
Fast algorithm for
constrained longest common subsequence problem

Sebastian Deorowicz

December 21, 2005

Abstract

The problem of finding the constrained longest common subsequence (CLCS)
for the sequences A and B with respect to the sequence P was introduced recently.
The best known algorithms for its solving requires time of order of a product of
the sequences length. We introduce a novel approach in which time and memory
complexities depends on the number of matches between A, B, and P . The time
complexity is never worse than the one of the known algorithms, but typically is
better. Experiments show that our method is faster than the known ones and
requires less memory.

1 Introduction and background

The problem of finding the longest common subsequence (LCS) of two given sequences
A and B is well studied [2, 3, 6] and has a lot of applications in various fields, not only
those related to computer science.

There are also a number of problems related to LCS, such as a constrained longest
common subsequence (CLCS) introduced recently [8].

1.1 Terms and definitions

Let us assume we have three sequences: A = a1, a2, . . . , an, B = b1, b2, . . . , bm, and
P = p1, p2, . . . , pr. Each of them is composed of symbols over an alphabet Σ of size σ.
A sequence X ′ is a subsequence of X when it can be obtained from X by removing zero
or more symbols.

The LCS problem is to find the sequence L = LCS(A, B) such that L is a subsequence
of both A and B, and L has the maximal possible length. The CLCS problem is a gener-
alization of LCS since we have an additional requirement that P has to be a subsequence
of L, i.e., P = LCS(P, LCS(A, B)).

Since the problem is symmetric, we can assume without a loss of generality that
m ≤ n. It is also necessary to assume r ≤ m, for P cannot be longer than A and B. We
say that we have a match for the pair (i, j) iff ai = bj. We call a match strong iff for the
triple (i, j, k) for which we have a match, i.e., ai = bj, holds also ai = pk. For simplicity
we use the notation Xs for x1, x2, . . . , xs.

1



0 0 0 0 0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 2 2 2 2 2
0 1 1 1 1 1 2 2 2 2 2 2
0 1 1 1 1 1 2 3 3 3 3 3
0 1 1 1 2 2 2 3 3 3 3 3
1 1 2 2 2 3 3 3 4 4 4 4
1 1 2 3 3 3 3 3 4 5 5 5
1 1 2 3 4 4 4 4 4 5 5 5
1 1 2 3 4 4 5 5 5 5 5 6
1 1 2 3 4 4 5 5 5 5 5 6
1 2 2 3 4 4 5 6 6 6 6 6
1 2 3 3 4 5 5 6 7 7 7 7

k=0
i

A
0

B
1

A
2

A
3

D
4

A
5

C
6

B
7

A
8

A
9

B
10

C
11

j
C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

1 1 1 1 1 1
1 2 2 2 2 2
2 2 2 2 2 3
2 3 3 3 3 3
2 3 3 3 3 3
2 3 4 4 4 4
2 3 4 5 5 5
2 3 4 5 5 5
5 5 5 5 5 6
5 5 5 5 5 6
5 6 6 6 6 6
5 6 7 7 7 7

k=1
i

A
0

B
1

A
2

A
3

D
4

A
5

C
6

B
7

A
8

A
9

B
10

C
11

j
C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

2 2 2 2 2
2 2 2 2 3
3 3 3 3 3
3 3 3 3 3
3 4 4 4 4
3 4 5 5 5
3 4 5 5 5
3 4 5 5 6
3 4 5 5 6
6 6 6 6 6
6 7 7 7 7

k=2
i

A
0

B
1

A
2

A
3

D
4

A
5

C
6

B
7

A
8

A
9

B
10

C
11

j
C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

3 3
3 3
3 3
3 3
3 3
3 4
3 4
6 6
6 6

k=3
i

A
0

B
1

A
2

A
3

D
4

A
5

C
6

B
7

A
8

A
9

B
10

C
11

j
C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

Figure 1: Example of the algorithm by Chin et al. for A = ABAADACBAABC, B =
CBCBDAADCDBA, P = CBB. (Grayed cells denotes strong matches and ‘–’ symbols
denotes −∞ values.)

1.2 Existing methods

Tsai in his paper [8] introduced the CLCS problem and presented an algorithm based on
dynamic programming running in O(m2n2r) time and O(mnr) space. Recently Peng [7],
Arslan and Eğecioğlu [1], and Chin et al. [4] showed that the problem is in fact sim-
pler. The authors presented similar algorithms working in O(mnr) time (in both worst
and average-case). The algorithms use O(mnr) memory, but Chin et al. show that
their method can be modified using Hirschberg way [5] to obtain only O(mr) memory
complexity while the time complexity is preserved.

