4] probably bears significant similarity to the algorithm we present in the current paper, 

but unfortunately the authors were not explicit about some details. DSLC works on the 

level of web log lines, uses specific treatment for each individual field, replaces frequent 

field values with references to a semi-static dictionary, and at the end runs a general-

purpose compressor. The results cited in the original work are quite impressive, but, ac-

cording to [7], the Rácz and Lukács scheme “works well only on huge log files (over 1 GB) 

and it requires human assistance before the compression, on average about two weeks for a 

specific log file”. Moreover, it is unclear from the original paper
1
 which of the mentioned 

ideas have already been implemented and which are only planned, also at times the authors 

direct a reader to an extended version of their paper (which however is not available as of 

May 23, 2007), which we found very confusing. 

A compression scheme for encoding the user activity logs in their client-side monitor-

ing system was employed by Kulpa et al [3]. The algorithm had to be simple and fast (it is 

implemented in JavaScript) and is intended to work on small log chunks; it comprises string 

substitution and differential date/time encoding techniques. From those reasons, the ob-

tained compression is mediocre. 

Very recently, Skibiński and Swacha [7] proposed a couple of simple preprocessing 

variants intended to facilitate further compression of log files from various applications. 

Since their goal was broader than ours, they used more general means of transforming data. 

Namely, they proposed five variants, where the simplest one merely encodes each line with 

reference to the previous line, storing the length of the longest match on a single byte (with 

aid of symbols over 127 in ASCII), followed by the mismatching subsequence copied ver-

batim, until the nearest field end, where again the longest match in the previous line for the 

corresponding field is sought for. The next two variants are more flexible in choosing the 

reference line which helps especially for log types where not all lines have identical struc-

ture (e.g. MySQL database logs in the experiments in the cited work). Fourth variant adds a 

dictionary substitution for words found in a prepass (an idea used earlier, e.g. in [6], for 

plain text compression), and the fifth variant extends the previous one with compact encod-

ing of the following patterns: numbers, dates, times and IP addresses. In their experiments, 

the transformed log files compressed then with the default zip algorithm, i.e. Deflate, were 

on average shorter by 37% than the non-preprocessed files submitted to zip. Significant 
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improvements (on the order of 20%) have also been noticed when stronger back-end com-

pression algorithms (LZMA, PPMVC) were used. 

4. Apache Web log format 

The default order of fields in a Apache web log is fixed. We list them below.
2
 The 

field numbers are added only for reference in the latter sections). 

#0 – visitor’s IP address, 

#1, #2 – username etc. Set to “– –”, unless accessing password-protected content, 

#3 – timestamp of the visit (date, time, time zone), 

#4 – access request (e.g. “GET /full/j35.jpg HTTP/1.0”), 

#5 – result status code (200 – success, a number of error codes exist as well), 

#6 – byte transferred (usually the requested file size; less means a failed or partial 

download), 

#7 – referred URL (e.g. “http://www.fighter-planes.com/data6070.htm”). This is the 

page the visitor was on when he clicked to move to the current location, 

#8 – user agent ID string (e.g., “Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 

5.1)”). Usually a web browser, but could be a web robot, a link checker etc. 

An Apache server administrator may configure the log format with an entry of the 

conf/httpd.conf file. For example, it may happen that fields #7 and #8 are missing, and it 

was the case of our Access.log file used for the experiments. 

5. Our algorithms 

We start with a simple algorithm which reorders the data in a field-by-field manner, without 

taking any cross-redundancy between fields into account, and then we examine the issue 

how to find out which fields should be grouped together to improve compression. 

5.1. Every man for himself 

Transposing a relational database table is a well-known idea attempting to increase com-

pression [2]. The successive attribute values are then located adjacently, and each field 

can then be compressed separately, as (we assume) different fields are unlikely to share 

statistical properties. If this is indeed the case, such a disentanglement of data should 

bring significant benefits: it is easy to perform dictionary substitution on individual 

fields, limiting the scope of the compression model to what is relevant only results in 

lower computational and memory requirements, recency effects (e.g. runs of occurrences 

of the same field value) can be conveniently exploited, and so on. An alternative ap-

proach – compressing the fields, each with its separate model and using appropriate se-

mantic knowledge – has the benefit of being on-line but requires housing several models 

at the same time, i.e. needs more memory to work. 
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We decided to apply this idea for web log compression. More concretely, what we do 

in this basic file preprocessing variant is presented in the following list: 

• we group the file content field by field, in the order of field occurrences in a row, 

• a field containing timestamps (e.g. 03/Feb/2003:03:07:23 +0100) is identified and 

the differences between its successive values are calculated and encoded. In prac-

tice, those differences are often in 0..254 range, and need one byte in such a case. 

