
Silesian University of Technology
Faculty of Automatic Control, Electronics

and Computer Science
Institute of Computer Science

Doctor of Philosophy Dissertation

Universal lossless
data compression algorithms

Sebastian Deorowicz

Supervisor: Prof. dr hab. inż. Zbigniew J. Czech

Gliwice, 2003

To My Parents

Contents

Contents i

1 Preface 1

2 Introduction to data compression 7
2.1 Preliminaries . 7
2.2 What is data compression? . 8
2.3 Lossy and lossless compression . 9

2.3.1 Lossy compression . 9
2.3.2 Lossless compression . 10

2.4 Definitions . 10
2.5 Modelling and coding . 11

2.5.1 Modern paradigm of data compression 11
2.5.2 Modelling . 11
2.5.3 Entropy coding . 12

2.6 Classes of sources . 16
2.6.1 Types of data . 16
2.6.2 Memoryless source . 16
2.6.3 Piecewise stationary memoryless source 17
2.6.4 Finite-state machine sources 17
2.6.5 Context tree sources . 19

2.7 Families of universal algorithms for lossless data compression . . 20
2.7.1 Universal compression . 20
2.7.2 Ziv–Lempel algorithms . 20
2.7.3 Prediction by partial matching algorithms 23
2.7.4 Dynamic Markov coding algorithm 26
2.7.5 Context tree weighting algorithm 27
2.7.6 Switching method . 28

2.8 Specialised compression algorithms 29

i

ii CONTENTS

3 Algorithms based on the Burrows–Wheeler transform 31
3.1 Description of the algorithm . 31

3.1.1 Compression algorithm . 31
3.1.2 Decompression algorithm 36

3.2 Discussion of the algorithm stages 38
3.2.1 Original algorithm . 38
3.2.2 Burrows–Wheeler transform 38
3.2.3 Run length encoding . 45
3.2.4 Second stage transforms . 46
3.2.5 Entropy coding . 52
3.2.6 Preprocessing the input sequence 57

4 Improved compression algorithm based on the Burrows–Wheeler trans-
form 61
4.1 Modifications of the basic version of the compression algorithm . 61

4.1.1 General structure of the algorithm 61
4.1.2 Computing the Burrows–Wheeler transform 62
4.1.3 Analysis of the output sequence of the Burrows–Wheeler

transform . 64
4.1.4 Probability estimation for the piecewise stationary memo-

ryless source . 70
4.1.5 Weighted frequency count as the algorithm’s second stage 81
4.1.6 Efficient probability estimation in the last stage 84

4.2 How to compare data compression algorithms? 92
4.2.1 Data sets . 92
4.2.2 Multi criteria optimisation in compression 97

4.3 Experiments with the algorithm stages 98
4.3.1 Burrows–Wheeler transform computation 98
4.3.2 Weight functions in the weighted frequency count transform102
4.3.3 Approaches to the second stage 104
4.3.4 Probability estimation . 106

4.4 Experimental comparison of the improved algorithm and the other
algorithms . 106
4.4.1 Choosing the algorithms for comparison 106
4.4.2 Examined algorithms . 107
4.4.3 Comparison procedure . 109
4.4.4 Experiments on the Calgary corpus 110
4.4.5 Experiments on the Silesia corpus 120
4.4.6 Experiments on files of different sizes and similar contents 128
4.4.7 Summary of comparison results 136

5 Conclusions 141

iii

Acknowledgements 145

Bibliography 147

Appendices 161

A Silesia corpus 163

B Implementation details 167

C Detailed options of examined compression programs 173

D Illustration of the properties of the weight functions 177

E Detailed compression results for files of different sizes and similar
contents 185

List of Symbols and Abbreviations 191

List of Figures 195

List of Tables 196

Index 197

Chapter 1

Preface

I am now going to begin my story
(said the old man), so please attend.

— ANDREW LANG

The Arabian Nights Entertainments (1898)

Contemporary computers process and store huge amounts of data. Some parts
of these data are excessive. Data compression is a process that reduces the data
size, removing the excessive information. Why is a shorter data sequence of-
ten more suitable? The answer is simple: it reduces the costs. A full-length
movie of high quality could occupy a vast part of a hard disk. The compressed
movie can be stored on a single CD-ROM. Large amounts of data are transmit-
ted by telecommunication satellites. Without compression we would have to
launch many more satellites that we do to transmit the same number of televi-
sion programs. The capacity of Internet links is also limited and several meth-
ods reduce the immense amount of transmitted data. Some of them, as mirror
or proxy servers, are solutions that minimise a number of transmissions on long
distances. The other methods reduce the size of data by compressing them.
Multimedia is a field in which data of vast sizes are processed. The sizes of
text documents and application files also grow rapidly. Another type of data
for which compression is useful are database tables. Nowadays, the amount of
information stored in databases grows fast, while their contents often exhibit
much redundancy.

Data compression methods can be classified in several ways. One of the
most important criteria of classification is whether the compression algorithm

1

2 CHAPTER 1. PREFACE

removes some parts of data which cannot be recovered during the decompres-
sion. The algorithms removing irreversibly some parts of data are called lossy,
while others are called lossless. The lossy algorithms are usually used when
a perfect consistency with the original data is not necessary after the decom-
pression. Such a situation occurs for example in compression of video or picture
data. If the recipient of the video is a human, then small changes of colors of
some pixels introduced during the compression could be imperceptible. The
lossy compression methods typically yield much better compression ratios than
lossless algorithms, so if we can accept some distortions of data, these methods
can be used. There are, however, situations in which the lossy methods must not
be used to compress picture data. In many countries, the medical images can be
compressed only by the lossless algorithms, because of the law regulations.

One of the main strategies in developing compression methods is to prepare
a specialised compression algorithm for the data we are going to transmit or
store. One of many examples where this way is useful comes from astronomy.
The distance to a spacecraft which explores the universe is huge, what causes
big communication problems. A critical situation took place during the Jupiter
mission of Galileo spacecraft. After two years of flight, the Galileo’s high-gain
antenna did not open. There was a way to get the collected data through a sup-
porting antenna, but the data transmission speed through it was slow. The sup-
porting antenna was designed to work with a speed of 16 bits per second at
the Jupiter distance. The Galileo team improved this speed to 120 bits per sec-
ond, but the transmission time was still quite long. Another way to improve the
transmission speed was to apply highly efficient compression algorithm. The
compression algorithm that works at Galileo spacecraft reduces the data size
about 10 times before sending. The data have been still transmitted since 1995.
Let us imagine the situation without compression. To receive the same amount
of data we would have to wait about 80 years.

The situation described above is of course specific, because we have here
good knowledge of what kind of information is transmitted, reducing the size
of the data is crucial, and the cost of developing a compression method is of
lower importance. In general, however, it is not possible to prepare a specialised
compression method for each type of data. The main reasons are: it would result
in a vast number of algorithms and the cost of developing a new compression
method could surpass the gain obtained by the reduction of the data size. On the
other hand, we can assume nothing about the data. If we do so, we have no
way of finding the excessive information. Thus a compromise is needed. The
standard approach in compression is to define the classes of sources producing
different types of data. We assume that the data are produced by a source of
some class and apply a compression method designed for this particular class.
The algorithms working well on the data that can be approximated as an output

3

of some general source class are called universal.

Before we turn to the families of universal lossless data compression algo-
rithms, we have to mention the entropy coders. An entropy coder is a method
that assigns to every symbol from the alphabet a code depending on the prob-
ability of symbol occurrence. The symbols that are more probable to occur get
shorter codes than the less probable ones. The codes are assigned to the symbols
in such a way that the expected length of the compressed sequence is minimal.
The most popular entropy coders are Huffman coder and an arithmetic coder. Both
the methods are optimal, so one cannot assign codes for which the expected
compressed sequence length would be shorter. The Huffman coder is optimal
in the class of methods that assign codes of integer length, while the arithmetic
coder is free from this limitation. Therefore it usually leads to shorter expected
code length.

A number of universal lossless data compression algorithms were proposed.
Nowadays they are widely used. Historically the first ones were introduced by
Ziv and Lempel [202, 203] in 1977–78. The authors propose to search the data
to compress for identical parts and to replace the repetitions with the informa-
tion where the identical subsequences appeared before. This task can be accom-
plished in several ways. Ziv and Lempel proposed two main variants of their
method: LZ77 [202], which encodes the information of repetitions directly, and
LZ78 [203], which maintains a supporting dictionary of subsequences appeared
so far, and stores the indexes from this dictionary in the output sequence. The
main advantages of these methods are: high speed and ease of implementation.
Their compression ratio is, however, worse than the ratios obtained by other
contemporary methods.

A few years later, in 1984, Cleary and Witten introduced a prediction by partial
matching (PPM) algorithm [48]. It works in a different way from Ziv and Lempel
methods. This algorithm calculates the statistics of symbol occurrences in con-
texts which appeared before. Then it uses them to assign codes to the symbols
from the alphabet that can occur at the next position in such a way that the ex-
pected length of the sequence is minimised. It means that the symbols which are
more likely to occur have shorter codes than the less probably ones. The statis-
tics of symbol occurrences are stored for separate contexts, so after processing
one symbol, the codes assigned for symbols usually differ completely because of
the context change. To assign codes for symbols an arithmetic coder is used. The
main disadvantages of the PPM algorithms are slow running and large memory
needed to store the statistics of symbol occurrences. At present, these methods
obtain the best compression ratios in the group of universal lossless data com-
pression algorithms. Their low speed of execution limits, however, their usage
in practice.

Another statistical compression method, a dynamic Markov coder (DMC), was

4 CHAPTER 1. PREFACE

invented by Cormack and Horspool [52] in 1987. Their algorithm assumes that
the data to compress are an output of some Markov source class, and during the
compression, it tries to discover this source by better and better estimating the
probability of occurrence of the next symbol. Using this probability, the codes for
symbols from the alphabet are assigned by making use of an arithmetic coder.
This algorithm also needs a lot of memory to store the statistics of symbol occur-
rences and runs rather slowly. After its formulation, the DMC algorithm seemed
as an interesting alternative for the PPM methods, because it led to the compa-
rable compression ratios with similar speed of running. In last years, there were
significant improvements in the field of the PPM methods, while the research
on the DMC algorithms stagnated. Nowadays, the best DMC algorithms obtain
significantly worse compression ratios than the PPM ones, and are slower.

In 1995, an interesting compression method, a context tree weighting (CTW) al-
gorithm, was proposed by Willems et al. [189]. The authors introduced a concept
of a context tree source class. In their compression algorithm, it is assumed that
the data are produced by some source of that class, and relating on this assump-
tion the probability of symbol occurrence is estimated. Similarly to the PPM and
the DMC methods, an arithmetic coder is used to assign codes to the symbols
during the compression. This method is newer than the before-mentioned and
a relatively small number of works in this field have appeared so far. The main
advantage of this algorithm is its high compression ratio, only slightly worse
than those obtained by the PPM algorithms. The main disadvantage is a low
speed of execution.

Another compression method proposed recently is a block-sorting compression
algorithm, called usually a Burrows–Wheeler compression algorithm (BWCA) [39].
The authors invented this method in 1994. The main concept of their algo-
rithm is to build a matrix, whose rows store all the one-character cyclic shifts
of the compressed sequence, to sort the rows lexicographically, and to use the
last column of this matrix for further processing. This process is known as the
Burrows–Wheeler transform (BWT). The output of the transform is then handled
by a move-to-front transform [26], and, in the last stage, compressed by an en-
tropy coder, which can be a Huffman coder or an arithmetic coder. As the result
of the BWT, a sequence is obtained, in which all symbols appearing in similar
contexts are grouped. The important features of the BWT-based methods are
their high speed of running and reasonable compression ratios, which are much
better than those for the LZ methods and only slightly worse than for the best
existing PPM algorithms. The algorithms based on the transform by Burrows
and Wheeler seem to be an interesting alternative to fast, Ziv–Lempel methods,
which give comparatively poor compression ratios, and the PPM algorithms
which obtain the better compression ratios, but work slowly.

In this dissertation the attention is focused on the BWT-based compression

5

algorithms. We investigate the properties of this transform and propose an im-
proved compression method based on it.

Dissertation thesis: An improved algorithm based on the Burrows–Wheeler
transform we propose, achieves the best compression ratio among the BWT-
based algorithms, while its speed of operation is comparable to the fastest algo-
rithms of this family.

In the dissertation, we investigate all stages of the BWT-based algorithms,
introducing new solutions at every phase. First, we analyse the structure of the
Burrows–Wheeler transform output, proving some results, and showing that
the output of the examined transform can be approximated by the output of the
piecewise stationary memoryless source. We investigate also methods for the
BWT computation, demonstrating that a significant improvement to the Itoh–
Tanaka’s method [90] is possible. The improved BWT computation method is
fast and is used in further research. Using the investigation results of the BWT
output we introduce a weighted frequency count (WFC) transform. We examine
several proposed weight functions, being the important part of the transform, on
the piecewise stationary memoryless source output, performing also numeri-
cal analysis. The WFC transform is then proposed as the second stage of the
improved BWT-based algorithm (the replacement of the originally used MTF
transform). In the last stage of the compression method, the output sequence
of previous phases is compressed by the arithmetic coder. The most important
problem at this stage is to estimate the probabilities of symbol occurrences which
are then used by the entropy coder. An original method, a weighted probability,
is proposed for this task. Some of the results of this dissertation were published
by the author in References [54, 55].

The properties of the proposed compression method are examined on the
real-world data. There are three well known data sets, used by researchers in
the field of compression: the Calgary corpus [20], the Canterbury corpus [12], and
the large Canterbury corpus [98]. The first one, proposed in 1989, is rather old,
but it is still used by many researchers. The later corpora are more recent, but
they are not so popular and, as we discuss in the dissertation, they are not good
candidates as the standard data sets. In the dissertation, we discuss also a need
of examining the compression methods on files of sizes significantly larger than
the existing ones in the three corpora. As the result, we propose a Silesia corpus
to perform tests of the compression methods on files of sizes and contents which
are used nowadays.

The dissertation begins, in Chapter 2, with the formulation of the data com-
pression problem. Then we define some terms needed to discuss compression
precisely. In this chapter, a modern paradigm of data compression, modelling
and coding, is described. Then, the entropy coding methods, such as Huffman
and arithmetic coding are presented. The families of universal lossless com-

6 CHAPTER 1. PREFACE

pression algorithms that are used nowadays: Ziv–Lempel algorithms, predic-
tion by partial matching algorithms, dynamic Markov coder algorithms, and
context tree weighting algorithms are also described in detail. Chapter 2 ends
with a short review of some specialised compression methods. Such methods
are useful when we know something more about the data to compress. One of
these methods was discussed by Ciura and the author of this dissertation in Ref-
erence [47]. In Chapter 3, we focus our attention on the family of compression
algorithms based on the Burrows–Wheeler transform. In the first part of this
chapter, we describe the original BWCA in detail. Then, we present the results
of the investigations on this algorithm, which were made by other researches.

Chapter 4, containing the main contribution of the dissertation, starts from
the description of the proposed solutions. Then we discuss the methods of com-
paring data compression algorithms. To this end, we describe three existing cor-
pora for examining universal lossless data compression algorithms. The argu-
ments for and against usage of the Calgary, the Canterbury, and the large Can-
terbury corpora are presented. We also argue for a need of existence of a corpus
containing larger and more representable files to the ones used contemporarily.
Therefore, we introduce a Silesia corpus. Then, we discuss multi criteria optimisa-
tion. This is done because the compression process cannot be treated as a simple
optimisation problem in which only one criterion is optimised, say for example
the compression ratio. Such criteria as compression and decompression speeds
are also important. In the end of this chapter, we describe the experiments and
comment the obtained results.

Chapter 5 contains a discussion of obtained results and justification of the
dissertation thesis. The dissertation ends with appendices, in which some de-
tails are presented. Appendix A contains a more precise specification of files in
the Silesia corpus. Appendix B contains some technical information of the im-
plementation. We briefly discuss here the contents of the source code files, em-
ployed techniques, and the usage of the compression program implementing the
proposed compression algorithm. The detailed information of the compression
programs used for the comparison can be found in Appendix C. In Appendix D,
some more detailed graphs obtained during the investigation of the probability
estimation method in sequences produced by the piecewise stationary memo-
ryless sources are presented. Appendix E contains the auxiliary results of the
performed experiments.

Chapter 2

Introduction to
data compression

‘It needs compression,’
I suggested, cautiously.

— RUDYARD KIPLING

The Phantom ’Rickshaw
and Other Ghost Stories (1899)

2.1 Preliminaries

Computers process miscellaneous data. Some data, as colours, tunes, smells,
pictures, voices, are analogue. Contemporary computers do not work with
infinite-precise analogue values, so we have to convert such data to a digital
form. During the digitalisation process, the infinite number of values is reduced
to a finite number of quantised values. Therefore some information is always
lost, but the larger the target set of values, the less information is lost. Often the
precision of digitalisation is good enough to allow us neglecting the difference
between digital version of data and their analogue original.

There are also discrete data, for example written texts or databases contain
data composed of finite number of possible values. We do not need to digitise
such types of data but only to represent them somehow by encoding the original
values. In this case, no information is lost.

7

8 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

Regardless of the way we gather data to computers, they usually are se-
quences of elements. The elements come from a finite ordered set, called an al-
phabet. The elements of the alphabet, representing all possible values, are called
symbols or characters. One of the properties of a given alphabet is its number of
symbols, and we call this number the size of the alphabet. The size of a sequence is
the number of symbols it is composed of.

The size of the alphabet can differ for various types of data. For a Boolean
sequence the alphabet consists of only two symbols: false and true, representable
on 1 bit only. For typical English texts the alphabet contains less than 128 sym-
bols and each symbol is represented on 7 bits using the ASCII code. The most
popular code in contemporary computers is an 8-bit code; some texts are stored
using the 16-bit Unicode designed to represent all the alphabetic symbols used
worldwide. Sound data typically are sequences of symbols, which represent
temporary values of the tone. The size of the alphabet to encode this data is
usually 28, 216, or 224. Picture data typically contain symbols from the alphabet
representing the colours of image pixels. The colour of a pixel can be repre-
sented using various coding schemes. We mention here only one of them, the
RGB code that contains the brightness of the three components red, green, and
blue. The brightness of each component can be represented, for example, using
28 different values, so the size of the alphabet is 224 in this case.

A sequence of symbols can be stored in a file or transmitted over a network.
The sizes of modern databases, application files, or multimedia files can be ex-
tremely large. Reduction of the sequence size can save computing resources or
reduce the transmission time. Sometimes we even would not be able to store
the sequence without compression. Therefore the investigation of possibilities
of compressing the sequences is very important.

2.2 What is data compression?

A sequence over some alphabet usually exhibits some regularities, what is nec-
essary to think of compression. For typical English texts we can spot that the
most frequent letters are e, t, a, and the least frequent letters are q, z. We can
also find such words as the, of, to frequently. Often also longer fragments of the
text repeat, possibly even the whole sentences. We can use these properties in
some way, and the following sections elaborate this topic.

A different strategy to compress the sequence of picture data is needed. With
a photo of night sky we can still expect that the most frequent colour of pixels
is black, or dark grey. But with a generic photo we usually have no information
what colour is the most frequent. In general, we have no a priori knowledge of
the picture, but we can find regularities in it. For example, colours of successive
pixels usually are similar, some parts of the picture are repeated.

2.3. LOSSY AND LOSSLESS COMPRESSION 9

Video data are typically composed of subsequences containing the data of
the successive frames. We can simply treat the frames as pictures and com-
press them separately, but more can be achieved with analysing the consecutive
frames. What can happen in a video during a small fraction of a second? Usually
not much. We can assume that successive video frames are often similar.

We have noticed above that regularities and similarities often occur in the
sequences we want to compress. Data compression bases on such observations
and attempts to utilise them to reduce the sequence size. For different types of
data there are different types of regularities and similarities, and before we start
to compress a sequence, we should know of what type it is. One more thing
we should mark here is that the compressed sequence is useful only for storing
or transmitting, but not for a direct usage. Before we can work on our data we
need to expand them to the original form. Therefore the compression methods
must be reversible. The decompression is closely related to the compression,
but the latter is more interesting because we have to find the regularities in the
sequence. Since during the decompression nothing new is introduced, it will
not be discussed here in detail.

A detailed description of the compression methods described in this chapter
can be found also in one of several good books on data compression by Bell et
al. [22], Moffat and Turpin [116], Nelson and Gailly [118], Sayood [143], Skar-
bek [157], or Witten et al. [198].

2.3 Lossy and lossless compression

2.3.1 Lossy compression

The assumed recipient of the compressed data influences the choice of a com-
pression method. When we compress audio data some tones are not audible
to a human because our senses are imperfect. When a human will be the only
recipient, we can freely remove such unnecessary data. Note that after the de-
compression we do not obtain the original audio data, but the data that sound
identically. Sometimes we can also accept some small distortions if it entails a
significant improvement to the compression ratio. It usually happens when we
have a dilemma: we can have a little distorted audio, or we can have no audio
at all because of data storage restrictions. When we want to compress picture or
video data, we have the same choice—we can sacrifice the perfect conformity to
the original data gaining a tighter compression. Such compression methods are
called lossy, and the strictly bi-directional ones are called lossless.

The lossy compression methods can achieve much better compression ratio
than lossless ones. It is the most important reason for using them. The gap be-
tween compression results for video and audio data is so big that lossless meth-
ods are almost never employed for them. Lossy compression methods are also

10 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

employed to pictures. The gap for such data is also big but there are situations
when we cannot use lossy methods. Sometimes we cannot use lossy methods to
the images because of the law regulations. This occurs for medical images as in
many countries they must not be compressed loosely.

Roughly, we can say that lossy compression methods may be used to data
that were digitised before compression. During the digitalisation process small
distortions are introduced and during the compression we can only increase
them.

2.3.2 Lossless compression

When we need certainty that we achieve the same what we compressed after
decompression, lossless compression methods are the only choice. They are
of course necessary for binary data or texts (imagine an algorithm that could
change same letters or words). It is also sometimes better to use lossless com-
pression for images with a small number of different colours or for scanned text.

The rough answer to the question when to use lossless data compression
methods is: We use them for digital data, or when we cannot apply lossy meth-
ods for some reasons.

This dissertation deals with lossless data compression, and we will not con-
cern lossy compression methods further. From time to time we can mention
them but it will be strictly denoted. If not stated otherwise, further discussion
concerns lossless data compression only.

2.4 Definitions

For precise discussion, we introduce now some terms. Some of them were used
before but here we provide their precise definitions.

Let us assume that x = x1x2 . . . xn is a sequence. The sequence length or size
denoted by n is a number of elements in x, and xi denotes the ith element of x.
We also define the reverse sequence, x−1, as xnxn−1 . . . x1. Given a sequence x let
us assume that x = uvw for some, possibly empty, subsequences u, v, w. Then u
is called a prefix of x, v a component of x, and w a suffix of x. Each element of the
sequence, xi, belongs to a finite ordered set A = {a0, a1, . . . , ak−1} that is called
an alphabet. The number of elements in A is the size of the alphabet and is denoted
by k. The elements of the alphabet are called symbols or characters. We introduce
also a special term for a non-empty component of x that consists of identical
symbols that we call a run. To simplify the notation we denote the component
xixi+1 . . . xj by xi..j. Except the first one, all characters xi in a sequence x are pre-
ceded by a nonempty prefix x(i−d)..(i−1). We name this prefix a context of order d of
the xi. If the order of the context is unspecified we arrive at the longest possible

2.5. MODELLING AND CODING 11

context x1..(i−1) that we call simply a context of xi. It will be useful for clear pre-
sentation to use also terms such as past, current, or future, related to time when
we talk about the positions in a sequence relative to the current one.

2.5 Modelling and coding

2.5.1 Modern paradigm of data compression

The modern paradigm of compression splits it into two stages: modelling and
coding. First, we recognise the sequence, look for regularities and similarities.
This is done in the modelling stage. The modelling method is specialised for the
type of data we compress. It is obvious that in video data we will be searching
for different similarities than in text data. The modelling methods are often
different for lossless and lossy methods. Choosing the proper modelling method
is important because the more regularities we find the more we can reduce the
sequence length. In particular, we cannot reduce the sequence length at all if we
do not know what is redundant in it.

The second stage, coding, is based on the knowledge obtained in the mod-
elling stage, and removes the redundant data. The coding methods are not so
diverse because the modelling process is the stage where the adaptation to the
data is made. Therefore we only have to encode the sequence efficiently remov-
ing known redundancy.

Some older compression methods, such as Ziv–Lempel algorithms (see Sec-
tion 2.7.2), cannot be precisely classified as representatives of modelling-coding
paradigm. They are also still present in contemporary practical solutions, but
their importance seems to be decreasing. We consider them to have a better
view of the background but we pay our attention to the modern algorithms.

2.5.2 Modelling

The modelling stage builds a model representing the sequence to compress, the
input sequence, and predicts the future symbols in the sequence. Here we esti-
mate a probability distribution of occurrences of symbols.

The simplest way of modelling is to use a precalculated table of probabilities
of symbol occurrences. The better is our knowledge of symbol occurrences in
the current sequence, the better we can predict the future characters. We can
use precalculated tables if we know exactly what we compress. If we know
that the input sequence is an English text, we can use typical frequencies of
character occurrences. If, however, we do not know the language of the text,
and we use, e.g., the precalculated table for the English language to a Polish
text, we can achieve much worse results, because the difference between the
input frequencies and the precalculated ones is big. The more so, the Polish

12 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

language uses letters such as ó, ś that do not exist in English. Therefore the
frequencies table contains a frequency equal to zero for such symbols. It is a big
problem and the compressor may not work when such extraordinary symbols
appear. Furthermore, the probability of symbol occurrences differs for texts of
various authors. Probably the most astonishing example of this discrepancy is
a two hundred pages French novel La Disparition by Georges Perec [128] and its
English translation A Void by Gilbert Adair [129], both not using the letter e at
all!

Therefore a better way is not to assume too much about the input sequence
and build the model from the encoded part of the sequence. During the decom-
pression process the decoder can build its own model in the same way. Such an
approach to the compression is called adaptive because the model is built only
from past symbols and adapts to the contents of the sequence. We could not use
the future symbols because they are unknown to the decompressor. Other, static,
methods build the model from the whole sequence before the compression and
then use it. The decompressor has no knowledge of the input sequence, and the
model has to be stored in the output sequence, too. The static approach went
almost out of use because is can be proved that the adaptive way is equivalent,
so we will not be considering it further.

2.5.3 Entropy coding

Entropy

The second part of the compression is typically the entropy coding. The methods
of entropy coding are based on a probability distribution of occurrences of the
alphabet symbols, which is prepared by the modelling stage, and then compress
these characters. When we know the probability of occurrences of every symbol
from the alphabet, but we do not know the current character, the best what we
can do is to assign to each character a code of length

log
1
pi

= − log pi (2.1)

where pi is the probability of occurrence of symbol ai [151]. (All logarithms in
the dissertation are to the base 2.) If we do so, the expected code length of the
current symbol is

E(.) = −
k−1

∑
i=0

pi · log pi. (2.2)

The difference between these codes and the ones used for representing the sym-
bols in the input sequence is that here the codes have different length, while such
codes as ASCII, Unicode, or RGB store all symbols using the identical number
of bits.

2.5. MODELLING AND CODING 13

0 1

0

1

0 1

0

1

5a 2b 2r 1c 1d

2

4

7

11

Huffman codes:

a:

b: 01

c: 0

d: 1

r: 10

Figure 2.1: Example of the Huffman tree for the sequence abracadabra

The expected code length of the current symbol is not greater than the code
length of this symbol. Replacing all characters from the input sequence with
codes of smaller expected length causes a reduction of the total sequence length
and gives us compression. Note that if the modelling stage produces inadequate
estimated probabilities, the sequence can expand during the compression. Here
we can also spot why a data compression algorithm will not be working on the
Polish text with the English frequency table. Let us assume that we have to
compress the Polish letter ś for which the expected probability is 0. Using the
rule of the best code length (Equation 2.1) the coder would generate an infinite-
length code, what is impossible.

Huffman coding

Expression 2.1 means that we usually should assign codes of noninteger length
to most symbols from the input sequence. It is possible, but let us first take
a look on a method giving the best expected code length among the methods
which use codes of integer length only. This coding procedure was introduced
by Huffman [87] in 1952.

Let us assume that we have a table of frequencies of symbol occurrences in
the encoded part of the sequence (this is what the simple modelling method can
do). Now we start building a tree by creating the leaves, one leaf for each symbol
from the alphabet. Then we create a common parent for the two nodes without
parents and with the smallest frequency. We assign to the new node a frequency
being a sum of the frequencies of its sons. This process is repeated until there
is only one node without a parent. We call this node a root of the tree. Then we
create the code for a given symbol, starting from the root and moving towards
the leaf corresponding to the symbol. We start with an empty code, and when-

14 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

ever we go to a left son, we append 0 to it, whenever we go to a right son, we
append 1. When we arrive to the leaf, the code for the symbol is ready. This pro-
cedure is repeated for all symbols. Figure 2.1 shows an example of the Huffman
tree and the codes for symbols after processing a sequence abracadabra. There
is more than one possible Huffman tree for our data, because if there are two
nodes with the same frequency we can choose any of them.

The Huffman coding is simple, even though rebuilding the tree after pro-
cessing each character is quite complicated. It was shown by Gallager [73] that
its maximum inefficiency, i.e., the maximum difference between the expected
code length and the optimum (Equation 2.2) is bounded by

pm + log
2 log e

e
≈ pm + 0.086, (2.3)

where pm is the probability of occurrence of the most frequent symbol. Typically
the loss is smaller and, owing to its simplicity and effectiveness, this algorithm
is often used when compression speed is important.