2 Proposed algorithms

We start the presentation of our algorithm from the recursive equation by Chin et al. [4]
(an example of the algorithm is shown in Figure 1), which they introduced to calculate
the CLCS:

M(i, j, k) =


1 + M(i− 1, j − 1, k − 1) if i, j, k > 0 and ai = bj = pk,
1 + M(i− 1, j − 1, k) if i, j > 0, ai = bj and (k = 0 or ai 6= pk),
max(M(i− 1, j, k), M(i, j − 1, k)) if i, j > 0 and ai 6= bj

(1)
The initialization of the array if done by setting:

M(i, 0, 0) = M(0, j, 0) = 0 and M(0, j, k) = M(i, 0, k) = −∞, (2)

for i = 0, 1, . . . , n, j = 0, 1, . . . m, and k = 1, 2, . . . , r.
There are some interesting properties of the matrix M .

Observation 1. M(i, j, k1) ≥M(i, j, k2) if k1 < k2.

Proof. From the initialization of the matrix (Equation 2), it is obviously true for (i, j),
where at least one variable of i, j is zero. For i > 0 and j > 0, the cell M(i, j, k1)
stores the length of the CLCS for Ai and Bj while the sequence Pk1 is constrained.
The cell M(i, j, k2) stores the CLCS length while a longer sequence, Pk2 , is constrained.
Each sequence constraining Pk2 obviously constrains also the sequence Pk1 which is a
subsequence of Pk2 , so the length M(i, j, k1) cannot be smaller than M(i, j, k2).

2



Observation 2. M(i1, j1, k) ≤M(i2, j2, k) if i1 ≤ i2, j1 ≤ j2.

Proof. The rule of calculation of the M array guarantees that if we have not any strong
matches, the value of M(i2, j2, k) cannot be smaller than any other value M(i1, j1, k)
where i1 ≤ i2 and j1 ≤ j2, because the values does not decrease when any of the indexes
i, j grows. If we meet a strong match for some triple (i, j, k), we calculate M(i, j, k) as
M(i−1, j−1, k−1)+1, which is not lower than M(i−1, j−1, k)+1 (Observation 1).

Observation 3. M(i1, j1, k) < M(i2, j2, k) if i1 < i2, j1 < j2, ai2 = bj2.

Proof. If we have a non-strong match for (i2, j2), we calculate M(i2, j2, k) as M(i2 −
1, j2 − 1, k) + 1, so it is obvious that the observation is true, because from Observation 2
M(i2− 1, j2− 1, k) ≥M(i1, j1, k). For a strong match (i2, j2), the value of M(i2− 1, j2−
1, k−1)+1 cannot be lower than M(i2−1, j2−1, k)+1 (Observation 1), so the observation
is also true.

From the above observations and Equation 1 we can write:

M(i, j, k) =



max
0≤i′<i

0≤j′<j

M(i′, j′, k − 1) + 1 if i, j, k > 0 and ai = bj = pk,

max
0≤i′<i

0≤j′<j

M(i′, j′, k) + 1 if i, j > 0, ai = bj and (k = 0 or ai 6= pk),

max
0≤i′≤i
0≤j′≤j

(i′ 6=i∨ j′ 6=j)

M(i′, j′, k) if i, j > 0 and ai 6= bj.

(3)
To calculate properly the values of M we can restrict to triples (i, j, k) for which we

have a match, i.e., ai = bj, since for non-match triples we make a copy of some cell,
without increasing the value stored in it. Therefore we can write:

M(i, j, k) =


max
0≤i′<i
0≤j′<j
ai′=bj′

M(i′, j′, k − 1) + 1 if i, j, k > 0 and ai = bj = pk,

max
0≤i′<i
0≤j′<j
ai′=bj′

M(i′, j′, k) + 1 if i, j > 0, ai = bj and (k = 0 or ai 6= pk).