The value 255 for the timestamp field serves as an escape for a larger (or negative, 

although it never happens in real, non-modified logs) difference, which is encoded 

on the following four bytes, 

• a field containing IP addresses only is identified; the next step will not be applied 

for this field, 

• if the number of distinct prefixes for some field (except for the IP field) is not 

more than 16, and also the number of common suffixes in this field is not more 

than 16, they are chopped off and sent to two extra prefix streams and two extra 

suffix streams: one of a pair is merely the prefix (suffix) vocabulary, the other 

holds the prefix (suffix) indexes, item by item. By prefixes (suffixes), we under-

stand the starting (ending) characters up to the first (last) whitespace in a field. It 

often happens that the prefix/suffix vocabularies are empty. For example, they are 

empty if a given field contains no spaces. The prefix and suffix index streams are 

order-1 arithmetically compressed, and no back-end compression will later be ap-

plied to them, 

• the move-to-front transform [1] is applied on the remaining factors of the fields; 

the idea is to explore a recency effect typical for many fields, which means, in 

plain words, that recently occurring values are more likely to occur again than 

novel values. The move-to-front transform encodes a given value v as the number 

of unique values between the previous and the current occurrence of v. In our solu-

tion, for each field value v we send into the first stream the either 0 (which means 

v occurred just in the previous row), or 1 (v appeared before), or 2 (v is new and 

never appeared before). Then, if we encoded 1, we put into the second stream the 

MTF code, i.e. the number of unique values since last occurrence of v. If we en-

coded 2, we put into the third stream the value v as is. We found experimentally 

that high MTF values make the compression ratio worse, so if the number of 

unique values since last appearance of v is larger than 256, we treat v as a never-

appeared-before value and encode both 2 and v. MTF codes and the stream of ter-

nary flags are order-1 arithmetically compressed, 

• each value in the IP field is encoded on 4 bytes, no separators used. 

5.2. Merging correlated fields 

The algorithm from the previous section is simple but ignores the fact that some fields 

may be correlated. In fact, some strong correlations between fields are typical in Apache 

web logs. We identified the correlation between a file name (with its path) and its size, 

and the client’s IP and his web agent ID string. Identical values in one of those fields are 

likely to be followed by identical values in the other fields in the corresponding rows, 



 

hence improving greatly the overall compression of those fields. Please note, however, 

that the word “likely” should not rather be replaced by “certain”: logs usually store visits 

to a server’s web site over quite a period of time, and thus some users might have up-

graded their local platform and browser between successive visits, some files might have 

been edited and their sizes changed, and so on. 

The variant we propose makes use of the log file format knowledge and explicitly as-

sumes that the pairs of fields: (#0, #8) and (#4, #6) should be merged just after truncating 

the affixes and before any further processing step. Nothing else from the previous variant is 

changed. Of course, a compression-directed correlation analysis for all field pairs (or, even 

better, all field subsets) would be much more desirable, but our preliminary efforts suggest 

this is not an easy task. We therefore postpone it as a future work subject. 

6. Experimental results 

We implemented our algorithms in Python 2.5, all tests were run on an Athlon64 3000+ 

machine, equipped with 512 MB RAM and running under Windows XP SP2 operating sys-

tem. Due to a script nature of our implementation, we do not provide any timings. Still, if 

implemented in a compiled language (e.g., C++), the algorithms should be fast enough in 

practice, especially in the decompression. For order-1 statistical encoding, applied in some 

stages of our transform, we used arhangel, v1.40a2, an archiver which can be downloaded 

from http://www.geocities.com/SiliconValley/Lab/6606/arhangel.htm. 

For comparison, we were able to get only one specialized log compressor, logpack 

[7]. It works on arbitrary logs (not only web logs). Logpack is able to make use of built-in 

back-end compression libraries (zlib and others), but for test compatibility, we ran it with 

the -l0 switch for preprocessing only. Its output was then submitted to an external compres-

sor, exactly like we did when testing our algorithms. 

To measure how well our algorithms compete in their domain with respected universal 

compression methods, we chose a few well-known compressors for a comparison: 

• gzip, v1.2.3, implementing the Deflate method from the LZ77 family, 

• 7z, v4.45 beta, using its default algorithm, LZMA, a modern representative of the 

LZ77 family, 

• bzip2, v1.0.2, a compressor based on the Burrows-Wheeler transform, 

• PPMd, var. J, a efficient implementation of the PPM algorithm. 

Default settings of those compressors were used, with the exception of PPMd, which 

was tested twice: with -o6 -m192 and -o16 -m192 switches, respectively. The -o parameter 

sets the maximum PPM model order. References to all the general-purpose compressors 

listed above can be found at http://www.maximumcompression.com. 

The test set comprises four files: alas, web site administrators are reluctant to make the 

logs public, due to obvious reasons, therefore it is really hard to find on the web such kind 

of material, of reasonable quality (large real web logs). We obtained privately three files for 

the collection (Access.log, Latexeditor.log, Netaccess.log), while FP.log can be 

downloaded from http://www.maximumcompression.com/data/files/log-test.rar, and – in-

terestingly – is part of a corpus for measuring compression performance of many compres-



 

 

sors and archivers. The file sizes span from 3 MB to 30 MB, and are given in detail in Ta-

ble 1. 