The Huffman coding was intensively investigated during the years. Some
of the interesting works were provided by Faller [62], Knuth [93], Cormack and
Horspool [51], and Vitter [176, 177]. These works contain description of methods
of storing and maintaining the Huffman tree.

Arithmetic coding

The reason of the inefficiency of the Huffman coding results from using the
codes of integer length only. If we get rid of this constraint, we can be close
to the optimum. The arithmetic coding method offers such a solution. Similarly
to the Huffman coding, we need a table of frequencies of all symbols from the
alphabet. At the beginning of coding, we start with a left-closed interval [0, 1).
For each sequence symbol the current interval is divided into subintervals of
length proportional to the frequencies of character occurrences. Then we choose
the subinterval of the current symbol. This procedure is repeated for all charac-
ters from the input sequence. At the end we output the binary representation of
any number from the final interval.

Suppose that the table of frequencies is the same as in the Huffman coding
example. Figure 2.2 shows the arithmetic encoding process of the five symbols
abrac. We start from the interval [0, 1) and then choose the subintervals relating
to the encoded symbol. The subintervals become smaller and smaller during
the coding. Arithmetic coding works on infinite-precision numbers. With such
an assumption it can be proved that the Elias algorithm (unpublished but de-
scribed, e.g., by Jelinek [91]) which was the first attempt to the arithmetic coding
is no more than 2 bits away from the optimum for the whole sequence. Of course
from practical reasons we cannot meet this assumption, and we work on finite-

2.5. MODELLING AND CODING 15

a b c d r

0.00000 0.45455 0.63636 0.72727 0.81818 1.00000

a b c d r

0.00000 0.20661 0.28926 0.33058 0.37190 0.45455

a b c d r

0.20661 0.24418 0.25920 0.26672 0.27423 0.28926

a b c d r

0.27423 0.28106 0.28379 0.28516 0.28652 0.28926

a b c d r

0.27423 0.27733 0.27858 0.27920 0.27982 0.28106

a b c d r

0.27858 0.27886 0.27897 0.27903 0.27908 0.27920

Figure 2.2: Example of the arithmetic coding process

precision numbers accepting some efficiency loss. The loss is, however, small
and usually can be neglected.

The first idea of the arithmetic coding was invented in 1960s. Its more pre-
cise description was provided, however, by Rissanen [134], Pasco [125], Rissa-
nen and Langdon [136], Langdon [97], Rubin [138], and Guazzo [78] about ten
years later. Some of the interesting works on this topic was also presented by
Witten et al. [199] and Howard and Vitter [84, 85, 86]. A modern approach to
the arithmetic coding is described in the work of Moffat et al. [115]. The recent
authors showed that in the worst case their version of the finite-precision arith-
metic coding is only 0.006 bits per symbol worse than the optimum.

An important problem in the arithmetic coding is to store in an efficient way
the changing probabilities of symbol occurrences. Fenwick [64] presented an
elegant tree-based structure for solving this problem. An improvement to this
method was proposed by Moffat [114].

16 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

2.6 Classes of sources

2.6.1 Types of data

Before choosing the right compression algorithm we must know the sequence
to be compressed. Ideally, we would know that in a particular case we have,
e.g., a Dickens novel, a Picasso painting, or an article from a newspaper. In such
a case, we can choose the modelling method that fits such a sequence best. If
our knowledge is even better and we know that the sequence is an article from
the New York Times we can choose the more suitable model corresponding to
the newspaper style. Going further, if we know the author of the article, we
can make even better choice. Using this knowledge one may choose a model
well adjusted to the characteristics of the current sequence. To apply such an
approach, providing different modelling methods for writers, painters, newspa-
pers, and so on, is insufficient. It is also needed to provide different modelling
methods for all newspapers and all authors publishing there. The number of
modelling methods would be incredibly large in this case. The more so, we do
not know the future writers and painters and we cannot prepare models for their
works.

On the other side, we cannot assume nothing about the sequence. If we do
so, we have no way of finding similarities. The less we know about the sequence,
the less we can utilise.

To make a compression possible we have to make a compromise. The stan-
dard approach is to define the classes of sources producing sequences of different
types. We assume that the possible sequences can be treated as an output of
some of the sources. The goal is to choose the source’s class which approxi-
mates the sequence best. Then we apply a universal compression algorithm that
works well on the sources from the chosen class. This strategy offers a possibility
of reduction the number of modelling methods to a reasonable level.

2.6.2 Memoryless source

Let us start the description of source types from the simplest one which is a
memoryless source. We assume that Θ = {θ0, . . . , θk−1} is a set of probabilities of
occurrence of all symbols from the alphabet. These parameters fully define the
source.

Such sources can be viewed as finite-state machines (FSM) with a single state
and k loop-transitions. Each transition is denoted by a different character, ai,
from the alphabet, and with each of them the probability θi is associated. An
example of the memoryless source is presented in Figure 2.3.

The memoryless source produces a sequence of randomly chosen symbols
according to its parameters. The only regularity in the produced sequence is

2.6. CLASSES OF SOURCES 17

a

r

dc

b

0.4

0.2

0.10.1

0.2

Figure 2.3: Example of the memoryless source

that the frequency of symbol occurrences is close to the probabilities being the
source parameters.

2.6.3 Piecewise stationary memoryless source

The parameters of the memoryless source do not depend on the number of sym-
bols it generated so far. This means that the probability of occurrence of each
symbol is independent from its position in the output sequence. Such sources,
which do not vary their characteristics in time, are called stationary.

The piecewise stationary memoryless source is a memoryless source, where the
set of probabilities Θ depends on the position in the output sequence. This
means that we assume a sequence 〈Θ1, . . . , Θm〉 of probabilities sets, and a re-
lated sequence of positions, 〈t1, . . . , tm〉, after which every set Θi becomes actual
to the source.

This source is nonstationary, because its characteristics varies in time. Typi-
cally we assume that the sequence to be compressed is produced by a stationary
source. Therefore all other source classes considered in the dissertation are sta-
tionary. The reason to distinguish the piecewise stationary memoryless sources
is that they are closely related to one stage of the Burrows–Wheeler compression
algorithm, what we will discuss in Section 4.1.3.

2.6.4 Finite-state machine sources

A Markov source (Figure 2.4) is a finite-state machine which has a set of states
S = {s0, . . . , sm−1} and some transitions. There can be at most k transitions from
each state and all of them are denoted by a different symbol. Each transition has
some probability of choosing it. The next state is completely specified by the
previous one and a current symbol.

Finite-order FSM sources are subsets of Markov sources. Every node is asso-
ciated with a set of sequences of length not greater than d, where d is called an
order of the source. The current state is completely specified by the last d sym-

18 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

a

b

d

a

b

a c
b

r d

a
r

0.5

0.5

0.5

0.3

0.2

0.4 0.5 0.1 0.4 0.3

0.9

0.1

Figure 2.4: Example of the Markov source

a
1.0

b
0.5

r0.4

a
0.6

c0.3a0.2
d

0.2

a
0.8

d
0.8

c
0.2

a
b
r

c d

Figure 2.5: Example of the finite-order FSM source

bols. The next state is specified by the current one and the current symbol. An
example of a finite-order FSM source is shown in Figure 2.5.

The FSMX sources [135] are subsets of finite-order FSM sources. The reduc-
tion is made by the additional assumption that sets denoting the nodes contain
exactly one element.

2.6. CLASSES OF SOURCES 19

0 1

0 1 0 1

0 1 0 1

0 1θ000

θ0010 θ0011

θ01

θ100 θ101

θ11

Figure 2.6: Example of the binary CT-source

2.6.5 Context tree sources

Context tree sources (CT-sources) were introduced by Willems et al. [185] in 1995.
A finite memory CT-source ω is specified by a set S of contexts s (sequences
over the alphabet A) of length not greater than the maximum order d (|s| ≤ d).
The set S of contexts should be complete, what means that for every possible
sequence x, of length not smaller than d, there exists a context s ∈ S , being a
suffix of x. Moreover, there should be exactly one such context, called a proper
context. Each context s ∈ S has a conditional probability distribution {Θs, s ∈
S} = {{θ(a|s), a ∈ A}, s ∈ S} of producing the next symbol. A sample CT-
source for binary alphabet is presented in Figure 2.6.

Context tree sources can be viewed as a generalisation of the FSMX sources.
To specify when a relation between the FSMX source and the context tree source
holds, we have to define some terms. The generator of the component v1..i is its
prefix v1..i−1. We name the set S closed if a generator of each suffix of s ∈ S
belongs to the set S or it is a suffix of s. There exists an equivalent FSMX source
to the context tree source if the set S if closed. The number of states in the FSMX
source is the number of components in the set S . There is also an FSMX source
related to every context tree source but the number of states in the FSM is greater
then |S| if the set S is not closed.

20 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

2.7 Families of universal algorithms
for lossless data compression

2.7.1 Universal compression

We noticed that it is impossible to design a single compression method for all
types of data without some knowledge of the sequence. It is also impossible to
prepare a different compression algorithm for every possible sequence. The rea-
sonable choice is to invent a data compression algorithm for some general source
classes, and to use such an algorithm to the sequences which can be treated, with
a high precision, as outputs of the assumed source.

Typical sequences appearing in real world contain texts, databases, pictures,
binary data. Markov sources, finite-order FSM sources, FSMX sources, and con-
text tree sources were invented to model such real sequences. Usually real se-
quences can be successfully approximated as produced by these sources. There-
fore it is justified to call algorithms designed to work well on sequences pro-
duced by such sources universal.

Sometimes, before the compression process, it is useful to transpose the se-
quence in some way to achieve a better fit to the assumption. For example, im-
age data are often decomposed before the compression. This means that every
colour component (red, green, and blue) is compressed separately. We consider
the universal compression algorithms which in general do not include such pre-
liminary transpositions.

We are now going to describe the most popular universal data compression
algorithms. We start from the classic Ziv–Lempel algorithms then we present
the more recent propositions.

2.7.2 Ziv–Lempel algorithms

Main idea

Probably the most popular data compression algorithms are Ziv–Lempel methods,
first described in 1977. These algorithms are dictionary methods: during the
compression they build a dictionary from the components appeared in the past
and use it to reduce the sequence length if the same component appears in the
future.

Let us suppose that the input sequence starts with characters abracadabra.
We can notice that the first four symbols are abra and the same symbols appear
in the sequence once more (from position 8). We can reduce the sequence length
replacing the second occurrence of abra by a special marker denoting a repe-
tition of the previous component. Usually we can choose the subsequences to
be replaced by a special marker in various ways (take a look for example at
the sequence abracadabradab, where we can replace the second appearance of

2.7. FAMILIES OF UNIVERSAL ALGORITHMS FOR LOSSLESS . . . 21

component abra or adab, but not both of them). At a given moment, we cannot
find out which replacement will give better results in the future. Therefore the
Ziv–Lempel algorithm use heuristics for choosing the replacements.

The other problem is how to build the dictionary and how to denote the
replacements of components. There are two major versions of the Ziv–Lempel
algorithms: LZ77 [202] and LZ78 [203], and some minor modifications.

The main idea of the Ziv–Lempel methods is based on the assumption that
there are repeated components in the input sequence, x. This means that the
probability of occurrence of the current symbol, xi, after a few previous charac-
ters, a component xi−j..i−1, is not uniform. The FSM, FSMX, and CT-source with
nonuniform probability distribution in states fulfil this assumption.

LZ77 algorithm

We are going to describe the LZ77 algorithm using the sample sequence abra-
cadabra (Figure 2.7). At the beginning we choose two numbers: ls—the maxi-
mum length of the identical subsequences, and lb—the length of the buffer stor-
ing the past characters. Let us set ls = 4 and lb = 8. The LZ77 algorithm works
on the buffer sequence b that is composed of lb previous and ls future symbols.
There are no previous symbols at the beginning of the compression because the
current position i in the x sequence equals 1. Therefore we initialise the buffer b
with lb repetitions of the first symbol from the alphabet (a in our example), and
the ls first symbols from the sequence. Now we find the longest prefix of the cur-
rent part of component b(lb+1)..(lb+ls) (underlined characters in column “Buffer”),
in the buffer starting not further than at the lbth position. We find the prefix a
of length ll = 1 starting at the 8th position in our example. Then we output a
triple 〈8, 1, b〉 describing the repeated part of the sequence. The first element of
the triple, 8, is a position where the identical subsequence starts, the second, 1, is
the length of the subsequence and the third, b, is the character following the re-
peated sequence, xi+ll . Then the buffer is shifted ll + 1 characters to the left, filled
from the right with the component x(i+ls+1)..(i+ls+1+ll), and the current position,
i, is changed to i + ll + 1. The output is a sequence of triples; in our example:
〈8, 1, b〉, 〈1, 0, r〉, 〈6, 1, c〉, 〈4, 1, d〉, 〈2, 4, �〉. (The special character � denotes no
character.)

The parameters lb and ls are much larger in real implementations, so we can
find significantly longer identical components. Choosing lb and ls we have to
remember that using large values entails the need to use much more space to
store the triples. To achieve better compression, in modern versions of the LZ77
algorithm the sequence of triples is modelled by simple algorithms, and then
encoded with the Huffman or arithmetic coder.

The LZ77 algorithm was intensively studied in last years. From many works
at this field we should mention the algorithms LZSS by Storer and Szyman-

22 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

Remaining sequence Buffer Longest prefix Code

abracadabra aaaaaaaaabra a 〈8, 1, b〉
racadabra aaaaaaabraca 〈1, 0, r〉
acadabra aaaaaabracad a 〈6, 1, c〉
adabra aaaabracadab a 〈4, 1, d〉
abra aabracadabra abra 〈2, 4, �〉

Figure 2.7: Example of the LZ77 algorithm processing the sequence abracadabra

Compressor

Remaining sequence Code

abracadabra 〈0, a〉
bracadabra 〈0, b〉
racadabra 〈0, r〉
acadabra 〈1, c〉
adabra 〈1, d〉
abra 〈1, b〉
ra 〈3, a〉

Dictionary

Index Sequence

1 a
2 b
3 r
4 ac
5 ad
6 ab
7 ra

Figure 2.8: Example of the LZ78 algorithm processing the sequence abracadabra

ski [159], LZFG by Fiala and Greene [70], and LZRW by Williams [193, 194].
Further improvements were introduced also by Bell [21], Bell and Kulp [23],
Bell and Witten [24], Gutmann and Bell [79], and Horspool [82].

LZ78 algorithm

The second algorithm developed by Ziv and Lempel is the LZ78 method [203].
It uses a different approach to the problem of representing previous part of a se-
quence. Instead of the buffer that exists in LZ77, a dictionary storing the compo-
nents that are encoded is built. We describe the method using the same sample
sequence abracadabra (Figure 2.8).

The algorithm starts with an empty dictionary. During the compression, we
search for the longest prefix of the subsequence starting at the current position, i,
in the dictionary, finding the component xi..(i+ll−1) of length ll . Then we output
a pair. The first element of the pair is an index of the found sequence in the
dictionary. The second element is the next character in the input sequence, xi+ll .
Next we expand the dictionary with a component xi..(i+ll) being a concatenation
of found subsequence and the next character in the sequence x. Then we change
the current position i to i + ll + 1. The steps described above are repeated until
we reach the end of the sequence x. The output is a sequence of pairs; in our

2.7. FAMILIES OF UNIVERSAL ALGORITHMS FOR LOSSLESS . . . 23

example: 〈0, a〉, 〈0, b〉, 〈0, r〉, 〈1, c〉, 〈1, d〉, 〈1, b〉, 〈3, a〉.
During the compression process the dictionary grows, so the indexes become

larger numbers and require more bits to be encoded. Sometimes it is unprof-
itable to let the dictionary grow unrestrictedly and the dictionary is periodically
purged. (Different versions of LZ78 use different strategies in this regard.)

From many works on LZ78-related algorithms the most interesting ones are
the propositions by Miller and Wegman [112], Hoang et al. [80], and the LZW
algorithm by Welch [187]. The LZW algorithm is used by a well-known UNIX
compress program.

2.7.3 Prediction by partial matching algorithms

The prediction by partial matching (PPM) data compression method was devel-
oped by Cleary and Witten [48] in 1984. The main idea of this algorithm is to
gather the frequencies of symbol occurrences in all possible contexts in the past
and use them to predict probability of occurrence of the current symbol xi. This
probability is then used to encode the symbol xi with the arithmetic coder.

Many versions of PPM algorithm have been developed since the time of its
invention. One of the main differences between them is the maximum order
of contexts they consider. There is also an algorithm, PPM* [49], that works
with an unbounded context length. The limitation of the context length in the
first versions of the algorithm was motivated by the exponential growth of the
number of possible contexts together to the order, what causes a proportional
growth of the space requirements. There are methods for reducing the space
requirements and nowadays it is possible to work with long contexts (even up
to 128 symbols). When we choose a too large order, we, however, often meet the
situation that a current context has not appeared in the past. Overcoming this
problem entails some additional cost so we must decide to some compromise in
choosing the order.

Let us now take a look at the compression process shown in Figure 2.9. The
figure shows a table of frequencies of symbol occurrences after encoding the
sequence abracadabra. The values in column c are the numbers of symbol oc-
currences in each context. The values in column p are the estimated probabilities
of occurrence of each symbol in the different contexts. The Esc character is a spe-
cial symbol, called escape code, which means that the current character xi has not
occurred in a context so far. It is important that the escape code is present in
every context, because there is always a possibility that a new character appears
in the current context. The order −1 is a special order included to ensure that all
symbols from the alphabet have a non-zero probability in some context.

The last two characters of the sample sequence are ra and this is the context
of order 2. Let us assume that the current character xi is a. The encoding pro-
ceeds as follows. First, we find the context x(i−2)..(i−1) = ra in the table. We see

24 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

Order 2
Ctx Chars c p
ab r 2 2/3

Esc 1 1/3
ac a 1 1/2

Esc 1 1/2
ad a 1 1/2

Esc 1 1/2
br a 2 2/3

Esc 1 1/3
ca d 1 1/2

Esc 1 1/2
da b 1 1/2

Esc 1 1/2
ra c 1 1/2

Esc 1 1/2

Order 1
Ctx Chars c p
a b 2 2/7

c 1 1/7
d 1 1/7

Esc 3 3/7
b r 2 2/3

Esc 1 1/3
c a 1 1/2

Esc 1 1/2
d a a 1/2

Esc 1 1/2
r a 2 2/3

Esc 1 1/3

Order 0
Ctx Chars c p

a 5 5/16
b 2 2/16
c 1 1/16
d 1 1/16
r 2 2/16

Esc 5 5/16

Order −1
Ctx Chars c p

1 1/k

Figure 2.9: Example of the PPMC algorithm (1)

that the symbol xi = a has not appeared in this context so far. Therefore we need
to choose the escape code and encode it with the estimated probability 1/2. Be-
cause we have not found the character a, we need to decrease the order to 1,
achieving the context x(i−1)..(i−1) = a. Then we look at this context for a. We
are still unsuccessful, so we need to choose the escape code and encode it with
the estimated probability 3/7. Then we decrease the order to 0 and look at the
frequency table. We see that the probability of occurrence of symbol a in the
context of order 0 is 5/16 so we encode it with this probability. Next the statis-
tics of all context from order 0 to 2 are updated (Figure 2.10). The code length of
the encoded character is − log 1

2 − log 3
7 − log 5

16 ≈ 3.900 bits.

We can improve this result if we notice that after reducing the order to 1 we
know that the current character cannot be c. If it were c we would encode it in
the context of order 2, so we can correct the estimated probabilities discerning
the occurrences of symbol c in the context a. Then we choose the escape code but
with a modified estimated probability 3/6. Similarly, after limiting the order to 0
we can exclude occurrences of characters b, c, d and we can encode the symbol a
with the estimated probability 5/12. In this case, the code length of the encoded
character is − log 1

2 − log 3
6 − log 5

12 ≈ 3.263 bits. This process is called applying
exclusions.

The second important difference between PPM algorithms is the way of es-
timating probabilities of the escape code. The large number of methods of prob-
ability estimation follows from the fact that no method was proved to be the
best. Cleary and Witten [48] proposed two methods, and their algorithms are
called PPMA, PPMB. The method C employed in PPMC algorithm was pro-

2.7. FAMILIES OF UNIVERSAL ALGORITHMS FOR LOSSLESS . . . 25

Order 2
Ctx Chars c p
ab r 2 2/3

Esc 1 1/3
ac a 1 1/2

Esc 1 1/2
ad a 1 1/2

Esc 1 1/2
br a 2 2/3

Esc 1 1/3
ca d 1 1/2

Esc 1 1/2
da b 1 1/2

Esc 1 1/2
ra a 1 1/4

c 1 1/4
Esc 2 1/4

Order 1
Ctx Chars c p
a a 1 1/9

b 2 2/9
c 1 1/9
d 1 1/9

Esc 4 4/9
b r 2 2/3

Esc 1 1/3
c a 1 1/2

Esc 1 1/2
d a a 1/2

Esc 1 1/2
r a 2 2/3

Esc 1 1/3

Order 0
Ctx Chars c p

a 6 6/17
b 2 2/17
c 1 1/17
d 1 1/17
r 2 2/17

Esc 5 5/17

Order −1
Ctx Chars c p

1 1/k

Figure 2.10: Example of the PPMC algorithm (2)

posed by Moffat [113]. (We use PPMC algorithm in our example.) The methods
PPMD and PPME were proposed by Howard [83] and Åberg et al. [2] respec-
tively. Other solutions: PPMP, PPMX, PPMXC were introduced by Witten and
Bell [196].

We can realise that choosing a too large order may cause a need of encod-
ing many escape codes until we find the context containing the current symbol.
Choosing a small order causes, however, that we do not use the information of
statistics in longer contexts. There are a number of works in this field. We men-
tion here the PPM* algorithm [49] by Cleary and Teahan, Bunton’s propositions
[33, 34, 35, 36, 37, 38], and the most recent propositions by Shkarin [154, 155],
which are the state of the art PPM algorithms today.

The way of proper choosing the order and effective encoding the escape
codes are crucial. Recently such solutions as local order estimation (LOE) and sec-
ondary escape estimation (SEE) were proposed by Bloom [30] to overcome these
problems. Both these strategies are used currently by Shkarin [154, 155, 156].

The PPM algorithms work well on the assumption that the probabilities of
symbol occurrences in contexts are nonuniform. This assumption is fulfilled for
the FSM, FSMX, and CT-sources with nonuniform probability distribution in the
states. The additional assumption in the PPM algorithms is that the probability
distribution in the context is similar to the probability distribution in contexts
being its suffixes. The formulation of the source classes discussed in Section 2.6
does not give a justification for this assumption but typical sequences in the real
world fulfil this additional requirement too.

26 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

01 (1)(1)

Figure 2.11: Initial situation in the DMC algorithm

At the end we notice that the PPM algorithms yield the best compression
rates today. Unfortunately their time and space complexities are relatively high,
because they maintain a complicated model of data.

2.7.4 Dynamic Markov coding algorithm

The dynamic Markov coding algorithm (DMC) was invented in 1987 by Cormack
and Horspool [52]. The main idea of this method is to discover the Markov
source that has produced the input sequence. For a clear presentation we illus-
trate the work of the DMC algorithm on a binary alphabet.

The DMC algorithm starts with an FSM with one state and two transitions
as shown in Figure 2.11. Next it processes the input sequence going through the
FSM and counting the frequency of using each transition. When some transition
is used often, the DMC algorithm clones the destination state. Figure 2.12 shows
the state s split into states s′ and s′′. All the outgoing transitions of s are copied
to the new states, but the only transition to the state s′′ is the one that caused the
cloning process. Other incoming transitions to s are copied to the state s′. After
cloning we have to assign counts to the outgoing transitions from s′ and s′′. We
do that by considering two requirements. First, the ratio of counts related to the
new transitions outgoing from the states s′ and s′′ should be as close to the one
of the outgoing transitions from s as possible. The second, the sums of counts
of all the incoming and outgoing transitions in the states s′ and s′′ should be the
same. The result of the cloning is presented in Figure 2.13.

We described the DMC algorithm assuming the binary alphabet to simplify
the presentation. It is of course possible to implement it on the alphabet of larger
size. Teuhola and Raita investigated such an approach introducing a generalised
dynamic Markov coder (GDMC) [169].

The DMC algorithm was not examined in the literature as deeply as the PPM
algorithms were. One reason is that the implementation for alphabets of typical
sizes becomes harder than for binary ones, and the programs employing the
DMC algorithm work significantly slower than these using the PPM methods.

Interesting works on the DMC algorithm were carried out by Bell and Mof-
fat [19], Yu [201], and Bunton [32, 33]. The latter author presents a variant of the
DMC called Lazy DMC, that outperforms, in the terms of the compression ra-
tio, the existing DMC methods. An interesting comparison of the best PPM and

2.7. FAMILIES OF UNIVERSAL ALGORITHMS FOR LOSSLESS . . . 27

1 (1)

0 (2)

0 (8)

0 (12)

0 (13)

0 (9)

1 (5)

0 (3)

1 (15)

0 (4)

1 (4)

1 (3)

0 (5)

0 (19)

1 (6)

0 (12)

1 (14)

s

Figure 2.12: Before cloning in the DMC algorithm

1 (1)

0 (2)

0 (8)

0 (12)

0 (13)

0 (9)

1 (5)

0 (3)

1 (15)

0 (4)

1 (4)

1 (3)

0 (5)

0 (19)

1 (6)

0 (3)

1 (4)

0 (9)

1 (10)
s′

s′′

Figure 2.13: After cloning in the DMC algorithm

DMC algorithms showing the significant advantage in the compression ratio of
the PPM algorithms is demonstrated in Reference [33].

2.7.5 Context tree weighting algorithm

The context tree weighting algorithm was introduced by Willems et al. [189]. Its
main assumption is that the sequence was produced by a context tree source of

28 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

an unknown structure and parameters.
For a clear presentation we follow the way that the authors used to present

their algorithm, rather than describing it in work, what could be confusing with-
out introducing some notions. The authors start with a simple binary mem-
oryless source and notice that using the Krichevsky–Trofimov estimator [95]
to estimate the probability for the arithmetic coding, we can encode every se-
quence produced by any such source with a small bounded inefficiency equals
1/2 log n + 1. Next they assume that the source is a binary CT-source of known
structure (the set of contexts) and unknown parameters (the probabilities of
producing 0 or 1 in each context). The authors show how the maximum re-
dundancy of the encoded sequence grows in such a case. The result is strictly
bounded only by the size of the context set and the length of the sequence.
The last step is to assume that we also do not know the structure of the con-
text tree source. The only thing we know is the maximum length d of the con-
text from the set S . The authors show how to employ an elegant weighting
procedure over all the possible context tree sources of the maximum depth d.
They show that, in this case, a maximum redundancy is also strictly bounded
for their algorithm. The first idea of the CTW algorithm was extended in fur-
ther works [171, 180, 181, 188, 190, 192], and the simple introduction to the basic
concepts of the CTW algorithm is presented by Willems et al. [191].

The significant disadvantage of the CTW algorithm is the fact that the con-
text tree sources are binary. The formulation of the CTW algorithm for larger al-
phabets is possible, but the mathematics and computations become much more
complicated. Hence, to employ the CTW algorithm to the non-binary sequence,
we have to decompose it into binary sequences first.

The results of Willems et al. are theoretical, and the authors do not supply ex-
perimental tests. The compression for text sequences was investigated by Åberg
and Shtarkov [1], Tjalkens et al. [170], Sadakane et al. [140], Suzuki [161], and
Volf [179]. Ekstrand [57, 58] as well as Arimura et al. [8] considered also the
compression of sequences of grey scale images with the CTW algorithm. (The
works mentioned in this paragraph contain also experimental results.)

2.7.6 Switching method

The switching method proposed by Volf and Willems [182, 183] is not in fact a
new universal compression algorithm. This method employs two compression
algorithms such as CTW, DMC, LZ77, PPM, or other. The input sequence is
then compressed with both algorithms and then the switching procedure de-
cides which parts of the sequence should be compressed with which algorithm
to obtain the best compression ratio. The output sequence is composed of parts
of output sequences produced by both algorithms and the information where to
switch between them. This method gives very good compression ratios and this

2.8. SPECIALISED COMPRESSION ALGORITHMS 29

is the reason we mention it here. We, however, do so only for the possibility of
comparing the experimental results.

2.8 Specialised compression algorithms

Sometimes the input sequence is very specific and applying the universal data
compression algorithm does not give satisfactory results. Many specialised com-
pression algorithms were proposed for such specific data. They work well on the
assumed types of sequences but are useless for other types. We enumerate here
only a few examples indicating the need of such algorithms. As we aim at uni-
versal algorithms, we will not mention specialised ones in subsequent chapters.

The first algorithm we mention is Inglis [88] method for scanned texts com-
pression. This problem is important in archiving texts that are not available in
an electronic form. The algorithm exploits the knowledge of the picture and
finds consistent objects (usually letters) that are almost identical. This process
is slightly relevant to the Optical Character Recognition (OCR), though the goal
is not to recognise letters. The algorithm only looks for similarities. This ap-
proach for scanned texts effects in a vast improvement of the compression ratio
with regard to standard lossless data compression algorithms usually applied
for images.