(4)
Before we introduce our algorithm for the CLCS problem, let us first consider how to

efficiently calculate the following rule for such i and j that ai = bj, which is similar to
the one presented in Equation 4:

M∗(i, j) = max
0≤i′<i
0≤j′<j
ai′=bj′

M∗(i′, j′) + α(i, j), (5)

where α(i, j) is a positive integer for all match pairs i, j, and the boundary conditions
are: M∗(i, 0) = 0, M∗(0, j) = 0 for 0 ≤ i ≤ n and 0 ≤ j ≤ m. (When α(i, j) = 1 for
all pairs (i, j) for which we have a match, then the problem is equivalent to finding the
LCS(A, B).)

We process the matrix in a row-wise and in each row in a column-wise matter. We
maintain two lists: L0 and L1 storing pairs: 〈column no, rank〉 (rank is the value stored
in M∗). When we start processing the ith row, the list L0 stores pairs describing the

3



1 1
1 2 2

2 3
1 3 3

2
1 2 2 3 4 4
1 2 3 3 4 5

4
5 6

4
2 6 6

1 3 3 5 7 7

L0 = 〈0, 0〉, 〈7, 1〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈8, 2〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈7, 2〉, 〈12, 2〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈7, 2〉, 〈8, 3〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈5, 2〉, 〈8, 3〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈6, 3〉, 〈9, 4〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈9, 4〉, 〈10, 5〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈10, 5〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈12, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈12, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈8, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈5, 4〉, 〈6, 5〉, 〈8, 6〉, 〈9, 7〉

i
A
1

B
2

A
3

A
4

D
5

A
6

C
7

B
8

A
9

A
10

B
11

C
12

j
C1

B2

C3

B4

D5

A6

A7

D8

C9

D10

B11

A12

Figure 2: Example of the algorithm calculating M∗ matrix for A = ABAADACBAABC,
B = CBCBDAADCDBA, and α(i, j) = 1 when ai = bj and 0 otherwise. The contents of
the list L0 is presented after finishing the row in which the list is placed.

positions in the matrix M∗[0..i−1, 0..m], with the lowest possible column numbers for all
the existing rank values. The list is initialized with the pair 〈0, 0〉 and is sorted according
to increasing ranks.

Now we process the ith row as follows (we visit only matches in this row). For each
match, we browse the list L0 to find the first pair with the higher or equal column
number (if no such a pair exist, we stop one position after the last in the list). The
previous position on the list stores the pair with the highest rank from all the existing
ones in M∗ matrix in columns lower than j and rows lower than i. This is in fact the
maximal value of M∗(i′, j′) for all i′ < i and j′ < j, which we need to calculate M∗(i, j).
We also make a copy of all the pairs in L0 at lower positions than the current one to the
list L1, and put the new pair describing the (i, j) match to the list L1. Then we skip all
the pairs of L0 with not higher ranks than the last added to L1.

After finishing one row, we copy all the pairs from L0 to L1 with ranks higher than
the last added to L1. Then we exchange the lists L0 and L1, empty the list L1, and start
processing the next row.

Please confer Figure 2 for an example showing the contents of the L0 list during the
row-wise processing of the M∗ matrix to compute the LCS(A, B).

The length of the lists L0 and L1 is bounded by the highest rank of the M∗ cells plus
one, l +1. (When we compute LCS, l is the length of LCS(A, B).) For each of d matches
between A and B, we make O(1) operations and move through the list L0 (possibly at
long distance). The list L0 is however traversed only m times and we never go backward.
Therefore, the total time complexity of the presented procedure is O(ml+d). (We neglect
here the cost of initialization of the data structures, e.g., finding the set of d matches,
which costs O(n).)

To show that the calculation of the M matrix could be done in a similar way, let us
first introduce a second matrix, T :

T (i, j, k) = max
0≤i′<i
0≤j′<j
ai′=bj′

M(i′, j′, k) + 1. (6)

It stores in T (i, j, k − 1) the value used as M(i, j, k) when a match is strong.
We process the M and T matrices in a level-wise matter, i.e., at the beginning we

determine the M and T matrices for all the cells for k = 0, then we do the same for
k = 1, 2, . . . , r. The calculation of the cell values is as follows. If the current match,
(i, j, k), is not strong, i.e, ai 6= pk, then we calculate the values of the M(i, j, k) and