As can be seen, our transform (variant 2) shortens gzip archives by 65% on average, 

and bzip2 archives by 52% on average. Also with the other compressors the achieved im-

provements are very significant. 

 

 

 

Table 1. Compression results in bits per character (bpc). Second top row holds the original 

file sizes in bytes. 

Log file → Access FP Latexeditor Netaccess average 

raw file (in bytes) 17 517 060 20 617 071 30 381 282 3 105 150 – 

gzip 0.417 0.564 0.390 0.307 0.420 

bzip2 0.256 0.281 0.212 0.168 0.229 

LZMA 0.357 0.360 0.274 0.294 0.321 

PPMd -o6 -m192 0.201 0.254 0.227 0.162 0.211 

PPMd -o16 -m192 0.173 0.226 0.175 0.131 0.176 

logpack + gzip 0.270 0.334 0.236 0.150 0.248 

logpack + bzip2 0.185 0.244 0.157 0.124 0.178 

logpack + LZMA 0.222 0.252 0.169 0.127 0.193 

logpack + PPMd -o6 0.140 0.210 0.139 0.118 0.152 

logpack + PPMd -o16 0.131 0.204 0.128 0.109 0.143 

our, v1 + gzip 0.238 0.164 0.070 0.111 0.146 

our, v1 + bzip2 0.178 0.150 0.067 0.102 0.124 

our, v1 + LZMA 0.212 0.155 0.069 0.110 0.137 

our, v1 + PPMd -o6 0.145 0.147 0.066 0.102 0.115 

our, v1 + PPMd -o16 0.135 0.145 0.066 0.102 0.112 

our, v2 + gzip 0.239 0.144 0.064 0.141 0.147 

our, v2 + bzip2 0.169 0.115 0.053 0.102 0.110 

our, v2 + LZMA 0.209 0.129 0.059 0.122 0.130 

our, v2 + PPMd -o6 0.138 0.115 0.052 0.100 0.101 

our, v2 + PPMd -o16 0.127 0.110 0.051 0.098 0.097 

 

7. Conclusions and future work 

We presented two relatively simple off-line preprocessing schemes for web log compres-

sion. Our implementation works with the nowadays most popular web log format, Apache, 

but the entry fields occurring there are typical for other formats (e.g., IIS) too. The first 

variant treats each field separately, and – quite surprisingly – even this approach helps a lot. 

The biggest improvement, as expected, was achieved in combination with gzip, the weakest 

(but also most widely used) among the tested compressors: 3 out of 4 files were shrunk to 

about one third (or less) of the plain gzip archive size! Our advantage over logpack, a spe-

cialized log compressor, is also impressive. Still, sometimes it disappears when the strong-

est of the tested compressors, PPMd, comes into play. 



 

Our experiments show how redundant log files are. The average ratio for gzip backend 

is 0.147 bpc, which means that the log files are reduced over 54 times! When the backend is 

PPMd, the logs are reduced even 82 times. Bzip2 as the backend is not much worse, but its 

speed is clearly inferior, especially in the compression. When high decoding speed has pri-

ority, the best choice may be LZMA (unfortunately, it is quite slow in the compression 

phase). 

It is clear from the results that web logs vary significantly in redundancy. Interestingly, 

after the preprocessing and backend compression, the difference in compression ratio gets 

even larger. This can be explained by some kinds of redundancy in logs which general-

purpose compressors cannot effectively cope with. An example of such redundancy can be 

the similar (but not well handled by, e.g., gzip) timestamps in the successive lines. 

Definitely the main weakness of our algorithms in their current form is their rigid ex-

pectations about the input file format. This is one of the main things we are going to im-

prove in the future work: make the scheme flexible enough to work with several, freely 

configured, log formats, or even better, assume as little as possible about the input and thus 

be able to efficiently process arbitrary log files, not only web log ones. 

Along these lines, we are going to look for a practical heuristic for merging fields be-

fore further processing. Our preliminary experiments were unfortunately unfruitful. 

Log files tend to contain long repeating sequences, which may be successfully re-

placed with short tokens. We, however, chose an alternative to replacing words with a 

semi-static dictionary index: instead, we applied the well-known move-to-front heuristic for 

whole field values. Still, we are aware we have not fully exploited the dictionary-based 

approach (large dictionary size, spaceless model etc.), so we may get back to this idea later. 

Also, it seems that the traditional notion of a “word” in dictionary-based schemes is inap-

propriate for some web log fields: the set of word separators may be expanded with (e.g.) 

the symbols ‘/’, ‘&’ and ‘?’. Some other, minor, improvements are possible as well. Finally, 

we are going to implement the application from scratch in C++ and then perform also speed 

measurements. 
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