The other interesting example is compressing DNA sequences. Loewenstern
and Yianilos investigated the entropy bound of such sequences [104]. Nevill–
Manning and Witten concluded that the genome sequence is almost incompress-
ible [119]. Chen et al. [45] show that applying sophisticated methods based on
the knowledge of the structure of DNA we can achieve some compression. The
other approach is shown by Apostolico and Lonardi [5].

The universal algorithms work well on sequences containing text, but we
can improve compression ratio for texts when we use more sophisticated algo-
rithms. The first works on text compression was done by Shannon [152] in 1951.
He investigated the properties of English text and bounded its entropy relating
on experiments with people. This kind of data is specific, because the text has
complicated structure. At the first level it is composed of letters that are grouped
into words. The words form sentences, which are parts of paragraphs, and so
on. The structure of sentences is specified by semantics. We can treat the texts
as the output of a CT-source but we can go further and exploit more. The recent
extensive discussion of how we can improve compression ratio for texts was
presented by Brown et al. [31] and Teahan et al. [163, 164, 165, 166, 167, 197].

The last specific compression problem we mention here is storing a sequence
representing a finite set of finite sequences (words), i.e., a lexicon. There are dif-
ferent possible methods of compressing lexicons, and we notice here only one
of them by Daciuk et al. [53] and Ciura and Deorowicz [47], where the effective

30 CHAPTER 2. INTRODUCTION TO DATA COMPRESSION

compression goes hand in hand with efficient usage of the data. Namely, the
compressed sequence can be searched for given words faster than the uncom-
pressed one.

Chapter 3

Algorithms based on the
Burrows–Wheeler transform

If they don’t suit your purpose as they are,
transform them into something more satisfactory.

— SAKI [HECTOR HUGH MUNRO]
The Chronicles of Clovis (1912)

3.1 Description of the algorithm

3.1.1 Compression algorithm

Structure of the algorithm

In 1994, Burrows and Wheeler [39] presented a data compression algorithm
based on the Burrows–Wheeler transform (BWT). Its compression ratios were
comparable with the ones obtained using known best methods. This algorithm
is in the focus of our interests, so we describe it more precisely.

At the beginning of the discussion of the Burrows–Wheeler compression al-
gorithm let us provide an insight description of its stages (Figure 3.1). The pre-
sentation is illustrated by a step-by-step example of working of the BWCA.

Burrows–Wheeler transform

The input datum of the BWCA is a sequence x of length n. First we compute
the Burrows–Wheeler transform (BWT). To achieve this, n sequences are created

31

32 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

BWT MTF RLE-0
Entropy
coder

- - - - -
x

input

x bwt x mtf x rle-0 x ec

output

Figure 3.1: Burrows–Wheeler compression algorithm

in such a way that the ith sequence is the sequence x rotated by i − 1 symbols.
These sequences are put into an n × n matrix, M(x):

M(x) =

x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1
...

...
. . .

...
...

xn−1 xn · · · xn−3 xn−2

xn x1 · · · xn−2 xn−1

 .

The matrix M(x) is then transformed into a matrix M̃(x) by sorting its rows in
the lexicographic order. Let R(x) denote the row number of the sequence x in
the matrix M̃(x). The result of the BWT is the pair comprising the last column
of the matrix M̃(x), which we denote x bwt, and R(x).

Figure 3.2 shows the example for the sequence x = abracadabra. In this
case, the results of the BWT are x bwt = rdarcaaaabb and R(x) = 3. The ex-
ample shows how the original procedure by Burrows and Wheeler works. Sub-
sequent research has shown that a better relation to the classes of sources can
be obtained if the input sequence is augmented with a special character $, called
a sentinel. It is the last character of the alphabet and it appears exactly once in the
sequence x. In fact, the sentinel is not a part of the data which are compressed,
and it is appended to the input sequence before the BWT stage. Later on we will
discuss in depth the motivation of using the sentinel. Figure 3.3 shows an ex-
ample of the Burrows–Wheeler transform for the sequence x = abracadabra$.
Now the results are x bwt = $drcraaaabba and R(x) = 1.

In this dissertation, the modified version of the BWCA, with the sentinel is
considered. The difference between this version and the original one is small.
When it is possible or important, we, however, notice how the results change
comparing to the original version.

Let us return to the example. We can see that the R(x) precisely defines
where the sentinel appears in the sequence x bwt and vice versa—the R(x) is the
number of the row where the sentinel is located in the last column. Therefore
one of them is redundant (if the sentinel is not used, the R(x) is necessary to
compute the reverse BWT and can be omitted). The sentinel is, however, only
an abstract concept. Usually all characters from the alphabet can be used in
the sequence x and it will be necessary to expand the original alphabet by one

3.1. DESCRIPTION OF THE ALGORITHM 33

M(x) =

a b r a c a d a b r a
b r a c a d a b r a a
r a c a d a b r a a b
a c a d a b r a a b r
c a d a b r a a b r a
a d a b r a a b r a c
d a b r a a b r a c a
a b r a a b r a c a d
b r a a b r a c a d a
r a a b r a c a d a b
a a b r a c a d a b r

M̃(x) =

a a b r a c a d a b r
a b r a a b r a c a d
a b r a c a d a b r a
a c a d a b r a a b r
a d a b r a a b r a c
b r a a b r a c a d a
b r a c a d a b r a a
c a d a b r a a b r a
d a b r a a b r a c a
r a a b r a c a d a b
r a c a d a b r a a b

Figure 3.2: Example of the BWT for the sequence x = abracadabra

symbol. The sizes of alphabets are typically powers of 2 and we would have
to increase also the number of bits per symbol if the sentinel was to be stored
explicitly. As it is rather complicated to store the sentinel, it is easier to remove
it from the sequence x bwt and store the value R(x).

Move-to-front transform

When the BWT is completed, the sequence x bwt is encoded using the move-
to-front (MTF) transform [26]. The coding proceeds as follows. First the list
L = (a0, a1, . . . , ak−1) consisting of the symbols of the alphabet A is created. Then
to each symbol x bwt

i , where i = 1, 2, . . . , n, a number pi is assigned, such that
x bwt

i is equal to the pith element of the list L, and then this element is moved to
the beginning of the list L. As a result, a sequence x mtf over the alphabet Amtf

consisting of integer numbers from the range [0, k − 1] is obtained. Figure 3.4
presents an example of the MTF transform for the sample sequence obtained
from the BWT stage. The result of this stage is x mtf = 34413000401.

34 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

M(x) =

a b r a c a d a b r a $
b r a c a d a b r a $ a
r a c a d a b r a $ a b
a c a d a b r a $ a b r
c a d a b r a $ a b r a
a d a b r a $ a b r a c
d a b r a $ a b r a c a
a b r a $ a b r a c a d
b r a $ a b r a c a d a
r a $ a b r a c a d a b
a $ a b r a c a d a b r
$ a b r a c a d a b r a

M̃(x) =

a b r a c a d a b r a $
a b r a $ a b r a c a d
a c a d a b r a $ a b r
a d a b r a $ a b r a c
a $ a b r a c a d a b r
b r a c a d a b r a $ a
b r a $ a b r a c a d a
c a d a b r a $ a b r a
d a b r a $ a b r a c a
r a c a d a b r a $ a b
r a $ a b r a c a d a b
$ a b r a c a d a b r a

Figure 3.3: Example of the BWT for the sequence x = abracadabra$

Zero run length encoding

Zero is a dominant symbol in the sequence x mtf. For some sequences x taken
from the standard set of data compression test files, the Calgary corpus [20],
the percentage of zeros in the sequence x mtf may reach 90%. On the average,
this sequence contains 60% zeros. Hence, there are many long runs in the se-
quence x mtf consisting of zeros, so called 0-runs. This may lead to some difficul-
ties in the process of efficient probability estimation. Therefore a zero run length
(RLE-0) transform was suggested by Wheeler (not published but reported by
Fenwick [67]) to treat 0-runs in a special way. Note that the RLE-0 transform
was not introduced in the original work by Burrows and Wheeler [39] but we
describe it because of its usefulness. Figure 3.5 contains the symbols assigned
by the RLE-0 transform to some integers. A general rule for computation of
the RLE-0 code for the integer m is to use a binary representation of length
blog(m + 1)c of the number m− 2blog(m+1)c + 1, and substitute all 0s with 0a and

3.1. DESCRIPTION OF THE ALGORITHM 35

a d r c r a a a b b a
b a d r c r r r a a b

L c b a d d c c c r r r
d c b a a d d d c c c
r r c b b b b b d d d

x bwt d r c r a a a a b b a

x mtf 3 4 4 1 3 0 0 0 4 0 1

Figure 3.4: Example of the move-to-front transform

0-run length RLE-0 code

1 0a
2 0b
3 0a0a
4 0a0b
5 0b0a
6 0b0b
7 0a0a0a
8 0a0a0b
9 0a0b0a
· · · · · ·

Figure 3.5: Example of the RLE-0 transform

all 1s with 0b. A more detailed description of the RLE-0 was presented by Fen-
wick [67]. Applying the RLE-0 transform results in the sequence x rle-0 over the
alphabet A rle-0 = (Amtf \ {0}) ∪ {0a, 0b}. Experimental results indicate [16] that
the application of the RLE-0 transform indeed improves the compression ratio.

For our sample sequence, the gain of using the RLE-0 cannot be demon-
strated since the sequence is too short. After computing this transform we arrive
at the result x rle-0 = 344130a0b40a1.

Entropy coding

In the last stage of the BWCA, the sequence x rle-0 is compressed using a univer-
sal entropy coder, which could be for example the Huffman or the arithmetic
coder. In the sequel, we are going to discuss how the probability estimation is
made for the sequence x rle-0. Now we only emphasise that the first two stages
of the BWCA (BWT and MTF) do not yield any compression at all. They are
only transforms which preserve the sequence length. The third stage, RLE-0,

36 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

Reverse
BWT

Reverse
MTF

Reverse
RLE-0

Entropy
dcoder

� � � � �
x

output
x bwt x mtf x rle-0 x ec

input

Figure 3.6: Burrows–Wheeler decompression algorithm

a d r c r a a a b b a
b a d r c r r r a a b

L c b a d d c c c r r r
d c b a a d d d c c c
r r c b b b b b d d d

x mtf 3 4 4 1 3 0 0 0 4 0 1

x bwt d r c r a a a a b b a

Figure 3.7: Example of the reverse move-to-front transform

gives some compression but its main task is to simplify the problem of probabil-
ity estimation if a single symbol has a large frequency of occurrence. The proper
compression is made only in the last stage, called entropy coding. The first three
stages transform the input sequence, x, to the form for which the probability es-
timation can be effectively and simply determined.

3.1.2 Decompression algorithm

We have completed the discussion of the basis of the compression algorithm.
Now let us describe how the decompression algorithm works. Its basic scheme
is presented in Figure 3.6. The discussion will follow the order of running the
stages of the decompression process.

The entropy decoder works similarly to the entropy coder, and it is ignored
in this section. Let us only remark that the probability estimation is identical in
both the entropy coder and the decoder (what is necessary for proper decoding).

The reverse RLE-0 stage is very simple. The only thing we need to do is
to substitute the components of 0as and 0bs with the equivalent 0-runs. Let us
assume that we decompress the same sequence which we have compressed in
the previous sections. Therefore the x rle-0 sequence is 344130a0b40a1. After the
reverse RLE-0 transform we obtain x mtf = 34413000401.

The reverse MTF stage is also simple and similar to the MTF stage. While
processing the sequence x mtf, we output the symbol that is at the position x mtf

i
at the list L and next we move the symbol to the beginning of the list L. Figure 3.7
contains an example. As a result of this stage we obtain x bwt = drcraaaabba.

3.1. DESCRIPTION OF THE ALGORITHM 37

M̃(x) =

a · · · $
a · · · d
a · · · r
a · · · c
a · · · r
b · · · a
b · · · a
c · · · a
d · · · a
r · · · b
r · · · b
$ · · · a

Row number 1 12 5 11 7 2 9 4 8 3 10 6
Last symbol in row $ a r b a d a c a r b a
No. of symbol occurrences 1 5 2 2 2 1 4 1 3 1 1 1
New row number 12 5 11 7 2 9 4 8 3 10 9 1

Figure 3.8: Example of the reverse Burrows–Wheeler transform

A more interesting is the reverse Burrows–Wheeler transform. It is based
on the observation that the sequence x bwt is a permutation of the sequence x
and sorting it yields the first column of the matrix M̃(x) which contains the first
characters of the contexts by which the matrix M̃(x) is sorted. Therefore, we
can find a symbol c located in the first column of ith row of the matrix M̃(x),
using the symbol x bwt

i . Knowing that this is the jth occurrence of symbol c in
the first column of the matrix M̃(x) we find its jth occurrence in the last column.
Moreover, the symbol c precedes the symbol x bwt

i in the sequence x. Thus, if we
know R(x), then we also know the last character of the sequence x, i.e., x bwt

R(x).
Starting from this character, we can iterate in a described manner to restore the
original sequence x in time O(n).

Let us now return to the sample sequence and take a look at Figure 3.8, pre-
senting the computation of the reverse BWT. Knowing the value R(x), we insert
the sentinel character at the appropriate position in the sequence x mtf. At the be-
ginning, we find the first and the last columns of the matrix M̃(x). Now the re-
verse Burrows–Wheeler transform starts from the row number R(x) = 1, whose
last character is $. We check that this first occurrence of $ is in the last column,
and we find the first occurrence of $ in the first column, which happens to be in
the 12th row. Then we find the last symbol in this row, a, and notice that this is
the 5th occurrence of this symbol in the last column. Thus we look for the 5th
occurrence of a in the first column finding it in the 5th row. This procedure
is repeated until the entire sequence x−1 is retrieved. Reversing the sequence

38 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

x−1 = $arbadacarba, we obtain the sequence x = abracadabra$. After remov-
ing the sentinel, we arrive at the sequence we have compressed.

3.2 Discussion of the algorithm stages

3.2.1 Original algorithm

So far, we have introduced the fundamentals of the Burrows–Wheeler compres-
sion algorithm. The BWCA was presented by the authors without relating it to
the classes of sources. Over the years, the understanding of the properties of
the Burrows–Wheeler transform was progressing. A number of researchers pro-
posed also many improvements to the original work of Burrows and Wheeler.
Now we take a closer look at them.

3.2.2 Burrows–Wheeler transform

Burrows–Wheeler computation method

Burrows and Wheeler [39] presented a method for the BWT computation based
on sorting. Their approach was a direct implementation of the way of the BWT
computation, which is presented in Section 3.1.1. Even though it is efficient
enough in most practical cases, its worst-case time complexity is O(n2 log n).
Burrows and Wheeler also suggested using a suffix tree to calculate the trans-
form faster. To this end a sentinel, $, is appended to the sequence x. For the
sequence x ended by $, the problem of sorting the cyclic shifts reduces to the
problem of suffix sorting. The latter problem can be solved by building a suffix
tree and traversing it in the lexicographic order. The time of the traversing is
linear to the length of the sequence.

Methods for suffix tree construction

A sample suffix tree for the sequence abracadabra$ is presented in Figure 3.9.
There are several efficient methods for building it. First such an approach was
presented by Weiner [186]. This was the first method that works in time O(n),
which is the minimum possible time complexity order since building a suffix
tree requires processing all input symbols. Today the Weiner’s method is im-
portant only from a historical point of view, because now we know methods
that use less space and work faster, but it was a milestone in developing suffix
tree methods.

Historically, a second linear-time approach was the method introduced by
McCreight [111]. This method is significantly more effective than the Weiner’s
one, and because of its high efficiency it is often used nowadays. The most
important disadvantage of the McCreight’s approach is its off-line nature, which

3.2. DISCUSSION OF THE ALGORITHM STAGES 39

a b c d r $

b c d $ r a a a

r

a

c $

a

d

a

b

r

a

$

a

d

a

b

r

a

$

a

b

r

a

$

a

c $

a

d

a

b

r

a

$

d

a

b

r

a

$

b

r

a

$

c $

a

d

a

b

r

a

$

Figure 3.9: Suffix tree for the sequence abracadabra$

means that the whole sequence is to be known before building the suffix tree can
start.

In 1995, Ukkonen [173] presented a method which also works in linear time,
but is free of the disadvantage of McCreight’s approach. His method is an on-
line one, i.e., it builds the suffix tree from the incoming symbols. The Ukkonen’s
method maintains the proper suffix tree built from the already processed sym-
bols all the time, while the McCreight’s one only after processing the whole se-
quence yields a proper suffix tree. This difference is sometimes important. The
advantage of the McCreight’s method, however, is its practical efficiency which
is better than that for the Ukkonen’s method.

As shown by Geigerich and Kurtz [74] all these three methods are related.
Recently Kurtz and Balkenhol [96] presented an improved version of the Mc-
Creight’s method that works fast in practice and has reduced space require-
ments. Its space complexity is only about 10n in the average case and 20n in
the worst case.

The time complexity of all the described methods is given with an assump-
tion that the alphabet size is small and can be neglected. The method, whose
time complexity is optimal when the size of the alphabet cannot be neglected
was presented by Farach [63]. The time complexity of his solution is O(n log n).

40 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

Row no. Start position of suffix Suffix

1 1 abracadabra$
2 8 abra$
3 4 acadabra$
4 6 adabra$
5 11 a$
6 2 bracadabra$
7 9 bra$
8 5 cadabra$
9 7 dabra$

10 3 racadabra$
11 10 ra$
12 12 $

Figure 3.10: Suffix array for the sequence x = abracadabra$

Methods for suffix array construction

Constructing a suffix tree is not the only effective method for computing the
BWT. The other data structure that can be applied to this task is a suffix array
(Figure 3.10). This data structure was introduced by Manber and Myers [106].
The suffix array preserves many properties of the suffix tree. The advantages
are: construction time independent of the alphabet size and lower memory re-
quirements. Therefore the suffix array construction methods are often faster
in practice than the suffix tree ones. One of its disadvantages is that no direct
method of constructing it in linear time is known, and the best methods work
in time O(n log n). (There is a simple method for building the suffix array in
time O(n). It is enough to construct the suffix tree in linear time and convert it
to the suffix array, what can also be done in linear time. We are interested in
direct methods however, because when the suffix trees are employed, we lose
the advantage of smaller memory requirements.)

The first method for suffix arrays construction was presented by Manber and
Myers [106]. Its worst-case time complexity is O(n log n) and a space complex-
ity is 8n. An improved method was proposed by Sadakane [139] and its later
version by Sadakane and Larsson [102]. The latest method has the same space
and time complexity, but runs much faster in practical applications.

Computation by string-sorting

We mentioned that the original Burrows–Wheeler method for computing the
BWT was based on sorting. Bentley and Sedgewick [25] invented for this task a
quicksort-based method, which has a worst-case time complexity O(n2) and an

3.2. DISCUSSION OF THE ALGORITHM STAGES 41

average-case time complexity O(n log n). Its space requirements equal 5n plus
the memory needed to store the quicksort’s [81] stack. The most recent direct-
sorting method was proposed by Seward [149]. The worst-case time complexity
of his method is O(n2 log n), but in the real applications it works quite fast.

Itoh–Tanaka’s method

The method presented recently by Itoh and Tanaka [90] reduces the space re-
quirements to 5n, but its time complexity strongly depends on the input se-
quence and in the worst-case is higher than O(n log n). We describe this method
in detail, because it is a point of departure for our research.

To analyse precisely this method let us first define some relations between
two sequences:

y <k z ⇔ ∃j≤k ∀1≤i<j (yi = zi ∧ yj < zj),
y ≤k z ⇔ ∃j≤k ∀1≤i<j (yi = zi ∧ yj ≤ zj),
y =k z ⇔ ∀1≤i≤k yi = zi,
y >k z ⇔ ∃j≤k ∀1≤i<j (yi = zi ∧ yj > zj),
y ≥k z ⇔ ∃j≤k ∀1≤i<j (yi = zi ∧ yj ≥ zj).

(3.1)

The relations define the lexicographic ordering of the k initial symbols of se-
quences. We say that a sequence s of size n is decreasing if s1..n > s2..n, and
increasing if s1..n < s2..n.

Itoh and Tanaka propose to split all the sequences being suffixes of the input
sequence, x, into two types. A sequence xi..n+1 is of:

• type A if xi..(n+1) >1 x(i+1)..(n+1),

• type B if xi..(n+1) ≤1 x(i+1)..(n+1).

In the first step of the method, the suffixes are sorted according to their first
character, using the bucket sorting procedure. Within a bucket, the suffixes of
type A are decreasing sequences and they are lower in lexicographic order than
all suffixes of type B. In the second step of the Itoh–Tanaka’s method, the suffixes
of type B are sorted in all the buckets, using a string-sorting procedure. The last
step consists of sorting suffixes of type A, what can be done in linear time.

Let us trace the working of the method on the sequence x = abracadabra$
(Figure 3.11).∗ The first step is easy. It suffices to bucket sort the set of suffixes
and find out which ones are of the type A and which ones are of the type B.
In the second step, the suffixes of type B are sorted in each bucket. A vector ptr

∗In the example, the sentinel character, $, compares higher than all symbols from the alphabet,
to be consistent with the formulation of the suffix trees. In the original paper [90] by Itoh and
Tanaka, the sentinel symbol is the lowest character. As this difference is relatively unimportant in
the BWCA, we decided to make this modification.

42 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

contains the starting indexes of the suffixes in the lexicographic order. In the
last step, we are traversing the vector ptr from left to right as follows. The el-
ement ptr[1] contains the value 1 and as no suffix starts at the earlier position
(position 0) we do nothing. Then we see that ptr[2] = 8. The symbol x7 is d,
so the suffix x7..(n+1) is of type A and is unsorted. This suffix must be, however,
the first one from the suffixes starting from d, so we put ptr[9] = 7. The next
value of the vector ptr is 4. The symbol x3 is r, so the suffix x3..(n+1) is of type A
and is unsorted. Two suffixes start from r, but this one is the lowest, in lexico-
graphic order, so we put ptr[10] = 3. In a similar way, we calculate from ptr[4],
the value ptr[8], and from ptr[5] the value ptr[10]. For ptr[6] = 2 we find that
x1 = a, so the suffix x1..(n+1) is of type B and is sorted. Similarly, we do not
have to do anything for further elements of the vector ptr. When we finish the
traversal of this vector, the sorting procedure is completed. We call this method
an Itoh–Tanaka’s method of order 1, as we split suffixes according to only one
symbol.

The advantage of splitting the suffixes into two types is a lower number of
sequences to sort. The authors show how their basic method can be improved.
They postulate to split the suffixes into buckets according to the following ex-
tended rule:

• type A if xi..(n+1) >1 x(i+1)..(n+1) or xi..(n+1) >2 x(i+2)..(n+1),

• type B otherwise.

To make this improvement possible, we have to divide the suffixes into buckets
according to their two initial symbols. We call this version an Itoh–Tanaka’s
method of order 2. It is possible to extend this rule using also the relation >3,
but it would entail the usage of 224 buckets, so it could be useful only for very
long sequences (of size significantly exceeding 224).

The memory requirements of this method depend on the memory needed
by the sorting procedure. Similarly, the time complexity is determined by the
sorting step.

Summary of transform computation methods

It does not matter whether we employ a suffix tree construction method, a suf-
fix array construction method, or yet another method for computation the se-
quence x bwt. We need only to compute the last column of the matrix M̃(x),
what can be accomplished in many ways. Figure 3.12 compares the methods
used in practical applications for computing the BWT.

Transform relation to the context tree sources

At the first glance, the BWCA seems significantly different from the PPM algo-
rithm. Cleary et al. [49, 50] shown however that it is quite similar to the PPM*

3.2. DISCUSSION OF THE ALGORITHM STAGES 43

initial situation

1 2 3 4 5 6 7 8 9 10 11 12

a b r a c a d a b r a $x

step 1

1 2 3 4 5 6 7 8 9 10 11 12

ptr

a b c d r $

a

b

c

d

r

$

A B

0

0

1

1

2

0

5

2

0

0

0

1

step 2

1 2 3 4 5 6 7 8 9 10 11 12

ptr

a b c d r $

1 8 4 6 11 2 9 12

step 3

1 2 3 4 5 6 7 8 9 10 11 12

ptr

a b c d r $

1 8 4 6 11 2 9 127 35 10

Figure 3.11: Example of working of the Itoh–Tanaka’s method of order 1 for the
sequence x = abracadabra$

compression method. A more precise relation of the BWT to the context tree
sources was shown by Balkenhol and Kurtz [16]. We discuss here this relation
following their work.

Let us suppose that the sequence x was produced by a context tree source ω

containing the set S of contexts s. Let us consider any context s ∈ S . The se-
quence x contains some number, s, of components. We define the set X (s) =
{j1, j2, . . . , jw} of positions where such components start. In the first step of the
BWT computation method, a matrix M(x) is formed of all cyclic shifts of the
sequence x. The prefixes of the j1th, . . . , jwth rows are s. There are no other rows
with such a prefix and all these rows are grouped together after the sorting step.
Since no assumption is made of what context has been chosen, we see that the

44 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

Method Worst-case time Avg.-case time Avg.-case space
complexity complexity complexity

Ukkonen’s suffix tree
construction

O(n) O(n) NE

McCreight’s suffix tree
construction

O(n) O(n) NE

Kurtz–Balkenhol’s suffix
tree construction

O(n) O(n) 10n

Farach’s suffix tree
construction

O(n log n) O(n log n) NE

Manber–Myers’s suffix
array construction

O(n log n) O(n log n) 8n

Sadakane’s suffix array
construction

O(n log n) O(n log n) 9n

Larsson–Sadakane’s suffix
array construction

O(n log n) O(n log n) 8n

Itoh–Tanaka’s suffix array
construction

> O(n log n) NE 5n

Burrows–Wheeler’s sorting O(n2 log n) NE NE
Bentley–Sedgewick’s
sorting

O(n2) O(n log n) 5n + stack

Seward’s sorting O(n2 log n) NE NE

Figure 3.12: Comparison of methods for the BWT computation

BWT groups together identical contexts in the matrix M̃(x). Therefore, all the
characters preceding each context occupy successive positions in the x bwt se-
quence. Such a component of the sequence x bwt which is composed of symbols
appearing in one context, is called a CT-component. Typically, the context tree
source is defined in such a way that the symbols succeeding the contexts de-
pend on it. In this situation, we talk about preceding contexts. In the BWT, we
have successive contexts because the characters that precede the contexts are con-
sidered. It seems that this is a large difference, but let us notice that the reverse
sequence, x−1, provides the relation to the preceding contexts.

In the PPM compression algorithms, we choose a context which depends
on the previous characters. We do not know, however, how long the current
context is, because we do not know the context tree source which produced the
sequence x. In the BWCA, we also do not know the context but we know that
all the identical contexts are grouped. The main disadvantage of the BWT is that
the sequence x bwt contains no information when context changes. We even do
not know when the first character of the context switches. This disadvantage is

3.2. DISCUSSION OF THE ALGORITHM STAGES 45

important, since the probability distribution of symbol occurrence in one context
is determined by the parameters of the context tree source and does not change,
but in the another context this probability differs significantly. Typically, the
probability distribution of similar context is also similar. There are no grounds
for such an assumption in the context tree source model, but this similarity is
very frequent in real sequences. The length of the common prefix of two con-
texts is shorter, the difference of probability distribution is usually larger. The
PPM scheme can exploit this phenomenon, because it knows this length. In the
BWCA, however, we do not have such a precise knowledge. We only know
that the CT-components related to similar contexts appear in the sequence x bwt

closely to each other.
There were a number of other theoretical analyses of the Burrows–Wheeler

transform and similar transforms. A transform closely related to the BWT, the
lexical permutation sorting transform, was introduced by Arnavut and Magliv-
eras [10, 11]. Other theoretical analysis of the BWT-based algorithms was pre-
sented by Effros [56]. The author has shown the properties of the BWT output
assuming the FSMX source model. Manzini [107, 108, 109] also discussed the
properties of the BWT and has proven a bound of the compression ratio. Other
interesting works on the properties of the BWT were presented by Arimura and
Yamamoto [6, 7].

3.2.3 Run length encoding

The run length encoding (RLE) [75] was absent in the original implementation of
the BWCA. Some researchers postulate, however, its usage before the BWT, so
we describe here the RLE and present the arguments in favour of its inclusion
into a BWT-based compression algorithm.

The main idea of the RLE is simple—the runs of length longer or equal to
some fixed number, usually 3, are replaced by a pair: the current symbol and
the number of its repetitions. This transform rarely improves the compression
ratio significantly, but this is not the only motivation of using the RLE. Since
the sequence x may contain many long runs, the time of the successive stages
(especially, the computation of the Burrows–Wheeler transform) can be quite
long. To overcome this problem various solutions were suggested. Burrows and
Wheeler [39] introduced a special sorting procedure for such sequences. Fen-
wick [66, 68] used RLE, which eliminates long runs and decreases the length of
the sequence x. The main advantage is reducing the time of computing the BWT.

Using the RLE destroys some contexts. In most cases, the RLE slightly wors-
ens the compression ratio, by about 0.1%. If the sequence x contains many long
runs, then it turns out that the sequence x mtf comprises 90% of 0s. In such a
case, the RLE allows for reducing substantially the number of zeros in the se-
quence x mtf and better estimating the probability of non-zero symbols, thus im-

46 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

proving the overall compression ratio. Taking this observation into account,
Balkenhol and Kurtz [16] suggested that the RLE should be used only when it
makes the length of the sequence x rle-0 to be less than 0.7n.

Note that if the method for the BWT computation based on constructing a
suffix tree or a suffix array is used, then the occurrences of runs do not signifi-
cantly influence its execution time. If the RLE-0 transform is employed, then the
problem of improper probability estimation in the entropy coder also becomes
insignificant. Therefore we conclude that the RLE should not be used.