4



0,0 0,0
0,0 1,7 1,7

2,2 2,8
0,0 3,7 3,7

4,2
0,0 4,2 4,2 5,5 4,8 4,8
0,0 6,1 6,3 6,3 6,6 6,9

7,4
8,5 7,10

7,4
7,1 9,7 9,7

0,0 11,2 11,2 10,5 11,8 11,8

L0 = 〈0, 0〉, 〈7, 1〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈8, 2〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈7, 2〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈7, 2〉, 〈8, 3〉
L0 = 〈0, 0〉, 〈2, 1〉, 〈5, 2〉, 〈8, 3〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈6, 3〉, 〈9, 4〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈9, 4〉, 〈10, 5〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈10, 5〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈12, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈3, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈12, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈4, 3〉, 〈5, 4〉, 〈7, 5〉, 〈8, 6〉
L0 = 〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈5, 4〉, 〈6, 5〉, 〈8, 6〉, 〈9, 7〉

i
A
1

B
2

A
3

A
4

D
5

A
6

C
7

B
8

A
9

A
10

B
11

C
12

j
C1

B2

C3

B4

D5

A6

A7

D8

C9

D10

B11

A12

Figure 3: Example of the algorithm calculating the F matrix for A = ABAADACBAABC,
B = CBCBDAADCDBA. (For simplicity only 0-level is shown. The grayed cells denotes
matches added to the L1 list.)

T (i, j, k) cells and update the L0 and L1 lists in the same way like for the M∗ matrix.
If the match is strong, we use the stored value of T (i, j, k − 1) to find the value of the
M(i, j, k) cell, and use the same mechanism like we did for M∗(i, j) to determine the
value of T (i, j, k). Then we traverse the L0 and update the L1 list with the M(i, j, k)
value.

After filling out the whole matrix M , we can find the highest value stored in it, being
the length of the CLCS. Alas, there is no simple way to find out the CLCS, not only
its length. To make it possible, we need one more three-dimensional matrix, F , which
stores in each cell (i, j, k) the pointer to the cell used to calculate the T (i, j, k) value, i.e.,
the cell with the maximal value from M(i′, j′, k), where i′ < i and j′ < j. To find out
the CLCS, we start from the cell of M with the maximal value, set k = r and do the
following loop. If we have a strong match, i.e., ai = pk, we use the F (i, j, k − 1) pointer
to set i, j, k variables. If we have a non-strong match, i.e., ai 6= pk, we use the F (i, j, k)
pointer to select the next visited The values of ai for the visited cells form the CLCS.
(Figure 3 shows the contents of the F matrix for the level 0.)

3 Algorithm’s complexity and implementation de-

tails

There are three three-dimensional matrices and some other lists, which may look as an
important disadvantage comparing to the classical algorithm by Chin et al. [4], which
needs only one three-dimensional matrix. We, however, introduced most of them only for
a clear presentation. The simplest optimization is to notice that we do not need the whole
T matrix. We need only to store the current and the previous level. The lists L0 and
L1 together with the previous level of the matrix T store all the necessary information
to calculate the values of M(i, j, k) and T (i, j, k). Therefore, we can resign from the M
matrix. All the matches between A and B can be determined easily and we only need to
precalculate a vector storing the number of appearance of all the alphabet symbols in A
and the matrix with the positions of the symbols’ appearance. Both can be implemented
in O(max(m, σ)) memory. The two-dimensional array T can be implemented in O(d)
memory for only d cells of it is used. The lists L0 and L1 obviously occupy O(l) memory,
where l is the length of LCS(A, B). The F matrix can be implemented in O(rd) memory.
The total memory consumption is therefore O(rd).

5



The initialization of the vector and match-array can be done in O(max(n, σ)) time,
which is negligible if σ is reasonable. (The case when σ is large will be discussed in the
next paragraph.) The processing of each level consumes O(ml + d) time, since this is a
similar procedure as discussed for the M∗ matrix. Therefore, finding the CLCS needs
O(r(ml + d) +n) time, which is better than O(mnr) for the currently known algorithms.

Up to now, we neglected the size of the alphabet, σ. If it is reasonable (comparable
to n) the above calculations are true. If σ is large, we should change the algorithm a
bit. Instead of storing the number of matches of alphabet symbols in a vector, we use a
binary search tree to store the symbols existing in A. When we need to access a list of
matches in the current row we search the BST (only one time for each row). This adds a
term O(m log n + n log n) = O(n log n) to the time complexity. We can alternatively sort
the symbols forming A, remove repetitions and relabel the symbols in both A and B.
This approach leads to the additional time complexity term O(m+n log n) = O(n log n).
In both cases we achieve an additional term O(n log n) to the time complexity, but it is
usually negligible if compared to O(r(ml + d) + n).