3.2.4 Second stage transforms

Structure of the Burrows–Wheeler transform output sequence

As we mentioned, the sequence x bwt is a concatenation of components corre-
sponding to the separate contexts. Unfortunately, there is no information on
where exactly each such a CT-component starts in the sequence x bwt. By mon-
itoring the probability distribution in the sequence x bwt, however, we can try
to uncover some of this information [18, 99, 101]. Surely the sequence x bwt is
a permutation of the sequence x. In order to exploit the properties of the se-
quence x bwt, we have to transform its local structure into a global structure in
some way. Alternatively, we have to find a way to rapidly adapt to a chang-
ing probability distribution in the sequence x bwt without information on where
the CT-components start. Several approaches have been proposed to solve this
problem. Some of them are based on the observation that the problem is similar
to the list update problem.

List update problem

The formulation of the list update problem (LUP) [110] states that there is a list of
items and a sequence of requests. A request can be an insertion, a deletion, or an
access to an item in the list. The method solving the problem must serve these
requests. The cost of serving an access request to an item p on the ith position
from the front of the list equals i, which is the number of comparisons needed
to find p. After processing a request, the list can be reorganised in order to min-
imise the total cost of its maintenance. Once an item p is accessed, it may be
moved free of charge to any position closer to the front of the list (free transposi-
tions). Other transpositions, of elements located closer than p to the end of the
list are called paid, and their cost equals 1. The methods solving the LUP should
minimise the total cost of maintaining the list, i.e., the sum of all costs of serving
the sequence of requests.

There are two main classes of on-line methods solving the LUP: deterministic
and randomised. Here we present the theoretical bounds of their performance.
Before we can establish these bounds, we need to introduce a new term. We say

3.2. DISCUSSION OF THE ALGORITHM STAGES 47

that a deterministic method A is c-competitive if there is a constant α such that

A(σ)− c ·OPT(σ) ≤ α, (3.2)

for all possible sequences of requests σ. The A(·) denotes the total cost of main-
tenance performed by the method A, and OPT(·) is the total cost of maintenance
done by the optimal off-line algorithm. Similarly we define the c-competitiveness
for the randomised method as

E(A(σ))− c ·OPT(σ) ≤ α, (3.3)

where E(·) is the expected value taken with respect to the random choices made
by the considered method.

The optimal off-line method knows the whole sequence of requests and can
serve it with the minimal cost. The time complexity of such a method is expo-
nential, what disqualifies it in practice. The best known optimal off-line method,
proposed by Reingold and Westbrook [132], runs in time O(l2n(n− 1)!), where n
is the number of requests and l is the number of elements on the list L.

There are bounds of the competitiveness of the deterministic as well as ran-
domised methods. Raghavan and Karp (reported by Irani [89]) proved that the
lower bound for deterministic methods is c = 2 − 2/(l + 1). The randomised
methods can improve this bound, and the best known lower bound for them is
c = 1.5 [168]. The best known randomised method achieves c = (1 +

√
5)/2 ≈

1.62 [3].
A recent review of many methods for the LUP was presented by Bachrach

and El-Yaniv [15]. The authors provide a brief description of over forty methods
giving their proven competitiveness. They also compare these methods empiri-
cally.

In the second stage of the BWCA, we do not want to minimise the total cost
of maintenance of the list L. When we apply the method solving the LUP to
the list L and the sequence of requests x bwt, we obtain the sequence x lup which
contains the integers being the number of positions on which the symbols from
the sequence x bwt appear in the list L. If we sum up the numbers from the se-
quence x lup, we get the total cost of maintaining the list L (it is assumed here that
the method for the LUP does not perform paid transpositions). The main goal
of the second stage of the BWCA is not to minimise the total cost, even though
typically when this cost is smaller, the distribution of probabilities of symbol oc-
currences in the sequence x lup is less uniform. In the last stage of the BWCA,
we apply the entropy coder to the sequence x lup, and when the distribution of
the symbols in this sequence is less uniform, then a better compression ratio is
achieved. This observation is of course imprecise because the compression ra-
tio depends on the probability distribution of symbols in the sequence x lup in
a more complicated way. When we use the RLE-0 transform, we in fact encode

48 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

the sequence x rle-0, whose probability distribution of symbols is slightly differ-
ent. The overall compression ratio depends also on the probability estimation in
the last stage of the BWCA. Nevertheless, minimising the total cost of maintain-
ing the list L typically yields a better compression ratio.

Let us notice that the additional cost of paid transpositions can be neglected
because the symbols in the sequence x lup correspond to the cost of finding the
current items, and there is no cost related to the reorganisation of the list L. In
particular, we can say that in the BWCA the problem is similar to the modi-
fied LUP, in which the paid transpositions cost 0. The sequence x bwt has also
a specific structure, as it is composed of CT-components. In the LUP, we do
not assume anything about the sequence of requests. Therefore, using the best
methods specialised for the LUP does not always lead to the best compression
results. Several modifications of these methods were proposed in order to ex-
ploit the properties of the BWT in a better way.

Move-to-front transform and its modifications

In the work introducing the BWCA [39], Burrows and Wheeler suggested using
the move-to-front transform [26] as the second stage of the compression algo-
rithm. The MTF transform is a method solving the LUP (it meets the lower
bound for the deterministic methods), and maintains a character list L. When
a character x bwt

i appears, the list L is scanned and the position of the charac-
ter x bwt

i in the list L is assigned to x mtf
i . Then the character is moved to the

beginning of the list L. As a result we get the sequence x mtf over the alphabet
Amtf = {0, 1, . . . , k − 1}. This is a very simple strategy, but its results are quite
good in practice. The usage of the MTF transform in the BWCA is motivated by
the observation that the most likely symbols to appear are the most recent ones.
This is because the more recent the last occurrence of the character is, the more
likely it is in a different CT-component.

Burrows and Wheeler [39] suggested that it may be useful to refrain from
moving the current character to the very first position of the list. Fenwick [65,
67, 68] and Schindler [144] explored such a possibility, but failed to obtain better
compression results. Recently, Balkenhol et al. [17] proposed an improvement of
the MTF called MTF-1, which improves the compression ratio. Its only modifi-
cation of the MTF transform is that only the symbols from the second position in
the list L are moved to top of the list. The symbols from the higher positions are
moved to the second position. Balkenhol and Shtarkov [18] proposed a further
modification of the MTF-1—the symbols from the second position are moved
to the beginning of the list L only if the previous transformed symbol is at the
first position (following the authors we call this version MTF-2). The illustration
and the comparison of the MTF, the MTF-1, and the MTF-2 transforms is shown
in Figure 3.13.

3.2. DISCUSSION OF THE ALGORITHM STAGES 49

MTF

a d r c r a a a a b a
b a d r c r r r r a b

L c b a d d c c c c r r
d c b a a d d d d c c
r r c b b b b b b d d

x bwt d r c r a a a a b b a

x mtf 3 4 4 1 3 0 0 0 4 0 1

MTF-1

a a a a a a a a a a b
b d r c r r r r r b a

L c b d r c c c c c r r
d c b d d d d d d c c
r r c b b b b b b d d

x bwt d r c r a a a a b b a

x mtf-1 3 4 4 2 0 0 0 0 4 1 1

MTF-2

a a a a a a a a a a a
b d r c r r r r r b b

L c b d r c c c c c r r
d c b d d d d d d c c
r r c b b b b b b d d

x bwt d r c r a a a a b b a

x mtf-2 3 4 4 2 0 0 0 0 4 1 0

Figure 3.13: Comparison of the MTF, MTF-1, and MTF-2 transforms

Other modifications were proposed by Chapin [43], who introduced a Best x
of 2x − 1 transform. Its results are worse than the MTF ones, but he also sug-
gests to use the switching procedure, originally introduced to join two universal
compression algorithms in switching method [182, 183] (see also Section 2.7.6),
to combine this transform and the MTF-2. The results are only slightly better or
comparable to the MTF-2.

Time-stamp transform

One of the best methods for the LUP is time-stamp (TS) presented by Albers [3].
The deterministic version of this method—time-stamp(0) (TS(0)) [4]—scans for a
processed character x bwt

i in the list L and outputs its position. Then it moves the
character in front of the first item in the list L which has been requested at most
once since the last request of the character x bwt

i . If the current character, x bwt
i ,

50 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

a a a a a a a a a a a
b b b b b b b b b b b

L c c c c r r r r r r r
d d d d c c c c c c c
r r r r d d d d d d d

x bwt d r c r a a a a b b a

x ts 3 4 2 4 0 0 0 0 1 1 0

Figure 3.14: Example of the time-stamp(0) transform

has not been requested so far, it is left at its actual position.

The TS(0) transform was theoretically analysed by Albers and Mitzenma-
cher [4] who showed that theoretically the TS(0) is better than the MTF. The
authors replaced the MTF transform in the BWCA with the TS(0), but the com-
pression results obtained for the sequences from the Calgary corpus [20] were
worse than those obtained with the MTF. The authors, however, do not provide
explicit details of their experiments.

Inversion frequencies transform

A completely new approach to the problem of transforming the sequence x bwt

to a form which can be better compressed by an entropy coder was proposed
by Arnavut and Magliveras [10]. They described a transform called inversion
frequencies (IF). This transform does not solve the list update problem. Instead,
it forms a sequence x if over an alphabet of integers from the range [0, n− 1]. For
each character aj from the alphabet A, the IF transform scans the sequence x bwt.
When it finds the occurrence of the character aj, it outputs an integer equal to
the number of characters greater than aj that occurred since the last request to
the character aj. This sequence, however, is not sufficient to recover the se-
quence x bwt correctly. We also need to know the number of occurrences of each
character from the alphabet in the sequence x bwt. This disadvantage is espe-
cially important for short sequences.

The example of working of the IF transform is shown in Figure 3.15. The
bottom line in the row denoted by x if is only for better understanding and the
complete result of the IF is the sequence x if = 5211240002402000.

An efficient forward implementation for the inversion frequencies was pre-
sented by Kadach [92] as well as the reverse transform. The author introduced
that both transforms can work in time O(n log k).

3.2. DISCUSSION OF THE ALGORITHM STAGES 51

x bwt d r c r a a a a b b a

x if 5 2 1 1 2 40002 40 2 0 00
a b c d r a b c d r

x if = 5211240002402000

Figure 3.15: Example of the inversion frequencies transform

Distance coding transform

Recently a new proposition for the second stage, distance coding (DC), was sug-
gested by Binder. This transform has not been published yet, and we describe
it according to References [27, 29, 77]. For each character x bwt

i , the DC finds its
next occurrence in the sequence x bwt, which is x bwt

p , and outputs the distance to
it, i.e., p − i. When there is no further occurrence of x bwt

i , the DC outputs 0. To
establish the sequence x bwt correctly, we also have to know the first position of
all the alphabet characters. The basic version of the DC, described above, is in
fact a small modification of the interval encoding proposed by Elias [60].

To improve the compression ratio, Binder proposed three modifications of
the basic transform. First, we can notice that in the sequence x dc some of the
ending zeroes are redundant. Second, while scanning the sequence x bwt for the
next occurrence of the current character, we may count only the characters that
are unknown at this moment. Third, and most important, if the next character
is the same as the current character, we do not need to encode anything, and
we can simply proceed to the next character. The example of work of the DC is
shown in Figure 3.16. The three improvements are also shown. The output of
the DC is the sequence being the concatenation of 59312 (the initial positions of
the symbols) and 01002 which is the output of the transform.

Balkenhol–Shtarkov’s coding of the move-to-front transform output

Recently Balkenhol and Shtarkov [18] proposed a new approach to the coding
of the sequence x bwt. Their method is based on the observation that the entropy
coder codes the sequence over the alphabet Amtf (or A rle-0) consisting of inte-
gers. For typical sequences x, the probability distribution of the integers in the
sequence x mtf decreases monotonically for larger integers. Unfortunately, this
distribution varies in the sequence and—what is worse—for a given integer, we
do not know which character it represents. For example, two identical integers
greater than 1 that appear at successive positions in the sequence x mtf represent
different characters.

52 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

DC ver. 0
x bwt d r c r a a a a b b a
x dc 0 2 0 0 1 1 1 3 1 0 0

DC ver. 1
x bwt d r c r a a a a b b a
x dc 0 2 0 0 1 1 1 3 1

DC ver. 2
x bwt d r c r a a a a b b a

init. known pos. d r c . a . . . b . .
x dc 0 1 0 0 1 1 1 2 1

DC ver. 3
x bwt d r c r a a a a b b a

init. known pos. d r c . a . . . b . .
x dc 0 1 0 0 2

x dc = 5931201002

Figure 3.16: Example of the distance coding transform

Balkenhol and Shtarkov suggest dividing the sequence x mtf into two se-
quences.† The first sequence, x mtf,1, is over the alphabet Amtf,1 = {0, 1, 2}. It
is constructed from the sequence x mtf by replacing all occurrences of integers
greater than 1 with 2. This means that the ternary sequence x mtf,1 holds only
the information whether the transformed character was at the first (integer 0),
the second (integer 1), or at some other position (integer 2) in the list L. The
second sequence, x mtf,2, is over the alphabet A. It is constructed from the se-
quence x bwt by removing the characters for which the integers 0 or 1 appear in
the sequence x mtf,1.

3.2.5 Entropy coding

Preliminaries

The last stage in the BWCA is the entropy coding. As we noticed, the first stage
of the BWCA transforms the input sequence to the form from which the prob-
ability of next symbols occurrence can be effectively calculated. The entropy
coding is the stage where the proper compression is made.

The BWT transforms the input sequence to the sequence composed of CT-
components. It seems that the BWT removes any contextual information and
usage of the higher orders may introduce additional redundancy because of the

†In fact, Balkenhol and Shtarkov use the MTF-2 transform instead of the MTF transform and
the sequence x mtf-2.

3.2. DISCUSSION OF THE ALGORITHM STAGES 53

MTF symbol Prefix code

0 0
1 10
2 110
3 1110
4 1111〈4〉

.
255 1111〈255〉

Figure 3.17: Encoding method of symbols in Fenwick’s Shannon coder

larger number of contexts, in which probability is estimated. Therefore most au-
thors propose using a simple order-0 coder. If not stated otherwise, such coders
are used in the solutions described below.

Burrows and Wheeler’s proposition

The very first proposition by Burrows and Wheeler [39] was to use the Huffman
coder as the last stage. The Huffman coder is fast and simple, but the arithmetic
coder is a better choice if we want to achieve better compression ratio. Now-
adays, best compression ratios in the family of the BWT-based algorithm with
the Huffman coder as the last stage can be obtained by the bzip2 program by
Seward [150].

Fenwick’s Shannon coder

The first usage of the arithmetic coder in the BWCA was in Fenwick’s works.
He investigated several methods of probability estimation. His first proposal
was Shannon encoder [68]. Each symbol x mtf

i of the sequence x mtf is transformed
to the prefix code with respect to the rules presented in Figure 3.17. The code
is composed of at most four binary numbers and, if necessary, a number of
range [4, 255] when the prefix is 1111. Each of the bits of the binary numbers
is then encoded with a binary arithmetic coder in the separate contexts. More-
over, the first binary digit is encoded in one of two different contexts depending
on whether x mtf

i−1 is zero or not. The last part of the code, an integer from the
range [4, 255], is encoded using the arithmetic coder in one context.

Fenwick’s structured coder

The second interesting method of probability estimation invented by Fenwick is
a structured coding model [68]. The observation that turned Fenwick to this solu-
tion was that the frequencies of occurrences of different symbols in the x mtf se-

54 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

MTF symbol Number of entries in the group

0 1
1 1

2–3 2
4–7 4
8–15 8

16–31 16
32–63 32
64–127 64

128–255 128

Figure 3.18: Grouping method of symbols in Fenwick’s structured coder

quence can differ by four or five orders of magnitude for input sequences from
real world. This causes the difficulties in effective probability estimation of sym-
bol occurrences. The idea is to overcome these difficulties by grouping symbols
in classes of similar frequency of occurrence, where the probability can be effec-
tively estimated. Fenwick proposed nine groups of different sizes (Figure 3.18).
The encoding of the symbol x mtf

i is then split into two steps. First, we encode the
number of group the current symbol belongs to, then, if necessary, we encode
the symbols within the group. In this approach, both statistics for all groups
and the frequencies of symbol occurrences within the groups do not differ sig-
nificantly. The results obtained using this model are slightly worse than the ones
with the Fenwick’s Shannon coder, but employing also the RLE-0 transform and
encoding the sequence x rle-0 instead of the sequence x mtf, better results can be
obtained.

Rapid changes in the Burrows–Wheeler transform output sequence

We have mentioned before that large differences of frequencies of symbols oc-
currence are very unfavourable. We have, however, abstained from an in-depth
discussion. Now we take a closer look at this problem.

The statistics of fragments of the sequence x mtf placed in short distance from
one to the other are similar, because those components are related to the same or
similar CT-components in the x bwt sequence. The larger, however, the distance
between the symbols in the x mtf sequence, the more likely these symbols come
from different CT-components. Therefore the probability of their occurrence dif-
fers significantly. One more observation is that when we cross the boundary of
successive CT-components, some symbols from far positions in the list L usu-
ally introduce to the sequence x mtf a small number of large integers. To solve the
problem of effective estimation of these large integers, the statistics of symbol oc-

3.2. DISCUSSION OF THE ALGORITHM STAGES 55

MTF symbols Number of entries in the group

0, 1, 1+ 3
2, 2+ 2
3, 4, 4+ 3
5, 6, 7, 8, 8+ 5
9, . . . 16, 16+ 9
17, . . . , 32, 32+ 17
33, . . . , 64, 64+ 33
65, . . . , 128, 128+ 65
129, . . . , 255 127

Figure 3.19: Grouping method in a hierarchical coder by Balkenhol et al.

currences should be highly adaptive. If, however, the encoder is highly adaptive
to tune to rapid changes of local properties of the sequence x mtf, the difference
of a few orders of magnitude of symbol frequencies causes many problems and
the estimation is rather poor.

Balkenhol–Kurtz–Shtarkov’s hierarchical coder

Balkenhol et al. proposed a hierarchical coder [17] to overcome the problem of
large differences between frequencies of small and large integers in the x mtf se-
quence. They proposed to divide the symbols of range [0, 255] into nine groups.
The way of grouping the symbols is presented in Figure 3.19. The encoding
proceeds as follows. First, the symbol x mtf

i is encoded within the first group. If
the symbol is 0 or 1 that is all, but if the symbol is higher than 1 it is encoded
using the second group. Similarly, if the symbol is 2 then it is the last step, and
in the other case the third group is used, and so on until the current symbol is
completely processed.

One of the main differences between the above-described hierarchical and
the Fenwick’s structured models is the number of steps needed to encode a sym-
bol. Using the hierarchical model, we may need nine encodings in the worst case
while in the structured one we need at most two encodings. Balkenhol et al. pro-
posed also using the higher than order-0 arithmetic coder in some contexts. That
proposal is justified by the improvements of compression ratios.

Balkenhol and Shtarkov’s semi-direct encoding

The proposition of probability estimation introduced by Balkenhol and Shtar-
kov [18] is a hybrid approach. We have discussed the concept of splitting the
sequence x mtf into sequences x mtf,1 and x mtf,2 in Section 3.2.4, however we have
not seen how these sequences are then processed. The sequence x mtf,1 is treated

56 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

as a Markov chain and is encoded using the standard universal coding scheme.
To encode the sequence x mtf,2, the alphabet is divided into four groups of chang-
ing sizes and contents. The symbols from the sequence x mtf,2 are encoded with
the probability estimation from one of these groups. The groups are maintained
to work as sliding windows and contain statistics of symbol occurrences in these
windows. Because the last symbols have similar probability distribution, such
an estimation helps in obtaining good compression results.

Direct coding of the Burrows–Wheeler transform output

Fenwick examined also one more solution which refrains from usage of the MTF
transform. He investigated what could be obtained if the arithmetic coder were
employed to encode the x bwt sequence. The main problem in such a situation
is that the symbols occurring in successive CT-components can be completely
different, and the statistics of symbol occurrences vary rapidly. When we use
the MTF, we transform the local structure of the x bwt sequence to the global
one, obtaining the sequence x mtf in which the distribution of symbol frequencies
decreases roughly monotonically. The sequence x bwt is a permutation of the
sequence x, so the distribution of symbol frequencies is much more uniform.
These were the reasons why Fenwick [68] obtained significantly worse results.

The approach of refraining from usage of the MTF transform was continued
recently by Wirth and Moffat [195]. They employed the idea of the hierarchi-
cal coder by Balkenhol and Shtarkov and modified it to work without the MTF
stage. Wirth and Moffat propose a probability estimation with exponential for-
getting. The authors improve the basic approach using the concepts of exclusion
and update exclusion. They also decide to use a higher than order-0 arithmetic
coder in some contexts. The obtained results are very good in the group of the
BWT-based algorithms that do not use MTF transform or similar second stage
methods. The results, however, are still significantly worse than the best ones in
the Burrows–Wheeler transform-based algorithms family.

Encoding the distance coder and the inversion frequencies outputs

The MTF transform and related methods are not the only possibility of the sec-
ond stage in the BWCA. In Section 3.2.4, we mentioned also the inversion fre-
quencies and the distance coder. The sequences x if and x dc consist of integers
from the range [0, n], so we need to apply a different approach to the entropy
coder when these transforms are used.

Various solutions to encode such numbers may be considered. One of them
is to use an exponential hierarchy and to group the integers into sets {0}, {1},
{2, 3}, {4, . . . , 7}, . . . , {2blog nc, . . . , n}. In the first step, we encode the number of
the group containing the current symbol, then we encode the symbol within
this group. The other approach is to use a binary prefix code, encode the current

3.2. DISCUSSION OF THE ALGORITHM STAGES 57

symbol using it, and finally encode each bit separately using the binary arith-
metic encoder. A good choice for this task can be an Elias γ code [59]. This
solution, presented in Reference [55], was invented by the author of the disser-
tation, and will be discussed also in Section 4.1.6. This approach is reported to
be the best one of those examined by Arnavut [9].

The distance coder transform was not published so far and unfortunately we
do not know the internals of the algorithms using it, so we could not describe
the way of encoding the integers in the compression programs, like the dc pro-
gram [28]. A solution similar to the one used for coding the output of the IF can
be, however, used for the output of the DC.

Variable-length integer codes

Recently, an alternative way as the last stage of the BWT-based compression al-
gorithm was proposed by Fenwick [69]. He postulates to use a variable-length
integer codes instead of the Huffman or the arithmetic coder if the speed of com-
pression is crucial. Fenwick investigates Elias γ codes [59] and Fraenkel–Klein
Fibonacci codes [71]. The gain in the compression speed is, however, occupied
by a significant lost in compression ratio.

3.2.6 Preprocessing the input sequence

Why to preprocess the input sequence?

We observed that the BWCA is similar to the PPM algorithms. We also pointed
out a significant difference between them—in the BWCA the information where
the context is changed is lost after the BWT stage. Here we want to point out the
second important difference.

The compression ratio in most data compression algorithms, such as PPM,
LZ77, LZ78, or DMC, does not depend on the order of the symbols in the al-
phabet. We can permute the alphabet and the compression ratio will be only
slightly different (theoretically it will be identical). The behaviour of the BWCA
is different. In some algorithms, like PPM, we know where the context starts
and we can exploit this knowledge. In the BWCA, we do not know this, and
in the entropy coding stage, for the probability estimation, we also use symbols
from the CT-components close to the current one, what can be harmful.

Alphabet reordering

If we drastically change the ordering of the alphabet symbols, it may cause the
contexts grouped together with the current one have significantly different prob-
ability distributions. Chapin and Tate [44] showed that if the alphabet ordering
is changed randomly, the compression ratio decreases highly (even by 20%).

58 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

(We have to stress here that in the whole dissertation we assume the default
ASCII ordering of the alphabet.) They suggested that we can try to employ this
disadvantage to our benefit and reorganise the alphabet in such a way that the
compression ratio will improve.

Chapin and Tate suggested a few approaches—first, an ad hoc reordering of
the alphabet, grouping vowels and consonants. The other approaches are more
complicated. They create histograms of symbols appearing in all one-character
contexts. Then they try to reorganise the alphabet in such a way that the total
cost of changing the context will be lower. The first problem is to choose which
way of finding the difference between two histograms is the best for this task.
Chapin and Tate have presented some proposals in this regard. The second
problem is how to find the best ordering. They used the algorithms solving the
Travelling Salesman Problem (TSP) [103] to find the solution. The similarity to
the TSP may by not clear at the first glance. If we notice, however, that we deal
with k one-character contexts, the costs of changing to the all other one-character
contexts, and we have to produce a permutation of the k contexts, the similarity
comes out more clear.

The experimental results obtained by Chapin and Tate are, however, rather
disappointing. The gain is significant only when we try all the proposed meth-
ods to improve the compression ratio and choose the best one for each single
file. It is impractical to compress a file with a dozen or so versions of the trans-
form, and choose the best result if the gain is less than 1%. Moreover, we have
to consider also the cost of solving the TSP.

The alphabet reordering was also discussed by Balkenhol and Shtarkov [18].
They modified the ordering proposed by Chapin and Tate. The gain is very
small, and the proposed order is adapted to the text files only, so we consider
that this artificial reorganisation is unjustified.

Reversing the input sequence

Balkenhol et al. [17] suggested that if the number of symbols used in the input
sequence is the maximum number of characters which can be represented with
an assumed number of bits (typically 256 characters), it should be assumed that
the sequence stores a binary file. For such sequences, the succeeding contexts
are much better than the preceding ones. Therefore they propose to use in such
a case the reversed sequence, x−1. This heuristics gives gains for binary files so
we decided to use it in our research to provide a thorough comparison to the
best existing algorithms.

Preliminary filtering

Other preliminary improvements (before the BWT) were proposed by Grabow-
ski [76]. His proposals are reversible filters that are used before the compression.

3.2. DISCUSSION OF THE ALGORITHM STAGES 59

Some of them are independent on the compression algorithm and can be used
also with the different compression schemes, not only with the BWCA. All the
improvements are based on the assumption that text files are to be compressed.

The first proposition is to use a capital conversion what means that the words
starting with a capital letter (only the first letter should be a capital) are changed
in such a way that the first letter is transformed to the lowercase and a special
flag denoting the change is inserted. (Till the end of the current section we will
be using the intuitive terms words and letters to emphasise that we consider only
the sequences being texts.) The second improvement is motivated by the obser-
vation that most text files contain the lines starting with a letter. This means that
the previous character (the context) of this letter is the end-of-line (EOL) char-
acter. It appears only because of formating rules and typically it has no other
meaning. Grabowski proposes to insert an additional space character after the
EOL, so the context of the first letter of the word is the space symbol, what is
a typical situation. The other proposition is a phrase substitution. This idea is
not new, also Teahan [163] proposed such a solution to improve the compres-
sion ratios. The main idea is to replace the groups of letters with a new symbol.
It can be simply done in the text files, because the standard ASCII code uses
only 128 first characters of the 256 possibilities. Grabowski provides a list of
substitutions which improve the compression ratio. This list was established
experimentally, because it is very hard to provide an exact rule which groups
of letters to replace in order to improve the compression ratio. Therefore it is
clear that for a different set of files other list of substitutions can give better re-
sults. We have mentioned only the most important propositions of Grabowski
which give significant improvements. These experiments show that by using
his modifications we can achieve a gain in the compression ratio about 3% on
the text files from the Calgary corpus. This gain is significant and much greater
than can be obtained with the alphabet reordering. We have to remember, how-
ever, that these improvements are motivated by the assumption that text files
are compressed, and applying these modifications to binary files worsens the
compression ratio.

Yet another preprocessing method was proposed by Awan and Mukher-
jee [13, 14]. The authors introduce a reversible length index preserving transform
(LIPT), based on the dictionary prepared before the compression and the corpus
of files, used to order the words in the dictionary. If we have the dictionary,
where for each word a special code is prepared, we process the input sequence
and replace each known word (the word that belongs to the dictionary) with
a related code. Applying the LIPT before the compression gives a gain in the
compression ratio of about 5% on the text files from the Calgary corpus. The
main disadvantages of the LIPT are: we have to know that we compress a text
file, what is the language of the file, and we need a pre-built dictionary with

60 CHAPTER 3. ALGORITHMS BASED ON THE BURROWS–WHEELER . . .

ready-made encodings.
We have mentioned only preprocessors for the text files. There are also fil-

ters for different types of binary data. The number of types of binary data is,
however, large, and we want only to notice that such filters exist.

Since this dissertation concerns the universal compression algorithms, we
do not make any assumptions regarding the type of the compressed sequence.
As a consequence we discuss the above data-specific improvements only as a
notification of works on the BWCA, but we do not use them in our research.

Chapter 4

Improved compression
algorithm based on the
Burrows–Wheeler transform

It is a bad plan that admits of no modification.

— PUBLIUS SYRUS

Maxim 469 (42 B.C.)

4.1 Modifications of the basic version
of the compression algorithm

4.1.1 General structure of the algorithm

In Chapter 3, we discussed many possibilities of modifications of the basic ver-
sion of the Burrows–Wheeler compression algorithm. Now we introduce solu-
tions for some of the stages of the algorithm and show how the other stages can
be modified to obtain an improved algorithm based on the Burrows–Wheeler
transform. Its general structure is presented in Figure 4.1.∗

The first stage of the algorithm is the Burrows–Wheeler transform. The BWT
output sequence undergoes, in the second stage, a weighted frequency count
transform which we introduce in Section 4.1.5. The third stage is the zero run

∗The source codes and executable Win32 files for the compression algorithm are available at
http://www-zo.iinf.polsl.gliwice.pl/∼sdeor/deo03.html.

61

http://www-zo.iinf.polsl.gliwice.pl/~sdeor/deo03.html

62 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

BWT WFC RLE-0
Binary

arithmetic
coder

- - - - -
x

input

x bwt x wfc x rle-0 x bac

output

Figure 4.1: Improved compression algorithm based on the BWT

length coding, which reduces the length of 0-runs. In the final stage, the se-
quence x rle-0 is encoded by a binary arithmetic coder. The arithmetic coding is a
well established method for entropy coding, and the most important part of this
stage is the probability estimation method. The proposed way of the probability
estimation is described in Section 4.1.6.

For the purposes of the comparison, we implemented also the compression
algorithm with the inversion frequencies transform as the second stage. In this
algorithm, we use a different method of probability estimation in the binary
arithmetic coder because the sequence x rle-0 consists of symbols from a different
alphabet. The way of the probability estimation is described in Section 4.1.6.

As the dissertation deals with the universal lossless compression, we must
not assume too much about the sequence that is compressed. A reasonable
choice is to assume that the sequence x is produced by an unknown context
tree source. If not stated otherwise, our further discussion is based on this as-
sumption.

4.1.2 Computing the Burrows–Wheeler transform

In Section 3.2.2, we considered the BWT computation methods. The Itoh–Tana-
ka’s approach [90] is one of the methods for building a suffix array. It is fast for
most sequences, however, if the sequences contain long runs, its behaviour is
poor, because in the sorting step comparisons of such sequences are slow. Here
we propose some improvements to the versions of order 1 and 2.

The first improvement is simple, and is motivated by the observation that
we always sort suffixes of type B that are not decreasing. There is no obsta-
cle, however, to sort only the suffixes that are not increasing. To this end, it
suffices to reverse the lexicographic order of sequences. As the Itoh–Tanaka’s
method reduces the number of suffixes that are sorted, we can choose the for-
ward or reverse lexicographic order to sort the smaller number of suffixes. This
improvement can be applied to both order-1 and order-2 versions.

The second innovation is more complicated and can be applied only to the
order-1 version. After the split of the suffixes, the groups of type A contain
only decreasing sequences. The groups of type B contain mainly increasing
sequences, but also some number of decreasing ones—a part of the sequences
starting from two identical symbols, as we cannot easily find out if the sequence

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 63

starting from the run is increasing or not, without analysing more than two sym-
bols.

In the Itoh–Tanaka’s approach, we need only to sort the suffixes that are in-
creasing. In their original work, some suffixes are sorted excessively. Moreover,
the suffixes starting from a run of length 2 may not be sorted at all by a string-
sorting procedure. We postulate to split the suffixes into three groups:

• type D, if xi..(n+1) >1 x(i+1)..(n+1),

• type E, if xi..(n+1) =1 x(i+1)..(n+1),

• type I, if xi..(n+1) <1 x(i+1)..(n+1).

The suffixes of type I have to be sorted by a string-sorting procedure, and the
ordering of the suffixes of type D can be easily discovered during a linear pass
over the vector ptr. What can we say about the suffixes of type E? Those that are
decreasing can be also handled in the traversal over the vector ptr, and those
that are increasing can be sorted in a special way. Let us suppose that all the
suffixes of type I are sorted. Traversing each bucket (storing sequences starting
from the same symbol) from right to left, we analyse the suffixes xi..(n+1). For
each such a sequence we check if the symbol xi−1 is equal to xi. If it is equal,
then the suffix x(i−1)..(n+1) is of type E, and moreover it is the last suffix, in the
lexicographic order, in all the unsorted suffixes from this group. Therefore we
can put the right position of it to the vector ptr, and mark it as sorted. We con-
tinue the passing till we analyse sorted suffixes. When this process is finished,
all increasing suffixes from the bucket are sorted.

After the author of this dissertation improved the Itoh–Tanaka’s approach,
he found the work by Tsai–Hsing [172], also presenting a way to improve this
method. Tsai–Hsing postulates to split the suffixes into four groups. The main
idea is similar, as he also refrains from sorting the suffixes starting from a run of
length 2. He divides, before sorting, our group of type E into two groups: first
of the increasing sequences, and second of the decreasing sequences.

In our proposition, the preliminary split is unnecessary, as after sorting the
suffixes of type I, in a pass from right to left over the bucket, we simply place
the increasing suffixes from group of type E. The decreasing suffixes of type E
are sorted together with the suffixes of type D in the left-to-right pass over the
vector ptr.

Owing to this improvements, we always have to sort at most a half of the
suffixes. What is more important in practice, the suffixes of type E, which previ-
ously were hard to sort, are now easy to process.

64 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

4.1.3 Analysis of the output sequence
of the Burrows–Wheeler transform

Sequence anatomy

In Section 3.2.2, we mentioned that it is known that the sequence x bwt is com-
posed of the CT-components. This means that the probability of symbol occur-
rence inside a CT-component is specified by the parameter of the corresponding
leaf in the context tree. We, however, did not investigate if something more can
be said about the CT-components. The analysis of the output sequence of the
BWT we start from proving several lemmas.

Lemma 4.1. In the non-sentinel version of the BWT, the lowest character of the alphabet
in the sequence x is the first character of the sequence x bwt if and only if the sequence is
a single run consisting of this character.

Proof. Let us denote by c the lowest character of the alphabet that appears in the
sequence x. The first character of the sequence x bwt is the last character of the
first row of the matrix M̃(x). The rows of the matrix M̃(x) are ordered in the
lexicographic order, so no other row precedes the first one in the lexicographic
order. What if the last character of the first row is c? The sequence being the
one-character-to-right rotation of the first row will be not greater than the first
row. The only case when it will not be also lower is when the rotated sequence
equals the initial one, which entails that the sequence x is a single run of the
character c.

Lemma 4.2. In the sentinel version of the BWT, the lowest character of the alphabet in
the sequence x cannot be the first character of the sequence x bwt.

Proof. At the beginning, let us consider what happens if the last character of
the first row of the matrix M̃(x) is a character, c, which is the lowest character
appearing in the sequence x. It cannot happen because the one-character-to-
right rotation of the first row will be not greater than this row. It cannot be
equal to the first row, for, due to the sentinel, all rotations of the sequence x are
different. Therefore, the first character of the x bwt sequence can be the sentinel
or some other character greater than c.

In the above discussion, we did not assume anything on the source that pro-
duced the sequence x. Let us now assume that the sequence processed by the
BWT is produced by a context tree source.

Lemma 4.3. The position of symbol occurrence in the CT-component influences the
probability of its occurrence.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 65

Proof. We only want to show that the probability of symbol occurrence is depen-
dent on its position in the CT-component. Therefore, we will consider only one
case, for which the calculation is the simplest.

Let us consider the first CT-component of the sequence x bwt. Independently
on the parameters of the related context tree leaf, the first character of this com-
ponent can be the first character appearing in the x sequence, c, with a very
small probability in the non-sentinel version of the BWT (confer Lemma 4.1) or
with zero probability in the sentinel version of the BWT (confer Lemma 4.2).
The characters of the CT-component were produced by the context tree with
predefined parameters. These parameters also specify the frequency of symbol
occurrences of the all characters in the CT-component. Therefore the probability
of occurrence of the character c at some other positions at the CT-component
differs from the assumed parameter.

Corollary 4.4. At least one CT-component is not an output of a memoryless source
with the parameter of the related leaf in the context tree source.

Proof. From Lemma 4.3 we see that at least in some CT-components the proba-
bility of character occurrence depends on its position. This fact contradicts the
assumed stationarity of the memoryless source.

Number of different output sequences of the transform

Let us leave the assumption of the source that produced the input sequence, to
investigate the properties of the BWT from an other side. At first, we will find
the total number of possible sequences x bwt. To this end we have to prove some
lemmas.

Lemma 4.5. For any two sequences y1..n and z1..n, the equality y bwt = z bwt holds if
and only if there exists an integer i such that y1..n = z(1+i)..nz1..i.

Proof. For convenience we denote by M(·)j the sequence in the jth row of the
matrix M(·). Let us assume that

∃i y1..n = z(1+i)..nz1..i. (4.1)

Therefore
M(y)1 = M(z)1+i (4.2)

since, from the formulation of the BWT computation, the (i + 1)th row of the ma-
trix M(z) starts with the (i + 1)th character of the sequence z. The (j + 1)th row is
produced from the jth row in the matrix M(·) by cyclically shifting the sequence
one character to the left, so

∀1≤j≤n M(y)j = M(z)((i+j−1) mod n)+1, (4.3)

66 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

which means that the matrices M(y) and M(z) contain the same sets of rows. In
the second step of the BWT, the rows from the matrix M(·) are sorted. From the
above we achieve

M̃(y) = M̃(z), (4.4)

and
y bwt = z bwt. (4.5)

Let us now recall that if x = uvw for some, possible empty sequences u, v, w,
then we call v a component of x. Similarly, we call a sequence v of length m (not
greater than n), a cyclic component of x of length m if, for some, possible empty,
sequences u and w, holds uvw = x1..nx1..(m−1).

Let us now assume that
y bwt = z bwt. (4.6)

It means that the last columns of the matrices M̃(y) and M̃(z) are equal:

∀1≤j≤n M̃(y)j
n = M̃(z)j

n. (4.7)

The first column of both matrices M̃(y) and M̃(z) contains all the cyclic com-
ponents of length 1 of the sequences y bwt and z bwt, sorted lexicographically.
From Equation 4.6 we conclude that their first columns are also identical:

∀1≤j≤n M̃(y)j
1 = M̃(z)j

1. (4.8)

Let us now assume that the last one and m initial columns of the matri-
ces M̃(y) and M̃(z) are equal:

∀1≤j≤n

(
M̃(y)j

n = M̃(z)j
n ∧ M̃(y)j

1..m = M̃(z)j
1..m

)
, (4.9)

for some m ∈ [1, n − 1]. For each row number j, a concatenation of a charac-
ter M̃(x)j

n and a cyclic component M̃(x)j
1..m of length m forms a cyclic component

of length m + 1. Therefore M̃(x)j
n M̃(x)j

1..m for all 1 ≤ j ≤ n is a set of all pos-
sible cyclic components of length m + 1 of the sequence x. As the m initial and
one last column of the matrices M̃(y) and M̃(z) are equal, then the sets of cyclic
components of length m + 1 for the sequences y and z must also be equal. All
these components appear in consecutive rows of the matrices M̃(y) and M̃(z)
in the initial m + 1 columns. As the matrices are sorted lexicographically, they
must be identical on the first m + 1 columns. Therefore we can write:

∀1≤j≤n

(
M̃(y)j

n = M̃(z)j
n ∧ M̃(y)j

1..m = M̃(z)j
1..m

)
=⇒

∀1≤j≤n

(
M̃(y)j

1..(m+1) = M̃(z)j
1..(m+1)

)
, (4.10)

for m ∈ [1, n − 1]. From this we obtain

M̃(y) = M̃(z). (4.11)

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 67

As y = M̃(y)R(y) and Equation 4.11 holds, then y = M̃(z)R(y). Therefore we can
conclude that:

∃i y1..n = z(1+i)..nz1..i. (4.12)

It will be useful for our investigations to define a new term. We call two se-
quences BWT-equivalent if and only if for these sequences we achieve the same
output sequence of the BWT. As we have proven, such sequences must be mu-
tual cyclic shifts. Of course, for the BWT-equivalent sequences, the equality
R(y) = R(z) holds only when y = z. In this section, however, we consider only
the output sequences, so the value of R(.) is neglected.

Corollary 4.6. The number of different sequences after the BWT is the number of non-
BWT-equivalent sequences.

The total number of different sequences of length n over the alphabet of size k
is clearly kn. It is not obvious, however, how many non-BWT-equivalent se-
quences are there. Let us consider a sequence x such that

∀1≤i<n x 6= x(1+i)..nx1..i. (4.13)

For such a sequence there exist n different BWT-equivalent sequences. Each of
them is a cyclic shift of the sequence x.

Let us now consider a sequence x, such that

∃1≤i<n x = x(1+i)..nx1..i, (4.14)

and i reaches the smallest possible value. Now there are only i different se-
quences (including the sequence x) that are BWT-equivalent to the sequence x.
We also notice that

∃1≤i<n x = x(1+i)..nx1..i =⇒ ∀1≤j≤n ∧ ij≤n x = x(1+ij)..nx1..(ij), (4.15)

and
∃1≤i<n x = x(1+i)..nx1..i =⇒ i|n. (4.16)

From the above, we can conclude that if the sequence x is identical to some
its cyclic shift, then it is composed of identical components:

∃1≤i<n x = x(1+i)..nx1..i =⇒ x = y1..iy1..i . . . y1..i︸ ︷︷ ︸
n/i

. (4.17)

Now we are ready to find the total number of different non-BWT-equivalent
sequences. Let us denote by U(n) the total number of sequences of length n
that are different from cyclic shifts of themselves, and by G(n) the number of
non-BWT-equivalent sequences.

We also notice that the results to be proven depend on the version of the
BWT considered. First we consider the classical BWT (without the sentinel).

68 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

Theorem 4.7. The number of non-BWT-equivalent sequences in the non-sentinel ver-
sion of the BWT is

G(n) =
kn

n
+ O

(√
n kn/2

)
. (4.18)

Proof. The total number of the sequences of length n that are not identical to
cyclic shifts of themselves is

U(n) = kn − ∑
1≤i<n

i|n

U(i). (4.19)

The total number of different non-BWT-equivalent sequences is

G(n) =
U(n)

n
+ ∑

1≤i<n
i|n

U(i)
i

=

=
kn

n
− ∑

1≤i<n
i|n

U(i)
n

+ ∑
1≤i<n

i|n

U(i)
i

=

=
kn

n
+ ∑

1≤i<n
i|n

U(i)
(

1
i
− 1

n

)
. (4.20)

The recursive Equations 4.19 and 4.20 contain a sum over the divisors of n.
To the best of our knowledge, the sum G(n) defies reduction and we do not
present its compact form also.

The asymptotical behaviour of G(n) can, however, be analysed. For this, let
us first bound the second term of the sum of Equation 4.20. It is obvious that
1 ≤ U(n) ≤ kn, so we can introduce the following bound:

0 < ∑
1≤i<n

i|n

U(i)︸︷︷︸
≤ki

(
1
i
− 1

n

)
︸ ︷︷ ︸

<1

< 2
⌈√

n
⌉

kn/2. (4.21)

Now the function G(n) can be bound:

kn

n
≤ G(n) ≤ kn

n
+ 2

⌈√
n
⌉

kn/2. (4.22)

Thus
G(n) =

kn

n
+ O

(√
n kn/2

)
. (4.23)

We also can find some of the very first values of G(n), which are presented
in Figure 4.2.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 69

n U(n) G(n)

1 k k

2 k2 − k k2+k
2

3 k3 − k k3+2k
3

4 k4 − k2 k4+k2+2k
4

5 k5 − k k5+4k
5

6 k6 − k3 − k2 + k k6+k3+2k2+2k
6

7 k7 − k k7+6k
7

8 k8 − k4 k8+k4+2k2+4k
8

9 k9 − k3 k9+2k3+6k
9

10 k10 − k5 − k2 + k k10+k5+4k2+4k
10

.

Figure 4.2: Number of different non-BWT-equivalent sequences for small values
of n

The number of different sequences that we obtain after the BWT is asymp-
totically kn/n. In Section 3.1.1, we showed that after the BWT we have a little
expansion of the data because besides the sequence x bwt of length n we achieve
an integer R(x) ∈ [1, n]. Here we see that the entropy of the additional num-
ber R(x) is compensated by the smaller number of possible sequences x bwt.

The number of different sequences after the classical BWT depends on the
sequence length in such a complicated way, because there may exist sequences
composed of identical components. When we extend the sequence x with the
additional character, the sentinel, we achieve the sequence x$.

Theorem 4.8. The number of non-BWT-equivalent sequences in the sentinel version of
the BWT is

G(n) = kn. (4.24)

Proof. The sentinel character does not occur in the sequence x. The number of
different sequences y = x$ is kn.

We should notice here that now

@1≤i≤n y1..(n+1) = y(1+i)..(n+1)y1..i, (4.25)

because otherwise it would imply that the symbol yn+1, i.e., the sentinel should
appear also in some other position, yi, what contradicts our assumption that the

70 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

sentinel does not appear in the sequence x. For this reason, no sequences are
BWT-equivalent to the sequence x$. From Corollary 4.6 we conclude that the
number of different sequences after the BWT is in this case

G(n) = kn. (4.26)

We obtained also a justification for the statement that the integer R(x) can be
neglected in the sentinel version of the BWT. For every sequence x we achieve a
different x bwt sequence.

Let us now again assume that the sequence x is produced by the context
tree source. We know that the sequence x bwt is a concatenation of the CT-
components. If we assume that the CT-components are produced by a memory-
less source of parameters from the context tree, we then treat the sequence x bwt

as the output of the piecewise stationary memoryless source. This assumption
is superfluous, because at least some CT-components cannot be strictly treated
as the output of the context tree source (see Corollary 4.4). A similar corollary
can be also concluded from the observation that the number of different x bwt se-
quences is smaller than the total number of possible sequences of length equal
to the length of the sequence x bwt (i.e., n in the non-sentinel version and n + 1
in the sentinel version). These difference is, however, so small that can be ne-
glected, and in practice we can assume that the sequence x bwt is the output of
the piecewise stationary memoryless source.

The conclusion similar to the one that the sequence x bwt can be asymp-
totically treated as an output of the piecewise stationary memoryless source
was derived independently in a different way by other authors, as reported by
Visweswariah et al. [175].

4.1.4 Probability estimation for the
piecewise stationary memoryless source

Relation of the source to the Burrows–Wheeler transform

The sequence x bwt is a concatenation of the CT-components. After the BWT,
the boundaries between successive CT-components in the sequence x bwt are,
however, unknown. In this section, we examine various ways of probability
estimation in such a case, what will be useful in our further investigations. To
make the considerations possible, we have to make some simplifications. The
investigations for large alphabets are possible, but using the binary alphabet
makes calculations much easier. Therefore we assume that the elements of the
sequence come from a binary alphabet.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 71

Simple estimation

Let us focus on some position in the sequence x bwt. We assume that the length
of the current CT-component is m, and the parameter of it is θj, however we
do not know the position in this component. The parameter of the previous
CT-component is θj−1.

During the compression, we have to estimate the probability of occurrence
of all possible characters as the next character in the sequence. To this end,
we introduce an estimator Pe(a, b). The inputs of the estimator denote: a—the
number of 0s, b—the number of 1s in the last a + b characters, while the its
output is an estimation of the probability that the next character be 1.

The probability that memoryless source with parameter θj produces one spe-
cific sequence of a zeros and b ones (of fixed order) is

P0(j, a, b) = (1− θj)aθb
j . (4.27)

When we consider all the possible sequences of a 0s and b 1s, then the probability
is

P(j, a, b) = P0(j, a, b)
(

a + b
b

)
= (1− θj)aθb

j

(
a + b

b

)
. (4.28)

The entropy of a memoryless source of known parameter is

Hj = −θj log θj − (1− θj) log(1− θj). (4.29)

The entropy, Hj, is the lower bound of the expected code length that can be
assigned to the symbol. For a given estimator Pe(a, b), the expected code length
is

Le(a, b) = −θj log Pe(a, b)− (1− θj) log(1− Pe(a, b)). (4.30)

The estimators usually predict the future character better when they take
more previous characters into account. Here we assume that a + b = d where d
is constant. Now we can find the expected redundancy of the estimation, i.e.,
the difference between the actual code length and the entropy of the source. It is

R1(j, d) =
d

∑
a=0

(
Le(a, d − a)− Hj) · P(j, a, b)

)
=

=
d

∑
a=0

Le(a, d − a)P(j, a, d − a)− Hj. (4.31)

So far we have assumed that the estimator bases on the symbols from one
CT-component. Let us now investigate what happens, when we assume that
only dj symbols come from the current CT-component, while the remaining
dj−1 = d − dj symbols come from the previous CT-component. The expected

72 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

redundancy equals in this case

R2(j, dj−1, dj) =
dj−1

∑
aj−1=0

dj

∑
aj=0

((Le(aj−1 + aj, dj−1 − aj−1 + dj − aj)− Hj)×

× P(j − 1, aj−1, dj−1 − aj−1)P(j, aj, dj − aj)) =

=
dj−1

∑
aj−1=0

dj

∑
aj=0

Le(aj−1 + aj, dj−1 − aj−1 + dj − aj)×

× P(j − 1, aj−1, dj−1 − aj−1)P(j, aj, dj − aj)− Hj. (4.32)

We assumed nothing about the position of the current symbol within the current
CT-component, so to find the expected redundancy we need to weight it over
the all m possible positions. Considering this we arrive at

R(j, d) =
1
m

 d−1

∑
dj=0

R2(j, d − dj, dj) + (m − d)R1(j, d)

 . (4.33)

Equation 4.33 holds only when d ≤ m, but it is obvious that when d > m, then
the estimator uses superfluous symbols that come from another CT-component,
and the prediction will not be better than in the case when d = m.

Better estimation

When we assume that the sequence is composed of components produced by a
memoryless sources, and we try to estimate the probability of the current sym-
bol, then we base on the previous symbols. So far we have neglected the in-
tuitive observation that the longer the distance to the previous symbol is, the
more likely it comes from the component produced by a source with different
parameter. If a symbol is from a different CT-component, then it introduces an
additional redundancy to the estimation. We claim that the importance of the
symbol in the probability estimation should depend on the distance between
them and the estimated one.

Now we are going to rewrite Equations 4.31, 4.32, and 4.33 introducing a
weight function w(·), which specifies the “importance” of the symbol depending
on the distance. The redundancy in the case when all the symbols come from

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 73

the same CT-component is

R∗
1(j, d) = ∑

0≤i1,...,id≤1

(
Le

(
∑

1≤j≤d
w(j)(1− ij), ∑

1≤j≤d
w(j)ij

)
− Hj

)
×

× P0

(
j, ∑

1≤j≤d
(1− ij), ∑

1≤j≤d
ij

)
=

= ∑
0≤i1,...,id≤1

Le

(
∑

1≤j≤d
w(j)(1− ij), ∑

1≤j≤d
w(j)ij

)
×

× P0

(
j, ∑

1≤j≤d
(1− ij), ∑

1≤j≤d
ij

)
− Hj. (4.34)

If symbols from the previous CT-component are also considered, then the re-
dundancy is

R∗
2(j, dj−1, dj) = ∑

0≤i1,...,idj−1+dj
≤1

Le

dj−1+dj

∑
j=1

w(j)(1− ij),
dj−1+dj

∑
j=1

w(j)ij

− Hj

×

× P0

j − 1, ∑
1≤j≤dj−1

(1− ij), ∑
1≤j≤dj−1

ij

×

× P0

j, ∑
1≤j≤dj

(1− idj−1+j), ∑
1≤j≤dj

idj−1+j

 =

= ∑
0≤i1,...,idj−1+dj

≤1
Le

dj−1+dj

∑
j=1

w(j)(1− ij),
dj−1+dj

∑
j=1

w(j)ij

×

× P0

j − 1, ∑
1≤j≤dj−1

(1− ij), ∑
1≤j≤dj−1

ij

×

× P0

j, ∑
1≤j≤dj

(1− idj−1+j), ∑
1≤j≤dj

idj−1+j

− Hj. (4.35)

Finally, as we do not know the position within the CT-component, we have to
weight the redundancy over all possibilities. Fortunately for our calculations
every position in the CT-component is equally probable, so the result is

R∗(j, d) =
1
m

 d−1

∑
dj=0

R∗
2(j, d − dj, dj) + (m − d)R∗

1(j, d)

 . (4.36)

So far we have assumed nothing about the weight function. If we put

w(t) = 1, for t > 0, (4.37)

74 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

then Equation 4.36 reduces to Equation 4.33.
Equation 4.36 specifies the expected redundancy in the case when the se-

quence is composed of two adjacent components produced by different memo-
ryless sources. The estimation is complex even in the situation when we assume
the simplest weight function (Equation 4.37). An exact analysis of the redun-
dancy and finding the value d for which R∗(j, d) is minimal is a hard task. We
should also remember that we have made no assumption of parameters of the
source, so the values θj and θj−1 are unknown. In general, we can weight the
expected redundancy, R∗(·), over these parameters, obtaining

R∗
w(j, d) =

1∫
0

1∫
0

1
m

 d−1

∑
dj=0

R∗
2(j, d − dj, dj) + (m − d)R∗

1(j, d)

 dθj−1 dθj. (4.38)

The expected redundancy is weighted, assuming a uniform distribution of the
parameters θj−1 and θj. There is no justification for such an assumption, but
there are also no justifications for different distributions so we have chosen the
simplest one. Since solving Equation 4.38 is very hard, we analyse it numerically,
comparing different weight functions.

Numerical analysis of the weight functions

Before we proceed with the numerical analysis, we have to specify the way of
probability estimation, i.e., the function Pe. Simple estimators are usually de-
fined as

Pe(1| a zeros and b ones) =
b + α

a + b + 2α
. (4.39)

The choice of α determines the estimator, e.g., the Laplace estimator [174] is
obtained for α = 1 and the Krichevsky–Trofimov estimator (KT-estimator) [95]
for α = 0.5. The KT-estimator is often used because the upper bound of its re-
dundancy is known. Using it for the weight function specified by Equation 4.37
is well justified, but the grounds are not so strong for other weight functions. In
the following analysis, we decided to use the KT-estimator for all the examined
weight functions to make the comparison independent on the estimator. (In fact,
choosing the value of α can be usually compensated by rescaling the w(·) val-
ues.) The examined weight functions are presented in Figure 4.3.

First we have to assume the length of the CT-component. For now, we as-
sume m = 20. Such a length is typical in real sequences. In the first experiment,
we investigate the redundancy R(j, d) as expressed by Equation 4.36. The val-
ues θj−1 and θj lie anywhere in the range [0, 1], but we assume here four typical
pairs: (θj−1 = 0.15, θj = 0.65), (θj−1 = 0.25, θj = 0.85), (θj−1 = 0.55, θj = 0.30),
and (θj−1 = 0.90, θj = 0.60). The examined weight functions have one or two pa-
rameters that determine the expected redundancy. At the beginning we examine

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 75

w1(t) = 1, for t ≥ 1

w2(t) =

{
qt, for 1 ≤ t ≤ d
0, for t > d

w3(t) =

{
1
pt , for 1 ≤ t ≤ d
0, for t > d

w4(t) =

1, for t = 1
1
pt , for 1 < t ≤ d
0, for t > d

w5(t) =

1, for t = 1
ptq, for 1 < t ≤ d
0, for t > d

w6(t) =

{
1
pt qt, for 1 ≤ t ≤ d
0, for t > d

w7(t) =

{
tpqt, for 1 ≤ t ≤ d
0, for t > d

Figure 4.3: Examined weight functions

each of the weight functions separately by finding the best values of the parame-
ters. Figure 4.4 illustrates the obtained results. For each pair of probabilities θj−1

and θj we have found the best parameters. The parameters are considered to be
the best if they lead to the minimal redundancy for any value of d. We notice that
different weight functions achieve the best result for different pairs of probabil-
ities. Also, the parameters for which the weight functions yield the best result
strongly depend on the values of θj−1 and θj. Detailed results of examinations of
the weight function are presented graphically in Appendix D.

From the experiment described above we conclude that there is no single
best weight function. The next step in the numerical analysis is to investigate the
expected redundancy integrated over all the possible values θj−1 and θj (Equa-
tion 4.38).

Figures 4.5 and 4.6 present the results for different weight functions. The
best parameters for the weight functions were found and the comparison of
the results is shown in Figure 4.7. The results show that the weight functions
w2, . . . , w7 outperform the w1 function significantly. This result confirms our in-

76 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

w
1

w
2
,q

=
0.

10
w

3
,p

=
13

.0
0

w
4
,p

=
1.

30
w

5
,p

=
0.

90
,q

=
−

1.
10

w
6
,p

=
10

.0
0,

q
=

0.
85

w
7
,p

=
2.

00
,q

=
0.

10

0
5

10
15

20
0.

050.
1

0.
150.
2

0.
250.
3

d

R
∗

w
1

w
2
,q

=
0.

70

w
3
,p

=
1.

00
w

4
,p

=
0.

90

w
5
,p

=
1.

30
,q

=
−

1.
20

w
6
,p

=
1.

10
,q

=
1.

02

w
7
,p

=
−

0.
80

,q
=

0.
92

0
5

10
15

20

0.
2

0.
250.
3

0.
350.
4

0.
45

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

w
1

w
2
,q

=
0.

85

w
3
,p

=
3.

00
w

4
,p

=
0.

50
w

5
,p

=
0.

80
,q

=
−

0.
60

w
6
,p

=
4.

00
,q

=
1.

10
w

7
,p

=
−

0.
50

,q
=

0.
96

0
5

10
15

20

0.
080.
1

0.
12

0.
14

0.
16

0.
180.
2

d

R
∗

w
1

w
2
,q

=
0.

05

w
3
,p

=
10

.0
0

w
4
,p

=
1.

10
w

5
,p

=
0.

60
,q

=
−

0.
70

w
6
,p

=
20

.0
0,

q
=

1.
15

w
7
,p

=
2.

00
,q

=
0.