The pseudo-code for the calculation of the length of the CLCS is shown in Figure 4.
In lines 01–04, we compute the positions of all the alphabet symbols in the sequence A.
There are exactly n such positions, so the array n pos can be implemented in O(n)
memory. Lines 06–34 contain the main loop, in which we traverse the matrices in a level-
wise matter. The initialization of the M matrix is here simplified, and we only set the
pseudo-match at position (0, 0, k) to be 0 when we process the 0-level and −∞, when the
level is higher. The pseudo-match guarantees that when we stop searching the list L0, we
always have at previous position the match with the highest rank lower than the current
one. In the loop 13–34, we browse the current level row-wise. For each row, after copying
the pseudo-match, we move through all the row matches. In lines 16–22, we make a copy
of the part of the list L0 to L1. Then, we add a new match to the list L1 (lines 23–29).
In lines 30–33, we make a copy of the remaining elements from the list L0. Then, we
exchange the list L0 and L1 to make the newly created list the current one for the next
row, and empty the other list.

4 Evaluation of the algorithms’ performance

The existing algorithms computing the CLCS in O(mnr) time are closely related so we
selected the one by Chin et al. [4] for practical experiments. The algorithm by Tsai [8] of
complexity O(m2n2r) is obviously the loser so we resign from it in experiments. Therefore,
there are only two methods to compare: the one by Chin et al. and our. We implemented
both algorithms in ANSI C++, compiled using MINGW C++ 3.4.2 compiler, and run
on a computer equipped with AMD Athlon XP 2500+ processor (real 1800 MHz CPU
clock).

The algorithms’ relative complexity does not depend on the length of the constrained
sequence, which was confirmed by preliminary experiments, so we selected only one sam-
ple value r = 16. The complexity of our proposal depends, however, on the number of
matches between A and B, and the length of the LCS(A, B). This values depend of course
on the alphabet size. Therefore, we compared the algorithms for various values of σ. In
the experiments, we used sequences of various lengths. The sequences were generated
randomly using the uniform probability distribution of alphabet symbol occurrence.

Since, algorithms’ relative performance is almost independent on the length of se-

6



{A[1..n], B[1..m], P [1..k]}
01 for i← 1 to σ do
02 n pos[i]← 0;
03 for i← 1 to n do
04 pos[A[i]][n pos[A[i]]← i; n pos[A[i]]← n pos[A[i]] + 1;
06 for k ← 0 to r do
07 if k = 0 then
08 L0[0].len← 0;
09 else
10 L0[0].len← −∞;
11 L0[0].i← −∞; L0[0].j ← −∞;
12 N0 ← 1; N1 ← 0;
13 for j ← 1 to m do
14 L1[N1]← L0[0]; N1 ← N1 + 1; p← 1;
15 for s← 0 to n pos[B[j]]− 1 do
16 i← pos[B[j]][s];
17 while p < N0 do
18 if L0[p].i ≥ i then
19 break;
20 else if L1[N1 − 1].len < L0[p].len and L0[p].len > 0 then
21 L1[N1]← L0[p]; N1 ← N1 + 1;
22 p← p + 1;
23 if k > 0 and B[j] = P [k] then
24 v ← T [j][i]; T [j][i]← L0[p− 1].len + 1;
25 else
26 v ← L0[p− 1].len + 1; T [j][i]← v;
27 F [k][j][i].i← L0[p− 1].i; F [k][j][i].j ← L0[p− 1].j;
28 if L1[n1].len < v then
29 L1[N1].i← i; L1[N1].j ← j; L1[N1].len← v; N1 ← N1 + 1;
30 while p < N0 and L1[N1 − 1].len ≥ L0[p].len do
31 p← p + 1;
32 while p < N0 do
33 L1[N1]← L0[p]; N1 ← N1; p← p + 1;
34 L0 ← L1; N0 ← N1; N1 ← 0;
35 return L0[N0 − 1].len;

Figure 4: Algorithm preparing data structures to construct CLCS. Returns length of the
CLCS.