05

0
5

10
15

20
0

0.
050.
1

0.
150.
2

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
4.

4:
D

is
ta

nc
e

fr
om

th
e

en
tr

op
y

ra
te

fo
r

so
m

e
w

ei
gh

tf
un

ct
io

ns
(b

es
tr

es
ul

ts
fo

r
m

=
20

)

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 77

tuitive expectation that older symbols should come with lower importance to
the estimator. The other conclusion is that it is hard to choose the best weight
function. We should also remember that the investigations were carried out
in a simplified case, where the alphabet size was 2, and the length of the CT-
component was known.

Non-binary alphabets

We can go one step further and rewrite Equation 4.38 to refrain from the as-
sumption of the binary alphabet. First we need to assume a memoryless source
defined by a k-tuple of parameters Θj = 〈θj,0, θj,1, . . . , θj,k−1〉, specifying the
probabilities of producing all characters from the alphabet. (The elements of
the k−tuple Θj sum to 1.) Now we can rewrite the entropy rate as:

Hk
j = −

k−1

∑
i=0

θj,i log θj,i. (4.40)

The probability that a memoryless source produces a sequence of length d con-
taining character i exactly ci times for 0 ≤ i < k is (for the clear presentation we
define C = 〈c0, c1, . . . , ck−1〉):

Pk
0 (j, C) =

k−1

∏
i=0

θci
j,i. (4.41)

When we consider all possible sequences of length d containing ci characters i
(in any ordering) for all possible characters, the probability is:

Pk(j, C) = Pk
0 (j, C)

k−1

∏
i=0

(
∑k−1

l=i cl

ci

)
. (4.42)

We also need to reformulate the expression for the expected code length:

Lk
e(C) = −

k−1

∑
i=0

θj,i log Pk
e (ci, C). (4.43)

The estimator is defined analogically to the binary estimator:

Pk
e (a, C) =

a + α

c0 + c1 + · · ·+ ck−1 + kα
. (4.44)

Having defined the terms, we can rewrite the proper equations, achieving

R∗
1(j, d) = ∑

0≤i1,...,id<k
Le

(〈
∑

1≤j≤d
w(j)[ij = l]

〉)
×

× Pk
0

(
j,

〈
∑

1≤j≤d
[ij = l]

〉)
− Hk

j . (4.45)

78 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

q
=

0.
10

q
=

0.
99

q
=

0.
98

q
=

0.
97

q
=

0.
20

q
=

0.
96

q
=

0.
25

q
=

0.
94

q
=

0.
30

q
=

0.
92

q
=

0.
40

q
=

0.
90

q
=

0.
50

q
=

0.
85

q
=

0.
60

q
=

0.
70

q
=

0.
75

0
5

10
15

20

0.
14

0.
16

0.
180.
2

0.
22

0.
24

d

R
∗

p
=

20
.0

0
p

=
15

.0
0

p
=

10
.0

0

p
=

5.
00

p
=

0.
50

p
=

0.
75

p
=

1.
30

0
5

10
15

20

0.
150.
2

0.
250.
3

d

R
∗

w
2(
·)

w
3(
·)

p
=

20
.0

0
p

=
15

.0
0

p
=

10
.0

0

p
=

5.
00

p
=

0.
25

p
=

2.
50

p
=

0.
50

p
=

1.
00

p
=

0.
80

0
5

10
15

20

0.
14

0.
16

0.
180.
2

0.
22

0.
24

0.
26

d

R
∗

p
=

0.
30

,q
=
−

0.
10

p
=

0.
20

,q
=
−

0.
10

p
=

0.
40

,q
=
−

0.
30

p
=

0.
50

,q
=
−

0.
40

p
=

0.
60

,q
=
−

0.
50

p
=

0.
70

,q
=
−

0.
60

p
=

1.
10

,q
=
−

0.
80

p
=

0.
90

,q
=
−

0.
80

p
=

1.
20

,q
=
−

0.
95

p
=

1.
50

,q
=
−

1.
10

0
5

10
15

20

0.
14

0.
16

0.
180.
2

0.
22

0.
24

d

R
∗

w
4(
·)

w
5(
·)

Fi
gu

re
4.

5:
D

is
ta

nc
e

fr
om

th
e

en
tr

op
y

fo
r

w
ei

gh
t

fu
nc

ti
on

s
w

2,
w

3,
w

4,
an

d
w

5
(w

ei
gh

te
d

ov
er

al
l

po
ss

ib
le

va
lu

es
of

θ j
−

1,
θ j

fo
r

m
=

20
)

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 79

p
=

3.
00

,q
=

1.
30

p
=

2.
00

,q
=

1.
15

p
=

0.
30

,q
=

0.
98

p
=

1.
40

,q
=

1.
06

p
=

0.
75

,q
=

1.
02

0
5

10
15

20

0.
150.
2

0.
250.
3

0.
350.
4

0.
45

d

R
∗

p
=
−

0.
60

,q
=

0.
94

p
=

2.
00

,q
=

0.
35

p
=

0.
40

,q
=

0.
65

0
5

10
15

20

0.
14

0.
16

0.
180.
2

0.
22

d

R
∗

w
6(
·)

w
7(
·)

Fi
gu

re
4.

6:
D

is
ta

nc
e

fr
om

th
e

en
tr

op
y

fo
r

w
ei

gh
tf

un
ct

io
ns

w
6

an
d

w
7

(w
ei

gh
te

d
ov

er
al

lp
os

si
bl

e
va

lu
es

of
θ j
−

1,
θ j

fo
r

m
=

20
)

80 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

w1

w2, q = 0.75
w3, p = 1.30
w4, p = 0.80
w5, p = 1.20, q = −0.95

w6, p = 1.40, q = 1.06

w7, p = 0.40, q = 0.65

0 5 10 15 20

0.14

0.16

0.18

0.2

0.22

0.24

d

R∗

Figure 4.7: Comparison of the best results for different weight functions

R∗k
2 (j, dj−1, dj) = ∑

0≤i1,...,idj−1+dj
<k

Le

〈dj−1+dj

∑
j=1

w(j)[ij = l]

〉×

× Pk
0

j − 1,

〈
∑

1≤j≤dj−1

[ij = l]

〉×

× Pk
0

j,

〈
∑

1≤j≤dj

[ij+dj−1 = l]

〉− Hk
j . (4.46)

R∗k(j, d) =
1
m

 d−1

∑
dj=0

R∗k
2 (j, d − dj, dj) + (m − d)R∗k

1 (j, d)

 . (4.47)

R∗k
w =

∫
· · ·
∫

Θj−1

∫
· · ·
∫

Θj

1
m
×

×

 d−1

∑
dj=0

R∗k
2 (j, d − dj, dj) + (m − d)R∗k

1 (j, d)

×

× dθj−1,0 . . . dθj−1,k−1 dθj,0 . . . dθj,k−1. (4.48)

Equation 4.48 is quite complicated and very hard to solve numerically. Even
if we had solved it, the solutions would have not been valuable because in prac-
tice we do not know the size of the alphabet—it is usually less than the typically
assumed 28. The probability distribution of symbols is also usually distant from
the assumed one. Because of the above, we will not try to solve this equation
and we will base on the results obtained for the binary alphabet.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 81

4.1.5 Weighted frequency count as the algorithm’s second stage

Weighted frequency count

The sequence x bwt is a concatenation of the CT-components, and can be treated
as the output of a piecewise stationary memoryless source. In Section 4.1.4, we
discussed how to estimate the probability in such a case.

In typical implementations of the BWCA, the second stage is the MTF trans-
form. This transform keeps the symbols that appeared recently in the front of
the list L. This rule is strong—for every two symbols, the one that has appeared
more recently is at a lower position. The numbers of occurrences of charac-
ters are not used in the MTF. Now we introduce a solution, a weighted frequency
count (WFC) transform, which can be considered as a generalisation of the well
known frequency count transform (FC). (It was introduced first by the author in
Reference [55].) The WFC transform makes use of more information about the
previous symbols than the MTF.

We first formulate the FC transform in an alternative way. To each charac-
ter aj appearing prior to the ith position in the sequence x bwt we assign a sum

Wi(aj) = ∑
1≤p<i
aj=xp

1, (4.49)

and sort the list L according to the decreasing values of counters Wi(aj).
Next, we note that instead of summing 1s for all the characters, we can sum

the numbers depending on their relative position in the sequence x bwt. To this
end, we introduce a weight function w(·) and reformulate the sum as

Wi(aj) = ∑
1≤p<i
aj=xp

w(i − p). (4.50)

If some two characters have the same value of Wi(·), then we find their rela-
tive order using the values Wi−1(·), Wi−2(·), and so on, until the counters are
different. For completeness we define W0(aj) = −j. The procedure outputting
the position of processed characters in the list L and maintaining the list in the
described way is called the weighted frequency count transform.

The usage of the weight functions is motivated by the results of the investiga-
tions in Section 4.1.4. We should notice that we examined the weight functions
for the binary alphabet only. The equations for larger alphabets were elabo-
rated, but they were unsolved because of their complexity. We also assumed
some arbitrarily chosen length of the CT-components. For real sequences, the
length of the successive CT-components can vary strongly. Finally, we exam-
ined the expected redundancy estimating the probability of symbol occurrence,
while now this estimation is used to give ranks to the symbols. The last differ-
ence was motivated by the observation that the CT-components are rather short,

82 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

so they contain only a fraction of characters from the alphabet. This is a simi-
lar problem to the zero frequency problem that exists in the PPM algorithms. As
mentioned in Sections 3.2.5 and 3.2.5, some researchers investigated methods for
direct entropy coding of the sequence x bwt without transforming them in order
to overcome these problems [67, 195]. Other used a semi-direct encoding and
transform some part of the sequence, but the other part is encoded directly [18].
The compression results with a direct entropy encoding method are still signifi-
cantly worse than the results with some second stage transform, so we decided
to introduce the WFC transform as the second stage in the improved BWCA.

Because of the described reasons, we treat previous investigations only as
suggestions how the symbols in the second stage should be transformed. Un-
fortunately, providing the more formal justification of the usage of the WFC
transform is a complex task.

From the formulation of the WFC, it is clear that if we set

w(t) = 1, for t > 0, (4.51)

then we obtain the FC transform, and if we set

w(t) =

{
1, for t = 1,
0, for t > 1,

(4.52)

then we obtain the MTF transform.
The sort-by-time (SBT) method—proposed by Schulz [146]—is also a special

case of the WFC. We achieve it by setting

w(t) = qt, for t > 0. (4.53)

The theoretical properties of this method for different values of q have been
examined by Schulz. He has shown that one obtains the MTF transform by
establishing 0 < q ≤ 0.5.

Relation to context tree sources

As mentioned before, the sequence x bwt is a concatenation of the CT-compo-
nents. Therefore, a character that has occurred at the previous position is more
likely to be at the same context than the penultimate and so on. In general,
the character that has appeared at recent positions is more likely described by
the same probability distribution as the current one, than by the distribution of
the characters from more distant positions. Unfortunately, we do not know the
current position in the context tree, how long the CT-component of the current
leaf is, and where in that CT-component we are. We examined all these problems
in Section 4.1.4.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 83

There is also one more property to consider: similar context typically have
only a slightly different probability distribution. (In fact, the similarity of proba-
bility distributions of similar contexts is one of the bases of the PPM algorithms.)
It may be useful to explore some of the information regarding the probability
distribution of the previous contexts. Because the formulation of the context
tree source does not give a way to represent this fact, it is impossible to incorpo-
rate it in the theoretical analysis, when the context tree source is assumed. All
in all, the values w(i) of the weight function should decrease with increasing i.
It is not clear, however, how fast it should decrease.

We theoretically examined some weight functions for the binary alphabet.
Now, concerning the results of the theoretical analysis, we will examine how the
weight functions work for real-world sequences. The experimental results show
that for different sequences from the Calgary corpus different functions w give
the best results. This is what one would expect. (We made the same observation
in the theoretical analysis.) The CT-components of short sequences are typically
shorter than those of longer sequences. Also, the sequences x are generated by
different sources with a different number of contexts.

Efficient implementation

Prior to the empirical comparison of the weight functions, let us discuss its im-
plementation. The formulation of the WFC transform does not give us a way
for computing the values of Wi(·) quickly. When we move to the next character,
we have to recalculate the values of all counters Wi(·). To this end, we have to
rescan the encoded part of the sequence x bwt. This rescanning makes the time
complexity of the transform O(n(n + k log k)).

We can improve the time complexity of the WFC transform by sacrificing
its precision. One possibility is to quantise the values of the weight function to
integer powers of 2. This quantisation decreases the number of different val-
ues of w to at most l = log w(1)/w(tmax + 1) (we assume that the weight func-
tion is non-increasing), which is typically small. For such values of the weight
function, we can obtain the values of Wi(·) from Wi−1(·) by updating only the
counters for the characters where the values w(·) are changing (for all such t
that w(t) 6= w(t − 1)). Using this approach, we obtain a method of the worst-
case time complexity O(nlk), which is not much greater than O(nk) for trans-
forms like the MTF. In practice, the characters on the list L move only by a few
positions at a time. With a version of the insertion sort procedure the cost of
maintaining the list is small (e.g., for the function w8q the average number of
swaps of characters in the list L per input character does not exceed 6 for almost
all files from the Calgary corpus, except for binary files such us geo, where it is
larger).

84 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

The disadvantage, in the compression ratio, of using the quantisation de-
pends on the weight function w and properties of the sequence. One can double
the number of different values of w if necessary by using also the powers of 2
for half exponents. It is also possible to introduce even faster methods for some
weight functions, e.g., for the function w2. We will not discuss, however, here
such improvements, which are specific to weight functions.

We examined a number of weight functions. Here we present (Figure 4.8)
only some of them (the best ones and those that we find interesting). Figure 4.9
shows an example of working of the WFC transform and Section 4.3.2 contains
the experimental results we obtained for these weight functions on standard
data compression sets.

4.1.6 Efficient probability estimation in the last stage

Binary arithmetic coder

The last stage of the BWCA is the entropy coding of the sequence x rle-0. Dif-
ferent solutions to this task were discussed in Section 3.2.5. In this section, we
introduce yet another method. The way of probability estimation described in
this section was introduced by the author of this dissertation in Reference [54]
and partially (for the IF transform) in Reference [55].

As the motivation of this work is to improve the compression ratio, the arith-
metic coder is chosen as the entropy coder. In contrast to other researchers, we
choose, however, a binary arithmetic coder. This coder is highly efficient, and no
complicated model is needed to store the statistics of symbol occurrences. Many
experiments with different methods for probability estimation of symbols from
the sequence x rle-0 were carried out and the simplicity of the binary arithmetic
coder is its important asset.

Decomposing a sequence into binary codes

Since a binary arithmetic coder is chosen, the symbols from the sequence x rle-0

have to be decomposed to binary codes before the coding. The decomposition
of the symbols from the alphabet A rle-0 proceeds as follows. In the first step, the
symbols are grouped into nine subsets: {0a}, {0b}, {1}, {2, . . . , 7}, {8, . . . , 15},
. . . , {128, . . . , 255}. Then all the symbols are encoded using the binary prefix
code presented in Figure 4.10. The code for each symbol consists of two parts:
a unique prefix that distinguishes the subsets from each other, and a suffix,
which is a binary representation of the symbol (bi denotes the ith bit of the binary
representation of the symbol). The second part of the code (not always present)
contains these bits, which are indispensable to distinguish all the characters in
a given subset. For example, for the subsets {8, . . . , 15}, . . . , {128, . . . , 255} it is
unnecessary to encode the most significant bit of the symbol.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 85

w1(t) =

{
1, for t = 1
0, for t > 1

w2(t) =

{
qt, for 1 ≤ t ≤ tmax

0, for t > tmax

w3(t) =

{
1
pt , for 1 ≤ t ≤ tmax

0, for t > tmax

w4(t) =

1, for t = 1
1
pt , for 1 < t ≤ tmax

0, for t > tmax

w5(t) =

1, for t = 1
ptq, for 1 < t ≤ tmax

0, for t > tmax

w6(t) =

{
1
pt qt, for 1 ≤ t ≤ tmax

0, for t > tmax

w7(t) =

{
tpqt, for 1 ≤ t ≤ tmax

0, for t > tmax

w8(t) =

1, for t = 1
1
pt , for 1 < t ≤ 64
1

2pt , for 1 < t ≤ 256
1

4pt , for 1 < t ≤ 1024
1

8pt , for 1 < t ≤ tmax

0, for t > tmax

w9(t) =

1, for t = 1
1
pt qt, for 1 < t ≤ tmax

0, for t > tmax

Figure 4.8: Weight functions examined in the WFC transform

86 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

a
(

0)
d

(0
.7

00
)

r
(0

.7
00

)
c

(0
.7

00
)

r
(1

.0
43

)
r

(0
.7

30
)

a
(1

.1
90

)
a

(1
.5

33
)

a
(1

.7
73

)
a

(1
.2

41
)

b
(1

.1
90

)

b
(−

1)
a

(0
.0

00
)

d
(0

.4
90

)
r

(0
.4

90
)

c
(0

.4
90

)
a

(0
.7

00
)

r
(0

.5
11

)
r

(0
.3

58
)

r
(0

.2
50

)
b

(0
.7

00
)

a
(0

.8
69

)

L
c

(−
2)

b
(0

.0
00

)
a

(0
.0

00
)

d
(0

.3
43

)
d

(0
.2

40
)

c
(0

.3
43

)
c

(0
.2

40
)

c
(0

.1
68

)
c

(0
.1

18
)

r
(0

.1
75

)
r

(0
.1

23
)

d
(−

3)
c

(0
.0

00
)

b
(0

.0
00

)
a

(0
.0

00
)

a
(0

.0
00

)
d

(0
.1

68
)

d
(0

.1
18

)
d

(0
.0

82
)

d
(0

.0
58

)
c

(0
.0

82
)

c
(0

.0
58

)

r
(−

4)
r

(0
.0

00
)

c
(0

.0
00

)
b

(0
.0

00
)

b
(0

.0
00

)
b

(0
.0

00
)

b
(0

.0
00

)
b

(0
.0

00
)

b
(0

.0
00

)
d

(0
.0

40
)

d
(0

.0
28

)

x
bw

t
d

r
c

r
a

a
a

a
b

b
a

x
w

fc
3

4
4

1
3

1
0

0
4

1
1

Fi
gu

re
4.

9:
Ex

am
pl

e
of

th
e

W
FC

tr
an

sf
or

m
w

it
h

th
e

w
ei

gh
t

fu
nc

ti
on

w
2

an
d

pa
ra

m
et

er
s

q
=

0.
7,

t m
ax

=
20

48
.

Th
e

va
lu

es
of

co
un

te
rs

W
(·

)
ar

e
gi

ve
n

in
pa

re
nt

he
si

s.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 87

Symbol Code

0a 0 0
0b 0 1
1 1 0
2, . . . , 7 1 1 0 b2 b1 b0
8, . . . , 15 1 1 1 0 b2 b1 b0
16, . . . , 31 1 1 1 1 0 b3 b2 b1 b0
32, . . . , 63 1 1 1 1 1 0 b4 b3 b2 b1 b0
64, . . . , 127 1 1 1 1 1 1 0 b5 b4 b3 b2 b1 b0
128, . . . , 255 1 1 1 1 1 1 1 b6 b5 b4 b3 b2 b1 b0

Figure 4.10: Encoding the alphabet A rle-0

Another decomposition method is needed if the IF or the DC transform is
used as the second stage in the BWCA. The symbols of the sequence x if can
be integers from 0 up to n in the original proposition by Arnavut and Magliv-
eras [10, 11], and from 0 up to kn in our implementation. We work with higher
symbols, because instead of encoding also the number of occurrences of all char-
acters from the alphabet, which is necessary in Arnavut’s approach, we have
modified the IF transform as follows. When a character aj is processed and the
end of the sequence x bwt is reached, the current character is incremented to aj+1

and further counting from the beginning of the sequence x bwt is performed.
Therefore we can sometimes obtain a number greater than n.

The advantage of using the binary arithmetic coder is that each bit of the code
is encoded separately and the size of the symbol does not cause any problem.
The decomposition of the symbols from the sequence x if is quite simple: for
each number x if

i we calculate the Elias γ code [59] of length 1 +
⌊
2 log x if

i
⌋
.

Probability estimation

Another task in the entropy coding stage is to encode the string of bits obtained
after encoding symbols with the described binary code. In order to improve the
probability estimation, we calculate separate statistics for different contexts in
which consecutive bits occur. The probabilities of bits in different contexts may
be completely different, and thus it is essential to choose the context correctly.
We should remember that a small redundancy with each context is introduced.
If the number of contexts is too large, then the gain of separating contexts can be
lost because of the additional redundancy.

Figure 4.1.6 details the calculation of the context c for successive bits of code
representing the symbols from the A rle-0 alphabet. For the symbols from the
sequence x if each consecutive bit is encoded in a separate context.

88 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

Code bit No. of contexts Possible contexts

first bit 6 the last character is 0, and the 0-run is not
longer than 2†,
the last character is 0, and the 0-run is
longer than 2,
the last character is 1, and the last but one
character is 0,
the last character is 1, and the last but one
character is not 0,
the last character is greater then 1, and
the last but one character is 0,
the last character is greater then 1, and
the last but one character is not 0

second bit log n the length of 0-run forms a context
(first bit = 0)

second bit 3 the last character is 0 or 1,
(first bit = 1) the last character is in range [2, 7],

the last character is not in range [0, 7]

successive code bits 254 all previous code bits form a context

Figure 4.11: Calculating the context in the improved BWCA

Weighted probability

It was assumed that the structure of the output sequence of the BWT is simple
and there is no reason for using an arithmetic coder with an order higher than 0.
Some results that confirm this postulate were obtained by Fenwick [67]. Succes-
sive research [18, 195] showed, however, that carefully choosing the order of the
arithmetic coder in some contexts can improve the compression ratio.

In the algorithm proposed in this dissertation, we treat the sequence of bits
occurring in context c as a Markov chain of order d, and use the Krichevsky–
Trofimov estimator [95] to estimate the probability of bit occurrence. This means
that we encode the subsequent bits with the conditional probability

Pd
c (a|sd

c) =
td
c (a|sd

c) + 1
2

td
c (0|sd

c) + td
c (1|sd

c) + 1
, (4.54)

where sd
c are the last d bits encoded in the context c, and td

c (a|sd
c) is the number

of occurrences of bit a in the context c, provided the last d coded bits were sd
c .

As mentioned before, the probability estimation improves when the order of the
Markov chain increases. Unfortunately, as d grows, the number of states s for

†The symbol 0 denotes either 0a or 0b.

4.1. MODIFICATIONS OF THE BASIC VERSION . . . 89

which the probability is estimated, grows exponentially (as 2d). Thus increasing
the order d adds redundancy caused by estimating probability in many states.

Using a higher order of the Markov chain can give some gains. We go even
further and postulate to use a weighted probability estimation for different or-
ders, calculated as

Pd1,d2
c (a|smax(d1,d2)

c) =
1
2

Pd1
c (a|sd1

c) +
1
2

Pd2
c (a|sd2

c) (4.55)

for d1 6= d2. It follows from Equation 4.55 that we treat the sequence of bits as the
Markov chains of order d1 and of order d2, and estimate the probabilities in both
models. Then we use the average of these two probabilities. Since we do not
know which model describes the encoded sequence of bits in a particular con-
text, and a model may depend on context c and a current position of a symbol
in the sequence, using such an estimation may give good results. As the experi-
ments described in Section 4.3.4 show, this method of calculating the probability
indeed improves the compression ratios. The best results were obtained when
setting d1 = 0 and d2 = 2, i.e., when estimating the probability as

P0,2
c (a|s2

c) =
1
2

(
t0
c (a|s0

c) + 1
2

t0
c (0|s0

c) + t0
c (1|s0

c) + 1
+

t2
c (a|s2

c) + 1
2

t2
c (0|s2

c) + t2
c (1|s2

c) + 1

)
. (4.56)

We want to point out that Equation 4.56 is based on the practical experi-
ments in which we achieved a significant improvement in the compression ra-
tios. We cannot support this equation by a precise theoretical argument due to
still incomplete knowledge of the structure of the sequence of bits occurring in
context c, which would prove the concept of using this model, and the choice
of d1 = 0 and d2 = 2 as well. We suspect that justifying this model formally
will be a hard task because we assume that the input sequence is produced by
any context tree source, while the real sequences for which the best values were
chosen are rather special cases of the context tree sources.

Other modifications

The analysis of the sequence x mtf indicates (Figure 4.12) that for most data files
from the Calgary corpus the average value of symbols in the sequence x mtf does
not exceed 15. For some binary files (geo, obj2), however, there are fragments
for which this value grows significantly, even exceeding 100. It can be seen
in Figure 4.12 that the fragments with a large average value are preceded by the
fragments with a very small value. In such a case, the adaptive properties of the
arithmetic coder are crucial to achieve a good adjustment to the local properties
of a coded sequence. The second observation is that for the fragments with
a high symbol average, our model is less effective because each symbol has a

90 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

book1
pic

trans

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

file position

average
MTF symbol

geo
obj2

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

file position

average
MTF symbol

Figure 4.12: Average value of symbols in the consecutive fragments of the se-
quence x mtf for different data files

relative long code. During the arithmetic coding, a running average is calculated
as

avg(t) = avg(t − 1) · (1− ε) + x rle-0
t · ε. (4.57)

If it exceeds a certain threshold, then the symbols from the alphabet A rle-0 are
encoded with the code presented in Figure 4.13. Experimental results show that
good results can be obtained if we assume ε = 0.15 and the threshold 64.

Updating the statistics

The sequence produced by the Burrows–Wheeler transform is composed of the
CT-components only if the input sequence is generated by a context tree source.
Unfortunately, the model of the source describing the sequence x is unknown
during a compression process. Furthermore, it is unknown where the change of

4.1. HOW TO COMPARE DATA COMPRESSION ALGORITHMS? 91

Symbol Code

0a 0 0
0b 0 1
1, . . . , 255 1 b7 b6 b5 b4 b3 b2 b1 b0

Figure 4.13: Encoding the alphabet A rle-0 for a high average symbol value

Contexts t0
max t2

max

first bit 20 150
second bit (first bit = 1)
remaining bits of code prefix (except bi)

first bit bi, when the average ≤ 64 30 300
first four bits bi, when the average > 64

second bit (first bit = 0) 300 700
all except the first bit bi, when the average ≤ 64
last four bits bi, when the average > 64

Figure 4.14: Thresholds for counter halving in different contexts

the context takes place in the sequence x bwt. The probability distribution, as well
as the number of symbols, varies significantly from one context to another, and
thus the probability distribution in subsequent fragments of the sequence x rle-0

may also vary a lot. Therefore, in order to adjust the coder to the local symbol
distribution in the best possible manner, the counters td1

c (a|sd1
c) and td2

c (a|sd2
c) are

halved according to the formulas

td1
c (a|sd1

c) =

⌊
td1
c (a|sd1

c)
2

⌋
, td2

c (a|sd2
c) =

⌊
td2
c (a|sd2

c)
2

⌋
. (4.58)

The halving occurs when the sum of the counters for 0 and 1 exceeds the thresh-
olds in a given context td1

max and td2
max. Because of different speeds at which the

probability distribution change in different contexts, the threshold values td1
max

and td2
max differ from context to context (see Figure 4.14).

A small improvement in the compression ratio can also be achieved by ini-
tialising the counters td1

c and td2
c with values td1

max/32 and td2
max/32 respectively,

and by incrementing these counters by 2 (in this case the values td1
max and td2

max

are multiplied by 2).

92 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

4.2 How to compare data compression algorithms?

4.2.1 Data sets

Choosing the test data

In Section 4.1, we introduced an improved compression algorithm based on the
Burrows–Wheeler transform. In the following sections, we examine its practical
efficiency.

To compare the compression algorithms we need a set of files. In general,
there are two ways of choosing the test files. The first way is to use a well-known
data set. The second way is to prepare new set for testing. It is convenient to use
a standard corpus, because it should be easy to compare new results to those
previously published. Sometimes, however, existing corpora do not give us an
answer to the question about the behaviour of the algorithms in all situations
we are interested in, because it could miss the files from some categories.

Standard data sets

Three well-known data sets are used by researchers in the universal lossless data
compression field. The first one, the Calgary corpus, was introduced in 1989 by
Bell et al. [20, 22]. The files in the corpus were chosen to cover up the typical
types of data used in computer processing. A description of the contents of the
corpus is given in Table 4.1.‡ This corpus is rather old, and it contains some
types of data which went out of use, but the corpus is still a good benchmark
used by many authors.

In 1997, Arnold and Bell proposed [12] a replacement for the Calgary corpus.
The authors reviewed the types of data used contemporarily, examined many
files and proposed a new corpus, nicknamed the Canterbury corpus (Table 4.2).
The corpus is newer than the Calgary corpus, but some files were chosen in a
rather unfortunate manner. The most troublesome file is kennedy.xls. Its specific
structure causes different algorithms to achieve strange results. There are also
simple filters which applied to this file before compression can rapidly improve
the compression ratio. The difference in compression ratio for this file shows no
correlation to the efficiency of algorithms in practical usage. The more so, the
differences in the compression ratio on this file are large enough to dominate
the overall average corpus ratio. The second disadvantage of this corpus is its
usage of very small files. A small difference in the size of the compressed file
makes a significant difference in the compression ratio and causes important,
and disproportional, participation to the average ratio. The last reservation to

‡The corpus presented in Reference [22] contains more papers (paper3 . . . paper6) but these
files were later removed, and the established contents is as in the table.