{A[1..n], B[1..m], P [1..k]}
01 i← L0[N0].i; j ← L0[N0].j; k ← r;
02 for len← L0[N0 − 1].len downto 1 do
03 R[len]← B[j];
04 if k > 0 and Y [j] = P [k] then
05 k ← k − 1;
06 i′ ← F [k][j][i].i; j′ ← F [k][j][i].j;
07 i← i′; j ← j′;
08 return R;

Figure 5: Algorithm returning the CLCS

7



2 5 10 20 50 100 200
0

100

200

300

400

500

Classical

our

Alphabet size

T
im

e
[m

s]

2 5 10 20 50 100 200
0

100

200

300

400

500

Classical

our

Alphabet size

T
im

e
[m

s]

2 5 10 20 50 100 200
0

100

200

300

400

500

Classical

our

Alphabet size

T
im

e
[m

s]

n = 1024, m = 1024, r = 16 n = 2048, m = 512, r = 16 n = 4096, m = 256, r = 16

Figure 6: Comparison of the examined algorithms for changing alphabet size.

quences A and B when the factor n/m is constant, we selected three different pairs of
lengths n and m. Figure 6 shows the results of experiments for 2 ≤ σ ≤ 256. Each time
is a median of 201 executions.

We can notice that only for the smallest alphabet sizes (σ = 2, 3) the classical algo-
rithm is faster for the case when n = m = 1024. For the other two cases, it is faster only
for a binary alphabet. For a typical case, when σ = 4 (DNA alphabet), our algorithm is
about 15–40% faster. It speeds up when the alphabet size grows, because the length of
the LCS(A, B) comes shorter, and (more important) the number of matches between A
and B decreases. The speed of the classical algorithm also improves a little, while the
alphabet size grows. This is caused by the fact that when we have a strong-match (more
frequent for small alphabets), we need to take a look at the cell from the previous level,
which is located in memory at long distance (and probably were removed from the cache
memory). Nevertheless, the improvement of speed for this algorithm is unimportant.

The memory requirements of the classical algorithm is steady and for the case n =
m = 1024, r = 16, the algorithm needs about 72.15 MB. Space requirements of our
method depend on the number of matches between A and B. In the experiments, the
memory occupation decreases from 70.03 MB for a binary alphabet, through 30.07 MB for
the case σ = 4 and 7.13 MB for σ = 20 to 0.65 MB for σ = 256. (We did not experiment
with the Hirschberg-like memory optimization of the algorithm by Chin et al. since the
time necessary to reduce the memory complexity is significant and the algorithm would
be much slower than the classical one.)

5 Conclusions

We considered the constrained longest common subsequence problem (CLCS). The prob-
lem is rather new and only a few dynamic programming-based algorithms were presented
so far. To the best of our knowledge, the best known ones are of O(mnr) time complexity,
where the factors are sequence lengths.

We proposed a novel approach, in which the complexity depends on not only the
sequences length, but also on the number of matches between the two main sequences.
The time complexity of the presented method is O(r(ml + d) + n), where l is the length
of the LCS(A, B) and d is the number of matches between A and B. The memory
requirements of our algorithm is O(dr), which is also attractive.

Experiments confirmed that the proposed method is faster than the known algorithms

8



for all practical alphabets (of size not smaller than 4).

Acknowledgments

The author thanks Szymon Grabowski for his comments on the paper contents.

References

[1] A.N. Arslan, Ö. Eğecioğlu. Algorithms for the constrained longest common subse-
quence problems. Proceedings of the Prague Stringology Conference’04, M. Šimánek,
J. Holub Editors, pages 24–32, 2004.

[2] A. Apostolico. General pattern matchings. Chapter in Handbook of Algorithms and
Theory of Computation, M.J. Atallah (Editor), Chapter 13, 1998.

[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proceedings of 7th International Symposium on String Processing
Information Retrieval (SPIRE), Curuña, Spain, pages 39–48, 2000.

[4] F.Y.L. Chin, A. De Santis, A.L. Ferrara, N.L. Ho, and S.K. Kim. A simple algorithm
for the constrained sequence problems. Information Processing Letters, 90:175–179,
2004.

[5] D.S. Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM, 24:664–675, 1977.

[6] G. Navarro. A Guided Tour to Approximate String Matching. ACM Computing
Surveys, 33(1):31–88, 2001.

[7] Ch.-L. Peng. An Approach for Solving the Constrained Longest Common Subse-
quence Problem. Master’s Thesis, Department of Computer Science and Engineering,
National Sun Yat-sen University, Taiwan, 2003. http://etd.lib.nsysu.edu.tw/ETD-db/
ETD-search/getfile?URN=etd-0828103-125439&filename=etd-0828103-125439.pdf

[8] Y.-T. Tsai. The constrained common subsequence problem. Information Processing
Letters, 88:173–176, 2003.

9