4.2. HOW TO COMPARE DATA COMPRESSION ALGORITHMS? 93

File Size [B] Description Type of data

bib 111,261 Bibliographic files (refer format) text data
book1 768,771 Text of the book Far from the madding

crowd by Thomas Hardy
English text

book2 610,856 Text of the book Principles of computer
speech by Ian H. Witten in Unix troff for-
mat

English text

geo 102,400 Geophysical (seismic) data binary data
news 377,109 A Usenet news batch file English text
obj1 21,504 Compiled code for Vax: compilation of

progp
executable

obj2 246,814 Compiled code for Apple Macintosh:
Knowledge support system

executable

paper1 53,161 A paper Arithmetic coding for data com-
pression by Witten, Neal and Cleary in
Unix troff format

English text

paper2 82,199 A paper Computer (in)security by Witten
in Unix troff format

English text

pic 513,216 Picture number 5 from the CCITT Fac-
simile test files (text + drawings)

image

progc 39,611 C source code: compress program ver-
sion 4.0

C source

progl 71,646 Lisp source code: system software Lisp source
progp 43,379 Pascal source code: prediction by partial

matching evaluation program
Pascal source

trans 93,695 Transcript of a session on a terminal us-
ing the EMACS editor

English text

Total 3,141,622

Table 4.1: Description of the Calgary corpus

the corpus is that it does not reflect the tendency of the computer files to grow.
Because of the above, we decided not to use it.

The disadvantage of the absence of large files in the Canterbury corpus was
lately partially removed by the proposition of the large Canterbury corpus [98]
(Table 4.3). This corpus contains three files larger than the files in both the Cal-
gary and the Canterbury corpora. Two of these files are English texts and one is
the binary data of genome, e.coli, that is very hard to compress. The recent file
is composed of symbols from the alphabet of size 4 and no algorithm currently
known outperforms the obvious bound of 2.0 bpc by more than 5%.

Silesia corpus

The existing corpora are widely used for testing the compression algorithms. Be-
cause of the very fast progress in computer science their contents do not reflect,

94 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] Description Type of data

alice29.txt 152,089 A book Alice’s Adventures in Wonderland
by Lewis Carroll

English text

asyoulik.txt 125,179 A play As you like it by William Shake-
speare

English text

cp.html 24,603 Compression Pointers HTML
fileds.c 11,150 C source code C source
grammar.lsp 3,721 LISP source code Lisp source
kennedy.xls 1,029,774 Excel Spreadsheet binary data
lcet10.txt 426,754 Workshop on electronic texts, Proceedings

edited by James Daly
English text

plrabn12.txt 481,861 Paradise Lost by John Milton English text
ptt5 513,216 Picture number 5 from the CCITT Fac-

simile test files (text + drawings)
image

sum 38,240 SPARC executable executable
xargs.1 4,227 GNU manual page text data

Total 2,810,784

Table 4.2: Description of the Canterbury corpus

File Size [B] Description Type of data

e.coli 4,6380690 Complete genome of the Esxherichia coli
bacterium

binary data

bible 4,047,392 The King James version of the bible English text
world192.txt 2,473,400 The CIA world fact book English text

Total 11,159,482

Table 4.3: Description of the large Canterbury corpus

however, contemporary files. Nevertheless, many papers on universal lossless
data compression algorithms contain comparisons for these data sets, and, in
our opinion, these corpora will be still valuable candidates as benchmarks in a
few years.

Over the years of using of these corpora some observations have proven their
important disadvantages. The most important in our opinion are:

• the lack of large files—at present we work with much larger files;

• an over-representation of English-language texts—there are only English
files in the three corpora, while in practice many texts are written in differ-
ent languages;

• the lack of files being a concatenation of large projects (e.g., programming
projects)—the application sizes grow quite fast and compressing each of

4.2. HOW TO COMPARE DATA COMPRESSION ALGORITHMS? 95

File Size [B] Description Type of data

dickens 10,192,446 Collected works of Charles Dickens (from
Project Gutenberg)

English text

mozilla 51,220,480 Tarred executables of Mozilla 1.0 (Tru64
Unix edition) (from Mozilla Project)

executable

mr 9,970,564 Medical magnetic resonance image 3D image
nci 33,553,445 Chemical database of structures database
ooffice 6,152,192 A dynamic linked library from Open Of-

fice.org 1.01
executable

osdb 10,085,684 Sample database in MySQL format from
Open Source Database Benchmark

database

reymont 6,625,583 Text of the book Chłopi by Władysław Rey-
mont

PDF in Polish

samba 21,606,400 Tarred source code of Samba 2-2.3 (from
Samba Project)

executable

sao 7,251,944 The SAO star catalogue (from Astronomi-
cal Catalogues and Catalogue Formats)

bin database

webster 41,458,703 The 1913 Webster Unabridged Dictionary
(from Project Gutenberg)

HTML

xml 5,345,280 Collected XML files XML
x-ray 8,474,240 X-ray medical picture image

Total 211,938,580

Table 4.4: Description of the Silesia corpus elaborated within the dissertation

the source files separately is impractical presently; a more convenient way
is to concatenate the whole project and to compress the resulting file;

• absence of medical images—the medical images must not undergo a lossy
compression because of law regulations;

• the lack of databases that currently grow considerably fast—databases are
perhaps the fastest growing type of data.

In this dissertation, we decided to introduce a corpus which solves the prob-
lems observed with the existing corpora. We think that nowadays the most im-
portant matter is to create the corpus of large files. Because of the above, we
propose to use two corpora together: the Calgary corpus and the Silesia corpus
introduced in this section. Each of these data sets should be used separately to
enable comparing the new compression results to the existing ones.

Our intention is to propose a set of files that are significantly bigger than
the ones in the Calgary and the Canterbury corpora. We have chosen the files
to be of such sizes that should not prove too small in several years (Table 4.4).
The chosen files are of different types and come from several sources. In our
opinion, nowadays the two fastest growing types of data are multimedia and

96 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

databases. The former are typically compressed with lossy methods so we do
not include them in the corpus. The database files, osdb, sao, nci, come from
three different fields. The first one is a sample database from an open source
project that is intended to be used as a standard, free database benchmark. The
second one, sao, is one of the astronomical star catalogues. This is a binary
database composed of records of complex structure. The last one, nci, is a part
of the chemical database of structures.

The sizes of computer programs are also growing rapidly. The standard cor-
pora include only single, small routines, both in source and object code. Today
it is almost impractical to compress every single source code file separately. The
projects are composed of hundreds or thousands files, so it is a common habit to
compress it all together. We often can achieve a better compression ratio if we
compress a concatenated file of similar contents than the small separate ones.
This trend is reflected in including a samba file. Besides the source codes, there
is also a need to store the executables. We decided to include two files: ooffice
and mozilla. The first one is a single medium-sized executable for the Windows
system. The second is a concatenation of the whole application for Tru64 Unix
system composed of executables, archives, texts, HTML files, and other.

We mentioned before that there are types of images that cannot be com-
pressed loosely—the medical images. The sizes of such files are also huge and
we include two examples of them in the corpus. The first file, x-ray, is an X-ray
picture of a child’s hand. The second file, mr, is a magnetic resonance, three
dimensional image of a head.

The standard corpora contain text files. Moreover, these files are typically the
largest files of them, but in our opinion there is a need to test the compression
efficiency also on the larger ones stored in different file types. We propose three
such files. The first, dickens, is a collection of some works by Charles Dickens
that can be found in the Project Gutenberg. This is a plain text file. The second
one, reymont, is a book Chłopi [133] by Władysław Reymont stored in a PDF
file. The PDF files can be internally-compressed but the quality of this build-in
compression is rather poor, and much better results can be obtained when we
compress an uncompressed PDF file. Because of this we enclose the uncom-
pressed version. The last text file, webster, is an electronic version of The 1913
Webster Unabridged Dictionary [130] taken from the Project Gutenberg [131]. The
file is stored in the HTML format. The last file of the new corpus, xml, is a con-
catenation of 21 XML files. The XML standard is designed to be a universal file
format for storing documents, so we decided to enclose it.

A more detailed description of the contents of the corpus can be found in Ap-
pendix A. The whole corpus can be downloaded from the URL: http://www-zo.
iinf.polsl.gliwice.pl/∼sdeor/corpus.htm.

http://www-zo.iinf.polsl.gliwice.pl/~sdeor/corpus.htm
http://www-zo.iinf.polsl.gliwice.pl/~sdeor/corpus.htm

4.2. HOW TO COMPARE DATA COMPRESSION ALGORITHMS? 97

4.2.2 Multi criteria optimisation in compression

Compression is a process of reducing the size of a sequence of characters to save
the cost of transmission or storage. One could think that the better the com-
pression ratio, the better the algorithm is. This is true if we neglect time, but
time also matters. Let us suppose that we can choose between two compression
methods: one of them gives good compression ratio, but is slow; the other is fast
but offers a poorer compression ratio. If our goal is to transmit the sequence over
a communication channel, then it is not obvious which method should be used.
The slower one will produce a shorter compressed sequence, but the compres-
sion process is slow, and maybe the compression time surpass the transmission
time and we could not use the full communication speed available, because we
would have to wait for the data to transmit. The faster method will produce
a longer compressed sequence, but the communication could be done with full
speed. Without knowledge of the speed of compression methods on particu-
lar sequences, the sequence length, and the parameters of the communication
channel, we cannot say, which method leads us to faster transmission.

We should not forget also the decompression process. The speed of the de-
compression in many cases significantly differs from the compression speed. We
can imagine a situation typical in the multimedia world. We usually have much
time to compress a DVD film, and we often have powerful computers for this
task. The compression will be done, however, only once. The decompression
is done in every DVD player many times. The computation power of the DVD
player is lower. The files distributed via Internet are also compressed only once,
but they are downloaded and decompressed many times. Often the decompres-
sion speed is more important than the compression speed.

We should not forget, however, the situation in the data transmission, when
the data are compressed before the transmission, and decompressed after it. In
such a case, the compression and decompression speed is usually of equal im-
portance. An opposite situation takes place in backup utilities. The data are
compressed many times, in every backup, but almost never decompressed. In
this case, the decompression speed is of low importance.

The situation described before is typical in the real world. We often have
many criteria, which can be exclusive, and we cannot optimise all of them. We
have to opt for a compromise, and without a detailed knowledge of the case
at which the compression will be used, we cannot choose the best compression
method. In such situations, we talk about multi criteria optimisation. The first re-
search in this field was conducted by Pareto [122, 123] in 1896–1897, who inves-
tigated the problem of satisfying many exclusive criteria. In 1906, in his famous
book, Manuale di economia politica, conuna introduzione alla scienca Sociale [124],
Pareto introduced a concept of the non-dominated solutions. Pareto formulated
such a solution in economical terms as a solution, where no individual could be

98 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

more satisfied without satisfying others less. Currently, we call such solutions
Pareto-optimal. The solutions that are not non-dominated are called dominated
solutions.

We formulate the problem of multi criteria optimisation in modern terms,
following the works by von Neumann and Morgenstern [184]. There are some
number of criteria Q1, Q2, . . . , Qm dependent on some variables:

Qi = Qi(q1, q2, . . . , qr), for i = 1, 2, . . . , m. (4.59)

A tuple of variables:
q = 〈q1, q2, . . . , qr〉 (4.60)

is called a point in the optimisation. A point q is called Pareto-optimal if there is
no other point p such that

∀1≤i≤m Qi(p) ≥ Qi(q). (4.61)

The goal of multi criteria optimisation is to find the set of all the Pareto-
optimal points. The formulation of the Pareto-optimal set (Equation 4.61) is for
the case, in which all the criteria Qi are maximised. In general case, all or some
criteria can be minimised. Therefore, we should reformulate Equation 4.61 to:

∀1≤i≤m Qi(p) �i Qi(q), (4.62)

where �i is the ≤ relation if the criterion Qi is minimised and the ≥ relation if it
is maximised.

There are at least three criteria of compression quality: the compression ra-
tio, the compression speed, and the decompression speed. We measure the com-
pression ratio by the mean number of output bits per input symbol (bpc), so the
smaller is the compression ratio, the better the compression is. Therefore we
minimise this criterion. The speed of compression and decompression is mea-
sured in kB/s, so these criteria are maximised.

4.3 Experiments with the algorithm stages

4.3.1 Burrows–Wheeler transform computation

The Burrows–Wheeler transform can be computed in many ways. A brief sum-
mary of the possibilities is shown in Figure 3.12. In Section 4.1.2, we introduced
an improvement to the Itoh–Tanaka’s computation method. Here we examine
the existing approaches in practice. Tables 4.5 and 4.6 contain the experimental
results of several BWT computation methods on the files from the Calgary and
the Silesia corpora.

We compare the methods for which either the source code or the in-depth de-
scription of the implementation are available. The columns of Tables 4.5 and 4.6

4.3. EXPERIMENTS WITH THE ALGORITHM STAGES 99

Fi
le

Si
ze

[B
]

%
ru

ns
Se

w
iS

ew
LS

M
M

IT
1S

IT
2S

IT
1i

S
IT

2i
S

iI
T1

iI
T

2
C

IT

bi
b

11
1,

26
1

2.
26

0.
06

0.
06

0.
08

0.
16

0.
05

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

bo
ok

1
76

8,
77

1
2.

17
0.

54
0.

52
1.

08
2.

25
0.

04
0.

36
0.

38
0.

34
0.

37
0.

34
0.

34
bo

ok
2

61
0,

85
6

2.
17

0.
40

0.
38

0.
80

1.
71

0.
29

0.
28

0.
27

0.
25

0.
28

0.
25

0.
25

ge
o

10
2,

40
0

4.
11

0.
06

0.
06

0.
08

0.
11

0.
05

0.
06

0.
05

0.
05

0.
05

0.
06

0.
05

ne
w

s
37

7,
10

9
6.

20
0.

21
0.

20
0.

43
1.

05
0.

19
0.

18
0.

16
0.

16
0.

15
0.

16
0.

15
ob

j1
21

,5
04

20
.6

9
0.

03
0.

03
0.

01
0.

03
0.

15
0.

12
0.

08
0.

08
0.

03
0.

08
0.

03
ob

j2
24

6,
81

4
5.

42
0.

13
0.

13
0.

24
0.

55
0.

11
0.

11
0.

10
0.

11
0.

10
0.

10
0.

10
pa

pe
r1

53
,1

61
2.

35
0.

03
0.

04
0.

03
0.

05
0.

03
0.

04
0.

03
0.

04
0.

03
0.

03
0.

03
pa

pe
r2

82
,1

99
1.

85
0.

05
0.

05
0.

06
0.

10
0.

03
0.

04
0.

04
0.

04
0.

04
0.

04
0.

04
pi

c
51

3,
21

6
85

.2
0

0.
15

0.
12

0.
59

1.
16

18
3.

97
18

6.
51

22
4.

50
20

2.
46

0.
10

20
4.

24
0.

10
pr

og
c

39
,6

11
7.

65
0.

04
0.

03
0.

02
0.

04
0.

03
0.

03
0.

03
0.

03
0.

03
0.

03
0.

03
pr

og
l

71
,6

46
15

.6
1

0.
04

0.
04

0.
05

0.
09

0.
05

0.
05

0.
04

0.
05

0.
04

0.
05

0.
04

pr
og

p
43

,3
79

15
.4

8
0.

04
0.

04
0.

03
0.

06
0.

03
0.

04
0.

04
0.

04
0.

03
0.

07
0.

03
tr

an
s

93
,6

95
8.

86
0.

06
0.

06
0.

07
0.

13
0.

05
0.

06
0.

05
0.

05
0.

04
0.

05
0.

04

Ta
bl

e
4.

5:
C

om
pa

ri
so

n
of

di
ff

er
en

t
BW

T
co

m
pu

ta
ti

on
m

et
ho

ds
fo

r
th

e
C

al
ga

ry
co

rp
us

.
T

he
co

m
pu

ta
ti

on
ti

m
es

ar
e

ex
pr

es
se

d
in

se
co

nd
s.

100 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

Fi
le

Si
ze

[B
]

%
ru

ns
Se

w
iS

ew
LS

M
M

IT
1S

IT
2S

IT
1i

S
IT

2i
S

iI
T

1
iI

T
2

C
IT

di
ck

en
s

10
,1

92
,4

46
2.

22
12

.6
3

12
.2

9
20

.9
6

68
.3

0
9.

96
7.

99
9.

38
7.

55
9.

22
7.

14
7.

14
m

oz
ill

a
51

,2
20

,4
80

18
.3

2
64

.2
7

58
.6

8
10

7.
63

36
2.

16
>

50
0

>
50

0
>

50
0

>
50

0
45

.9
1

>
50

0
45

.9
5

m
r

9,
97

0,
56

4
28

.3
4

10
.1

5
9.

50
25

.0
7

62
.6

6
>

50
0

>
50

0
>

50
0

>
50

0
7.

49
>

50
0

7.
50

nc
i

33
,5

53
,4

45
33

.3
3

18
8.

68
66

.9
6

13
8.

95
29

9.
80

>
50

0
>

50
0

>
50

0
>

50
0

56
.2

0
>

50
0

56
.2

2
oo

ffi
ce

6,
15

2,
19

2
10

.5
4

5.
53

5.
38

9.
08

31
.6

8
22

.0
6

21
.0

1
23

.7
5

22
.0

3
3.

86
22

.1
0

3.
86

os
db

10
,0

85
,6

84
5.

89
14

.4
8

12
.9

5
21

.8
1

48
.0

5
11

.7
0

10
.0

9
9.

73
8.

64
9.

49
8.

64
8.

64
re

ym
on

t
6,

62
7,

20
2

3.
34

8.
17

7.
42

15
.5

5
33

.5
4

6.
58

5.
11

5.
50

4.
34

5.
79

4.
31

4.
31

sa
m

ba
21

,6
06

,4
00

13
.3

3
26

.8
0

23
.7

0
51

.7
3

13
0.

05
24

4.
39

23
5.

92
53

.0
3

46
.3

5
18

.5
3

46
.5

9
18

.5
6

sa
o

7,
25

1,
94

4
1.

10
8.

88
8.

75
11

.5
0

24
.4

4
6.

63
7.

06
6.

23
6.

60
6.

45
6.

42
6.

42
w

eb
st

er
41

,4
58

,7
03

1.
25

87
.9

8
64

.6
5

11
8.

57
34

6.
86

85
.4

8
59

.6
9

57
.2

9
42

.1
4

53
.8

5
42

.0
9

42
.1

6
xm

l
5,

34
5,

28
0

2.
89

7.
18

5.
41

12
.1

3
28

.5
8

8.
95

9.
20

6.
59

6.
11

4.
72

5.
82

5.
82

x-
ra

y
8,

47
4,

24
0

0.
45

8.
37

7.
87

12
.7

7
29

.9
0

6.
25

5.
99

5.
86

5.
75

6.
01

5.
68

5.
68

Ta
bl

e
4.

6:
C

om
pa

ri
so

n
of

di
ff

er
en

t
BW

T
co

m
pu

ta
ti

on
m

et
ho

ds
fo

r
th

e
Si

le
si

a
co

rp
us

.
T

he
co

m
pu

ta
ti

on
ti

m
es

ar
e

ex
pr

es
se

d
in

se
co

nd
s.

4.3. EXPERIMENTS WITH THE ALGORITHM STAGES 101

contain the time of the BWT computation expressed in seconds for the following
methods:

• Sew—the copy method by Seward [149]; this method is implemented in the
bzip2 program [150]; our implementation is based on the original one by
Seward,

• iSew—the improved version of Seward’s method; the improvements were
done in implementation only (a brief description of the improvements can
be found in Appendix B),

• LS—the Larsson–Sadakane’s method [102],

• MM—the Manber–Myers’s method [106],

• IT1S—the basic Itoh–Tanaka’s method [90] of order 1 with Seward’s [149]
sorting suffixes method,

• IT2S—the basic Itoh–Tanaka’s method [90] of order 2 with Seward’s [149]
for sorting suffixes method,

• IT1iS—the basic Itoh–Tanaka’s method [90] of order 1 with improved Se-
ward’s method for sorting suffixes,

• IT2iS—the basic Itoh–Tanaka’s method [90] of order 2 with improved Se-
ward’s method for sorting suffixes,

• iIT1—the improved Itoh–Tanaka’s method (Section 4.1.2) of order 1 with
improved Seward’s method for sorting suffixes,

• iIT2—the improved Itoh–Tanaka’s method (Section 4.1.2) of order 2 with
improved Seward’s method for sorting suffixes,

• CIT—the combined method which chooses between the iIT1 and the iIT2
method depending on contents of the sequence to process.

The computation times of the methods for the Calgary corpus are small. This
is caused by the short test files. The most interesting observation for this corpus
is the slowness of some methods processing the pic file. The main problem of all
the sorting-based methods (all of the examined except for LS and MM) is sort-
ing strings with long identical prefixes. The simplest way to find such files is to
count the number of runs occurrence. This method is not perfect, however it is
easy to calculate and, as we can observe from the experiments, it is a good ad
hoc rule to choose files hard to process. The column denoted % runs contains the
percentage number of runs of length 2. As we can see, this ratio is over 85% for
the pic file. The other file for which this value is large is obj1. The computation

102 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

times for this file are small, because of its size, but we can notice that most IT-
based methods work on it 5 times slower than the Sew method. When we focus
on the methods for suffix arrays construction, whose good worst-case complexi-
ties are known (LS and MM methods), we can see, that in practice these methods
are slower than the sorting-based ones.

The files in the Silesia corpus are larger. Therefore the differences between
the computation times for different methods are higher. As we can see, the
Larsson–Sadakane’s and the Manber–Myers’s methods are significantly slower
than the Seward’s method. There are three files, mozilla, mr, and nci, for which
some IT-based methods work very slow. In fact, we stopped the experiments
after 500 seconds, because we decided this time to be impractical, as there are
much faster other methods. The Itoh–Tanaka-based methods employ the Se-
ward’s method for sorting suffixes, but there is one important difference be-
tween the employed method and the Seward’s method. Seward introduced a
highly efficient method for sorting runs. In the original Itoh–Tanaka’s method,
we cannot use this improvement. Therefore, for the files with long runs (all the
mentioned files have the ratio of runs of length 2 over 15%) this method is slow.
One of the improvements proposed in Section 4.1.2 is a special method for sort-
ing runs. Unfortunately, this special treating of runs cannot be applied in the
Itoh–Tanaka’s method of order 2. As we can notice, the improvement of speed
gained by this innovation is significant for all files, and for files hard to sort it is
huge. The improved Itoh–Tanaka’s method of order 2 works, however, faster for
sequences with small number of runs. Therefore, we propose to use the order-2
version if the ratio of runs of length 2 is lower than 7%. Such a combined method
(column CIT), choosing between iIT1 and iIT2, is used in further experiments.

4.3.2 Weight functions in the weighted frequency count transform

In this experiment, we examine the weight functions w. The comparison of these
functions is made using the files from the Calgary corpus. The results are pre-
sented in Table 4.7.§ For each of the examined weight functions, the best set of
parameters were found. We see that the weight functions w8 and w9 achieve the
best compression ratios. The usage of different parameters for different ranges
in the weight function w8 is motivated by the observation that typically charac-
ters in these ranges are from different, but similar, contexts. It is useful to exploit
the information on the probability distribution in such contexts, but it should not
dominate the probability distribution of the current context. The parameter q for
the weight function w9 is the most complex. In this weight function, the number
of different contexts of length 4 that appear in the input sequence is used (the
parameter C4) to exploit some information on the structure of the sequence x.

§The results in this dissertation are slightly different from the ones that were presented in
References [54, 55] because a slightly modified probability estimation method was used.

4.3. EXPERIMENTS WITH THE ALGORITHM STAGES 103

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
9q

q
=

0.
7

p
=

4
p

=
4

p
=

0.
5

p
=

1.
0

p
=
−

1.
40

p
=

4
p

=
3

p
=

3
Fi

le
Si

ze
[B

]
q

=
−

1.
25

q
=

0.
95

q
=

0.
99

9
q

=
1
−

10
0/

C
4

q
=

1
−

10
0/

C
4

bi
b

11
1,

26
1

1.
91

4
1.

91
7

1.
96

9
1.

91
4

1.
89

8
1.

90
8

1.
89

5
1.

89
6

1.
89

1
1.

89
2

bo
ok

1
76

8,
77

1
2.

34
3

2.
31

1
2.

28
3

2.
28

2
2.

27
8

2.
27

9
2.

27
8

2.
27

2
2.

26
7

2.
26

6
bo

ok
2

61
0,

85
6

1.
99

8
1.

98
0

2.
00

0
1.

97
2

1.
96

2
1.

96
2

1.
95

7
1.

95
8

1.
95

4
1.

95
7

ge
o

10
2,

40
0

4.
23

4
4.

22
9

4.
11

4
4.

11
9

4.
14

2
4.

20
4

4.
17

1
4.

14
7

4.
15

7
4.

13
9

ne
w

s
37

7,
10

9
2.

46
3

2.
46

2
2.

46
4

2.
41

5
2.

41
0

2.
43

7
2.

41
5

2.
40

8
2.

40
8

2.
40

9
ob

j1
21

,5
04

3.
76

0
3.

75
4

3.
72

2
3.

69
1

3.
69

0
3.

72
5

3.
70

2
3.

69
2

3.
70

5
3.

70
1

ob
j2

24
6,

81
4

2.
43

6
2.

44
8

2.
48

9
2.

43
0

2.
41

4
2.

43
3

2.
41

5
2.

41
1

2.
41

0
2.

41
7

pa
pe

r1
53

,1
61

2.
42

0
2.

42
2

2.
48

7
2.

42
4

2.
40

5
2.

41
5

2.
40

1
2.

40
3

2.
40

0
2.

40
0

pa
pe

r2
82

,1
99

2.
38

1
2.

37
0

2.
40

5
2.

36
3

2.
35

0
2.

35
5

2.
34

4
2.

34
7

2.
34

3
2.

34
5

pi
c

51
3,

21
6

0.
75

9
0.

74
1

0.
70

3
0.

70
6

0.
71

6
0.

72
6

0.
72

1
0.

71
8

0.
71

8
0.

71
4

pr
og

c
39

,6
11

2.
45

3
2.

46
1

2.
51

8
2.

44
9

2.
43

0
2.

44
9

2.
42

9
2.

43
0

2.
42

7
2.

42
8

pr
og

l
71

,6
46

1.
68

4
1.

69
9

1.
76

8
1.

68
1

1.
67

2
1.

70
1

1.
67

8
1.

67
0

1.
66

9
1.

67
1

pr
og

p
43

,3
79

1.
66

7
1.

69
1

1.
78

4
1.

69
0

1.
67

3
1.

70
1

1.
67

9
1.

67
2

1.
66

9
1.

67
0

tr
an

s
93

,6
95

1.
45

1
1.

48
7

1.
60

8
1.

46
7

1.
45

7
1.

50
4

1.
47

4
1.

45
1

1.
45

1
1.

45
4

A
ve

ra
ge

2.
28

3
2.

28
4

2.
30

8
2.

25
7

2.
25

0
2.

27
1

2.
25

4
2.

24
8

2.
24

8
2.

24
7

St
d.

de
v.

0.
88

0
0.

87
7

0.
84

3
0.

85
7

0.
86

1
0.

86
9

0.
86

5
0.

86
2

0.
86

6
0.

86
2

Ta
bl

e
4.

7:
C

om
pa

ri
so

n
of

th
e

w
ei

gh
t

fu
nc

ti
on

s
fo

r
th

e
C

al
ga

ry
co

rp
us

.
Fo

r
al

l
fu

nc
ti

on
s

th
e

va
lu

e
t m

ax
=

20
48

w
as

us
ed

.
Th

e
co

m
pr

es
si

on
ra

ti
os

ar
e

ex
pr

es
se

d
in

bp
c.

104 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] MTF MTF-1 MTF-2 TS(0) IF DC BS99 WM01 A02 WFC

bib 111,261 1.914 1.906 1.906 2.012 1.963 1.930 1.91 1.951 1.96 1.892
book1 768,771 2.343 2.320 2.306 2.309 2.239 2.224 2.27 2.363 2.22 2.266
book2 610,856 1.998 1.985 1.977 2.028 1.964 1.927 1.96 2.013 1.95 1.957
geo 102,400 4.234 4.221 4.221 4.186 4.190 4.497 4.16 4.354 4.18 4.139
news 377,109 2.463 2.453 2.451 2.587 2.459 2.392 2.42 2.465 2.45 2.409
obj1 21,504 3.760 3.741 3.743 3.900 3.889 3.948 3.73 3.800 3.88 3.701
obj2 246,814 2.436 2.429 2.431 2.637 2.548 2.448 2.45 2.462 2.54 2.417
paper1 53,161 2.420 2.414 2.413 2.589 2.454 2.398 2.41 2.453 2.45 2.400
paper2 82,199 2.381 2.373 2.367 2.458 2.366 2.334 2.36 2.416 2.36 2.345
pic 513,216 0.759 0.742 0.738 0.733 0.706 0.713 0.72 0.768 0.70 0.714
progc 39,611 2.453 2.450 2.453 2.644 2.500 2.469 2.45 2.469 2.50 2.428
progl 71,646 1.684 1.680 1.683 1.853 1.747 1.689 1.68 1.678 1.74 1.671
progp 43,379 1.667 1.666 1.671 1.889 1.745 1.700 1.68 1.692 1.74 1.670
trans 93,695 1.451 1.449 1.453 1.710 1.557 1.473 1.46 1.484 1.55 1.454

Average 2.283 2.274 2.272 2.395 2.309 2.296 2.26 2.312 2.30 2.247
Std. dev. 0.880 0.878 0.879 0.866 0.885 0.954 0.868 0.901 0.885 0.862

Table 4.8: Comparison of the second stage methods for the Calgary corpus. The
compression ratios are expressed in bpc.

We see that the weight function w7, for which the best results were obtained
in the numerical analysis of a simplified case (see Section 4.1.4), does not lead to
the best compression ratios. The weight function w9 is, however, only a slightly
modified version of the weight function w6, which was the second best in the
numerical analysis.

In subsequent experiments, we use the weight function w9q, which is the
quantised version of the function w9, and led to the best compression ratios
among the quantised weight functions. As we can see, the disadvantage caused
by the quantisation can be neglected in this case (in fact, we have achieved a
slight improvement in the average ratio). For the other weight functions this
difference may not be, however, that small.

4.3.3 Approaches to the second stage

In the next experiment, we compare the various second stage methods (Ta-
bles 4.8 and 4.9). The compression results in the columns denoted by MTF, MTF-
1, MTF-2, TS(0), and WFC are obtained using the compression algorithm intro-
duced in this dissertation and presented in Figure 4.1, where the WFC transform
is replaced by the mentioned transforms. For the rest of the transforms, a dif-
ferent probability estimation is needed and we cannot replace only the second
stage. The results for the IF transform are obtained using the algorithm in which
also a different probability estimation method is applied.

The other second stage approaches are not described in the literature pre-
cisely enough, and it is hard to implement them to achieve such results as pre-

4.3. EXPERIMENTS WITH THE ALGORITHM STAGES 105

File Size [B] MTF MTF-1 MTF-2 TS(0) IF DC WFC

dickens 10,192,446 1.904 1.883 1.868 1.852 1.794 1.781 1.816
mozilla 51,220,480 2.629 2.603 2.600 2.631 2.616 2.641 2.543
mr 9,970,564 1.826 1.823 1.822 1.780 1.776 1.806 1.770
nci 33,553,445 0.301 0.299 0.299 0.306 0.298 0.316 0.297
ooffice 6,152,192 3.484 3.461 3.459 3.505 3.473 3.465 3.380
osdb 10,085,684 1.839 1.830 1.828 1.815 1.933 2.002 1.835
reymont 6,627,202 1.258 1.246 1.237 1.243 1.218 1.222 1.224
samba 21,606,400 1.518 1.517 1.518 1.594 1.554 1.574 1.518
sao 7,251,944 5.367 5.298 5.294 5.226 5.248 5.306 5.195
webster 41,458,703 1.332 1.319 1.309 1.308 1.263 1.325 1.276
xml 5,345,280 0.596 0.595 0.595 0.639 0.619 0.606 0.602
x-ray 8,474,240 3.577 3.576 3.575 3.521 3.500 3.606 3.518

Average 2.136 2.121 2.117 2.118 2.108 2.138 2.081
Std. dev. 1.425 1.411 1.411 1.390 1.397 1.410 1.380

Table 4.9: Comparison of the second stage methods for the Silesia corpus. The
compression ratios are expressed in bpc.

sented by their authors. Therefore the reasonable choice is to use the published
results. The compression ratios for the distance coder transform (DC) are taken
from the experiments with its currently best implementation, ybs [200]. The re-
sults for the BS99 solution are presented following the work by Balkenhol and
Shtarkov [18]. The column denoted by WM01 contains the compression ratios
of the best compression algorithm by Wirth and Moffat [195] where no second
stage transform is used. The column denoted by A02 presents the results for the
other implementation of the IF transform following Arnavut [9].

The comparison shows that different transforms are the best for different files
from the Calgary and the Silesia corpora, but most of the top results are achieved
using the WFC transform. One should, however, remember that improving the
probability estimation for the IF, DC, BS99, WM01, or A02 methods may change
this result.

An interesting observation is that the orderings of the performance of the
transforms for the Calgary corpus and for the Silesia corpus are different. For the
Calgary corpus the WFC transform is the best, but the next places take MTF-2,
MTF-1, and MTF transforms. The IF and TS(0) transforms give worse results
with respect to the compression ratio. For the Silesia corpus the transforms IF
and TS(0) are better or almost equal with respect to the compression ratio to the
MTF family transforms. It suggests that these transforms work better for long
sequences.

106 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

Method Calgary corpus Silesia corpus

0-order 2.271 2.096
1-order 2.265 2.091
2-order 2.264 2.088
3-order 2.266 2.088
4-order 2.270 2.088

0-1-weighted 2.249 2.083
0-2-weighted 2.247 2.081
0-3-weighted 2.248 2.081
0-4-weighted 2.249 2.081
1-2-weighted 2.252 2.083
1-3-weighted 2.251 2.082
1-4-weighted 2.251 2.081
2-3-weighted 2.256 2.084
2-4-weighted 2.256 2.083
3-4-weighted 2.261 2.086

Table 4.10: Average compression ratios for various methods of probability esti-
mation. The compression ratios are expressed in bpc.

4.3.4 Probability estimation

In Section 4.1.6, we introduced a method for probability estimation based on
weighting between estimations of two context lengths. Now we are going to
examine for which context lengths for the compression ratios are the best. The
empirical results are shown in Table 4.10.

The first five rows of the table show that the best choice of order is d = 2, if
no weighting is used (Equation 4.54). Better results can be, however, obtained if
the weighted probability is used (Equation 4.55). The experiments show that we
obtain the best results when the orders are set to d1 = 0 and d2 = 2. We can also
notice that the improvement in the compression ratio is larger for the Calgary
corpus than for the Silesia corpus. The proper choice of orders d1 and d2 is also
more important for the Calgary corpus.

4.4 Experimental comparison of the improved algorithm
and the other algorithms

4.4.1 Choosing the algorithms for comparison

Perhaps the most interesting experiment is to compare the efficiency of the im-
proved algorithm proposed in this dissertation and some of the state of the art
algorithms. We examine in this section many compression methods. Some of
them are described in the literature, but no executables for them are available.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 107

For these algorithms we cannot provide the experimental compression results
for the Silesia corpus. The other ones are available for downloading so we can
examine them on both corpora.

The dissertation concerns universal compression, so we have to exclude from
the comparison the compression programs that are highly tuned to files from the
Calgary corpus. Some of such compressors use a different compression method
depending on what they recognise as a file to process. For example, the pic
and geo files can be better compressed if they undergo a special transformation
before the compression. There exist compressors that monitor the size of the file
and if it is exactly the same as the size of files from the Calgary corpus, they make
such a transformation. Other programs monitor the contents of the file and if
they recognise that the file is an English text, they run some preliminary filters,
which are similar to those described in Section 3.2.6. Many files of the Calgary
corpus are English texts, so such a heuristics gives an advantage for this corpus.
There are also methods for improving the compression ratio for executable files,
and some compression programs also use a heuristic to recognise such files.

When it was possible, such data-specific preliminary filtering methods were
turned off in the programs. Unfortunately, in some compressors there is no way
to abandon filters and we have to resign from including them in the experi-
ments.

4.4.2 Examined algorithms

Before we go to the comparison of the compression algorithms, we expand the
abbreviations of the examined methods:

• A02—the BWT-based algorithm with the inversion frequencies transform
as the second stage; the results are from the work by Arnavut [9];

• acb—the Associative Coder by Buyanovsky [40]; the compression results
are from experiments with the acb 2.00c program [41];

• B97—the best version of the PPM algorithms proposed by Bunton [37];

• boa—the boa 0.58b compression program by Sutton [160], which is an im-
plementation of the PPM algorithm;

• BS99—the BWT-based algorithm invented by Balkenhol and Shtarkov [18];

• BW94—the original Burrows–Wheeler compression algorithm [39];

• bzip—the bzip 0.21 compression program by Seward [148]; this program
achieves the same compression ratios as Fenwick’s method [68];

• CTW—context tree weighting method proposed by Willems et al. [189]; the
results are from Reference [17];

108 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

• DM—the improved BWT-based algorithm proposed in this dissertation
with the move-to-front transform as the second stage;

• DW—the improved BWT-based algorithm proposed in this dissertation
with the weighted frequency count transform as the second stage;

• F96—the BWT-based algorithm proposed by Fenwick [68]; the same com-
pression ratios are achieved by the bzip 0.21 program [148], which is used
for experiments on the Silesia corpus;

• gzip—standard gzip program[72]; this is an implementation of the well
known LZ77 algorithm [202];

• LDMC—currently the best dynamic Markov coding algorithm, originally
introduced by Cormack and Horspool [52]; this is an improved version,
LazyDMC, by Bunton [33];

• lgha—the speed-optimised ha compression program; this implementation
is provided by Lyapko [105];

• LZMA—the Ziv–Lempel algorithm presented by Pavlov [127]; the results
are from experiments with the 7-zip program;

• LZW—standard UNIX compress program; this is an implementation of the
LZW algorithm [187];

• MH—the cPPMII algorithm proposed by Shkarin [154, 155]; the results are
from experiments with the PPMonstr var. H program;

• MI4—the cPPMII algorithm by Shkarin [156]; the result are from experi-
ments with the PPMonstr var. I program with order 4;

• MI64—the cPPMII algorithm by Shkarin [156]; the result are from experi-
ments with the PPMonstr var. I program with order 64;

• PPMdH—the PPMII algorithm proposed by Shkarin [154, 155]; the results
are from experiments with the PPMd var. H program;

• PPMN—the PPMN algorithm by Smirnov [158]; the results are from ex-
periments with the ppmnb1+ program;

• rar—the rar 2.90 compression program [137];

• szip—the BWT-based algorithm presented by Schindler [144]; the results
are from experiments with the szip program [145];

• T98—the PPMD+ algorithm proposed by Teahan [163]; the results are from
experiments with the ppmd+ program [162];

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 109

• ufa—the binary PPM algorithm by Pavlov [126]; the results are from ex-
periments with the ufa 0.04 Beta 1 program;

• VW98—the switching method, algorithm presented by Volf and Willems
[182, 183];

• WM01—the best BWT-based algorithm with no second stage; the results
are from the work by Wirth and Moffat [195];

• ybs—the BWT-based compression program with the distance coder (DC)
transform as the second stage; this is an implementation by Yoockin [200].

4.4.3 Comparison procedure

All the mentioned compression algorithms were compared on two corpora—
the Calgary corpus and the Silesia corpus. For each file of the corpora, all the
compression programs were run and the size of the compressed file, the com-
pression time, and the decompression time were measured. The experiments
were performed on a computer equipped with the AMD Athlon 1.4 GHz pro-
cessor, 512 MB DDRAM, and Microsoft Windows 2000 Professional operating
system. The times of program execution were measured by using the program
utility ntimer. The presented times are user times, as we want to know only the
time of compression not the I/O operations times.

For comparison, we calculated two compression ratios. The first one is the
standard compression ratio expressed in output bits per input character (bpc).
The second one is a normalised compression ratio. We calculated it by dividing
the standard compression ratio by the best standard compression ratio of all the
examined compression methods. The goal of using also normalised compres-
sion ratio is that each file can be compressed to the smallest possible number
of bits, namely its entropy. We do not know, however, the entropy. The best
what we can do is to approximate it by the length of the shortest compressed
sequence. Therefore, the normalised compression ratio says how far each com-
pression algorithm is from the best one. To compare the algorithms in terms of
multi criteria optimisation, we calculated also the compression and decompres-
sion speed. For each file these speeds were found and then the average were
calculated.

We mentioned about large differences between the three main families of al-
gorithms in modern compression: the Ziv–Lempel methods, the prediction by
partial matching methods, and the Burrows–Wheeler transform-based methods.
For a clear distinction we denote these algorithms by different marks at the fig-
ures. The LZ methods are denoted by ◦, the PPM methods are denoted by ?,
and the BWT-based methods by •.

110 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

The compression programs were examined with many combinations of pa-
rameters. For some of them, however, the number of available sets of param-
eters is vast, and it is impossible to examine all possibilities. The compression
results presented in the literature are in most cases optimised for the compres-
sion ratio. Therefore, for possibility of comparison to the published methods,
for which there are no executables available, we decided to choose such a set of
parameters that leads us to the best compression ratio. If, however, there can be
found an interesting set of parameters, for example such a set for which a given
algorithm dominates some other algorithms that it does not dominate for the
chosen set, we also included these combination of parameters in comparison.
This situation took place for Shkarin’s PPM algorithms, for which we examined
four set of parameters.

The data-specific compression options, like English text filters, were turned
off. The maximum size of memory available for the compression was chosen
to provide an honest comparison of algorithms. The memory limit equal to
10 times the size of the file to compress (but not less than 16 MB) was decided
to be a good choice. This is a natural memory requirement for the BWT-based
compression algorithms and the PPM methods significantly differ in the mem-
ory consumption from each other (with the growth of the context length the
memory needed to store the model grows fast and is not naturally bounded).
A more detailed description of the options of the programs used in the experi-
ments is presented in Appendix C.

4.4.4 Experiments on the Calgary corpus

The Calgary corpus is a standard corpus for examining the compression algo-
rithms. There are a number of compression methods for which the compression
ratios can be found in the literature. Therefore, we can compare the best com-
pression methods proposed so far.

Table 4.11 contains the standard compression ratios for files from the Calgary
corpus, and Table 4.12 contains the normalised compression ratios. The best
PPM algorithms achieve on this corpus significantly better compression ratios
than the LZ and the BWT-based methods. If, however, we look at Tables 4.13
and 4.14, we see that this high efficiency is occupied by the low speed of these
algorithms.

Better comparison can be done if we look at Figures 4.15, 4.16, 4.17, and 4.18.
(The figures do not contain data for some algorithms presented in Table 4.11 as
there are no executables for them, and we could not measure their compression
and decompression speed.)

We can see that in general, the PPM algorithms achieve the best compres-
sion ratio, but they are slow (Figures 4.15 and 4.16). The fastest compression
algorithms are the LZ methods, but their compression ratio is poor. The BWT-

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 111

File Size [B] gzip LZW LZMA BW94 F96 szip bwc BS99 ybs WM01 A02 CTW VW98

bib 111,261 2.509 3.346 2.202 2.07 1.95 1.969 1.968 1.91 1.930 1.951 1.96 1.79 1.714
book1 768,771 3.250 3.300 2.717 2.49 2.39 2.348 2.401 2.27 2.224 2.363 2.22 2.19 2.150
book2 610,856 2.700 3.291 2.224 2.13 2.04 2.020 2.045 1.96 1.927 2.013 1.95 1.87 1.820
geo 102,400 5.345 6.076 4.183 4.45 4.50 4.308 4.297 4.16 4.497 4.354 4.18 4.46 4.526
news 377,109 3.063 3.896 2.522 2.59 2.50 2.480 2.506 2.42 2.392 2.465 2.45 2.29 2.210
obj1 21,504 3.839 5.226 3.526 3.98 3.87 3.779 3.823 3.73 3.948 3.800 3.88 3.68 3.607
obj2 246,814 2.628 4.170 1.997 2.64 2.46 2.464 2.487 2.45 2.448 2.462 2.54 2.31 2.245
paper1 53,161 2.791 3.774 2.607 2.55 2.46 2.495 2.474 2.41 2.398 2.453 2.45 2.25 2.152
paper2 82,199 2.887 3.519 2.658 2.51 2.41 2.432 2.439 2.36 2.334 2.416 2.36 2.21 2.136
pic 513,216 0.817 0.970 0.652 0.83 0.77 0.767 0.797 0.72 0.713 0.768 0.70 0.79 0.764
progc 39,611 2.678 3.866 2.545 2.58 2.49 2.506 2.494 2.45 2.469 2.469 2.50 2.29 2.195
progl 71,646 1.805 3.031 1.678 1.80 1.72 1.706 1.700 1.68 1.689 1.678 1.74 1.56 1.482
progp 43,379 1.812 3.112 1.685 1.79 1.70 1.735 1.709 1.68 1.700 1.692 1.74 1.60 1.460
trans 93,695 1.611 3.265 1.432 1.57 1.50 1.512 1.498 1.46 1.473 1.484 1.55 1.34 1.256

Average 2.695 3.632 2.331 2.43 2.34 2.323 2.331 2.26 2.296 2.312 2.30 2.19 2.123
Std. dev. 1.079 1.148 0.872 0.917 0.932 0.886 0.888 0.868 0.954 0.901 0.885 0.924 0.949

File LDMC T98 B97 PPMN PPMdH MH MI4 MI64 lgha acb rar boa ufa DM DW

bib 2.018 1.862 1.786 1.739 1.732 1.680 1.806 1.661 1.938 1.936 2.388 1.738 1.937 1.906 1.892
book1 2.298 2.303 2.184 2.200 2.198 2.135 2.222 2.120 2.453 2.317 3.102 2.205 2.360 2.306 2.266
book2 2.030 1.963 1.862 1.848 1.838 1.783 1.891 1.745 2.142 1.936 2.538 1.860 2.048 1.977 1.957
geo 4.484 4.733 4.458 4.376 4.346 4.160 3.888 3.868 4.639 4.556 5.235 4.426 4.385 4.221 4.139
news 2.534 2.355 2.285 2.223 2.195 2.142 2.232 2.088 2.617 2.318 2.887 2.222 2.508 2.451 2.409
obj1 3.830 3.728 3.678 3.559 3.541 3.504 3.364 3.346 3.657 3.504 3.672 3.619 3.845 3.743 3.701
obj2 2.560 2.378 2.283 2.185 2.174 2.118 2.030 1.891 2.606 2.201 2.432 2.232 2.571 2.431 2.417
paper1 2.525 2.330 2.250 2.225 2.196 2.147 2.206 2.121 2.364 2.344 2.729 2.224 2.481 2.413 2.400
paper2 2.429 2.315 2.213 2.201 2.182 2.126 2.185 2.112 2.335 2.338 2.783 2.203 2.407 2.367 2.345
pic 0.758 0.795 0.781 0.728 0.756 0.715 0.721 0.668 0.805 0.745 0.759 0.747 0.812 0.738 0.714
progc 2.575 2.363 2.291 2.253 2.208 2.165 2.197 2.104 2.388 2.333 2.661 2.261 2.509 2.453 2.428
progl 1.822 1.677 1.545 1.474 1.443 1.401 1.547 1.343 1.712 1.505 1.764 1.484 1.787 1.683 1.671
progp 1.840 1.696 1.531 1.503 1.456 1.417 1.541 1.336 1.706 1.503 1.751 1.464 1.807 1.671 1.670
trans 1.708 1.467 1.325 1.259 1.226 1.188 1.377 1.136 1.533 1.294 1.547 1.244 1.547 1.453 1.454

Average 2.387 2.283 2.177 2.127 2.107 2.049 2.086 1.967 2.350 2.202 2.589 2.138 2.357 2.272 2.247
Std. dev. 0.903 0.960 0.930 0.916 0.911 0.884 0.786 0.829 0.928 0.936 1.055 0.934 0.894 0.879 0.862

Table 4.11: Compression ratios (in bpc) of the algorithms for the Calgary corpus

112 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] gzip LZW LZMA BW94 F96 szip bwc BS99 ybs WM01 A02 CTW VW98

bib 111,261 1.511 2.014 1.326 1.246 1.173 1.185 1.185 1.150 1.162 1.175 1.180 1.078 1.032
book1 768,771 1.533 1.644 1.282 1.175 1.130 1.108 1.133 1.071 1.049 1.115 1.047 1.033 1.014
book2 610,856 1.547 1.924 1.274 1.221 1.170 1.158 1.172 1.123 1.104 1.154 1.117 1.072 1.043
geo 102,400 1.382 1.571 1.081 1.150 1.158 1.114 1.111 1.075 1.163 1.126 1.081 1.153 1.170
news 377,109 1.467 1.882 1.208 1.240 1.200 1.188 1.200 1.159 1.146 1.181 1.173 1.097 1.058
obj1 21,504 1.147 1.562 1.054 1.189 1.157 1.129 1.143 1.115 1.180 1.136 1.160 1.100 1.078
obj2 246,814 1.390 2.238 1.056 1.396 1.303 1.303 1.315 1.296 1.295 1.302 1.343 1.222 1.187
paper1 53,161 1.315 1.779 1.229 1.202 1.161 1.176 1.166 1.136 1.131 1.157 1.155 1.061 1.015
paper2 82,199 1.367 1.666 1.259 1.188 1.144 1.152 1.155 1.117 1.105 1.144 1.117 1.046 1.011
pic 513,216 1.253 1.488 1.000 1.273 1.181 1.176 1.222 1.104 1.094 1.178 1.074 1.212 1.172
progc 39,611 1.273 1.837 1.210 1.226 1.188 1.191 1.185 1.164 1.173 1.173 1.188 1.088 1.043
progl 71,646 1.344 2.257 1.249 1.340 1.279 1.270 1.266 1.251 1.258 1.249 1.296 1.162 1.103
progp 43,379 1.356 2.329 1.261 1.340 1.277 1.299 1.279 1.257 1.272 1.266 1.302 1.198 1.093
trans 93,695 1.418 2.874 1.261 1.382 1.320 1.331 1.319 1.285 1.297 1.306 1.364 1.180 1.106

Average 1.379 1.933 1.196 1.255 1.203 1.199 1.204 1.165 1.174 1.190 1.186 1.122 1.080
Std. dev. 0.113 0.383 0.103 0.080 0.063 0.073 0.067 0.076 0.079 0.064 0.102 0.064 0.061

File LDMC T98 B97 PPMN PPMdH MH MI4 MI64 lgha acb rar boa ufa DM DW

bib 1.215 1.121 1.075 1.047 1.043 1.011 1.087 1.000 1.167 1.166 1.438 1.046 1.166 1.148 1.139
book1 1.084 1.086 1.030 1.038 1.037 1.007 1.048 1.000 1.157 1.093 1.463 1.040 1.113 1.088 1.069
book2 1.163 1.125 1.067 1.059 1.053 1.022 1.084 1.000 1.228 1.109 1.454 1.066 1.174 1.133 1.121
geo 1.159 1.224 1.153 1.131 1.124 1.075 1.005 1.000 1.199 1.178 1.353 1.144 1.134 1.091 1.070
news 1.214 1.128 1.094 1.065 1.051 1.026 1.069 1.000 1.253 1.110 1.383 1.064 1.201 1.174 1.154
obj1 1.145 1.114 1.099 1.064 1.058 1.047 1.005 1.000 1.093 1.047 1.097 1.082 1.149 1.119 1.106
obj2 1.354 1.258 1.207 1.155 1.150 1.120 1.074 1.000 1.378 1.164 1.286 1.180 1.360 1.286 1.278
paper1 1.190 1.099 1.061 1.049 1.035 1.012 1.040 1.000 1.115 1.105 1.287 1.049 1.170 1.138 1.132
paper2 1.150 1.096 1.048 1.042 1.033 1.007 1.035 1.000 1.106 1.107 1.318 1.043 1.140 1.121 1.110
pic 1.163 1.219 1.198 1.117 1.160 1.097 1.106 1.025 1.235 1.143 1.164 1.146 1.245 1.132 1.095
progc 1.224 1.123 1.089 1.071 1.049 1.029 1.044 1.000 1.135 1.109 1.265 1.075 1.192 1.166 1.154
progl 1.357 1.249 1.150 1.098 1.074 1.043 1.152 1.000 1.275 1.121 1.313 1.105 1.331 1.253 1.244
progp 1.377 1.269 1.146 1.125 1.090 1.061 1.153 1.000 1.277 1.125 1.311 1.096 1.353 1.251 1.250
trans 1.504 1.291 1.166 1.108 1.079 1.046 1.212 1.000 1.349 1.139 1.362 1.095 1.362 1.279 1.280

Average 1.236 1.172 1.113 1.084 1.074 1.043 1.080 1.002 1.212 1.123 1.321 1.088 1.221 1.170 1.157
Std. dev. 0.117 0.075 0.056 0.038 0.042 0.035 0.060 0.007 0.089 0.034 0.103 0.043 0.092 0.069 0.075

Table 4.12: Normalised compression ratios of the algorithms for the Calgary
corpus

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 113

File Size [B] gzip LZW LZMA F96 szip bwc ybs PPMN PPMdH

bib 111,261 0.03 0.06 0.34 0.09 0.08 0.15 0.08 0.21 0.09
book1 768,771 0.23 0.16 2.29 0.97 0.92 0.97 0.84 2.56 0.95
book2 610,856 0.13 0.14 1.80 0.66 0.65 0.73 0.60 1.50 0.58
geo 102,400 0.06 0.05 0.18 0.11 0.07 0.16 0.08 0.47 0.13
news 377,109 0.08 0.11 0.94 0.36 0.36 0.46 0.30 1.07 0.37
obj1 21,504 0.01 0.03 0.05 0.03 0.02 0.07 0.02 0.08 0.03
obj2 246,814 0.08 0.07 0.66 0.22 0.18 0.28 0.19 0.50 0.18
paper1 53,161 0.02 0.04 0.13 0.04 0.04 0.08 0.03 0.14 0.04
paper2 82,199 0.03 0.04 0.19 0.07 0.06 0.13 0.05 0.19 0.06
pic 513,216 0.30 0.06 1.01 0.12 8.82 0.29 0.20 0.30 0.11
progc 39,611 0.02 0.04 0.10 0.02 0.03 0.11 0.03 0.11 0.03
progl 71,646 0.03 0.06 0.22 0.06 0.06 0.11 0.02 0.11 0.04
progp 43,379 0.03 0.03 0.16 0.04 0.06 0.08 0.02 0.09 0.04
trans 93,695 0.02 0.04 0.27 0.07 0.08 0.13 0.06 0.14 0.06

Total 3,141,622 1.07 0.93 8.34 2.86 11.43 3.75 2.52 7.47 2.71

Avg. comp. speed 2875 2710 384 1346 1074 728 1615 511 1414
Std. dev. 1108 2034 73 867 357 330 723 359 951

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

bib 111,261 0.21 0.38 0.53 0.39 1.07 0.11 0.69 0.56 0.08 0.13
book1 768,771 1.81 2.27 4.10 1.54 22.60 0.73 8.00 3.60 0.67 0.89
book2 610,856 1.31 1.73 3.44 1.16 12.04 0.51 4.80 2.72 0.49 0.64
geo 102,400 0.29 1.01 1.01 0.60 1.55 0.14 1.44 0.78 0.14 0.18
news 377,109 0.76 1.45 2.48 0.96 6.01 0.34 3.14 1.92 0.33 0.43
obj1 21,504 0.06 0.20 0.21 0.11 0.19 0.04 0.19 0.14 0.04 0.04
obj2 246,814 0.44 1.10 1.41 0.62 2.16 0.17 1.54 1.25 0.23 0.30
paper1 53,161 0.11 0.21 0.28 0.20 0.45 0.05 0.29 0.29 0.06 0.08
paper2 82,199 0.16 0.30 0.41 0.20 0.76 0.08 0.46 0.43 0.07 0.11
pic 513,216 0.31 0.63 1.06 0.32 2.20 0.15 0.93 1.81 0.19 0.29
progc 39,611 0.08 0.18 0.21 0.12 0.27 0.05 0.20 0.22 0.04 0.06
progl 71,646 0.11 0.21 0.32 0.14 0.30 0.06 0.27 0.35 0.06 0.08
progp 43,379 0.08 0.16 0.25 0.14 0.24 0.03 0.18 0.24 0.04 0.07
trans 93,695 0.16 0.28 0.45 0.15 0.33 0.06 0.30 0.45 0.06 0.11

Total 3,141,622 5.89 10.11 16.16 6.65 50.17 2.52 22.43 14.76 2.50 3.41

Avg. comp. speed 572 295 195 458 131 1241 196 193 1187 821
Std. dev. 313 164 88 343 75 674 120 34 488 292

Table 4.13: Compression times (in seconds) of the algorithms for the Calgary
corpus

114 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] gzip LZW LZMA F96 szip bwc ybs PPMN PPMdH

bib 111,261 0.01 0.04 0.03 0.04 0.04 0.10 0.04 0.22 0.09
book1 768,771 0.03 0.10 0.08 0.45 0.42 0.44 0.36 2.58 0.97
book2 610,856 0.02 0.06 0.06 0.31 0.27 0.30 0.24 1.56 0.64
geo 102,400 0.01 0.03 0.03 0.07 0.06 0.10 0.06 0.45 0.15
news 377,109 0.02 0.10 0.05 0.18 0.17 0.25 0.15 1.11 0.36
obj1 21,504 0.01 0.03 0.02 0.02 0.02 0.07 0.02 0.08 0.03
obj2 246,814 0.02 0.05 0.03 0.07 0.07 0.13 0.08 0.53 0.21
paper1 53,161 0.01 0.03 0.03 0.02 0.03 0.09 0.03 0.12 0.05
paper2 82,199 0.01 0.03 0.03 0.03 0.03 0.08 0.03 0.20 0.08
pic 513,216 0.02 0.04 0.04 0.06 0.10 0.19 0.10 0.34 0.13
progc 39,611 0.02 0.02 0.02 0.02 0.01 0.07 0.02 0.11 0.04
progl 71,646 0.01 0.04 0.03 0.03 0.02 0.10 0.02 0.12 0.04
progp 43,379 0.01 0.02 0.02 0.01 0.02 0.07 0.01 0.10 0.04
trans 93,695 0.01 0.02 0.02 0.03 0.02 0.08 0.03 0.14 0.06

Total 3,141,622 0.21 0.61 0.49 1.34 1.28 2.07 1.19 7.66 2.89

Avg. comp. speed 12105 4308 5066 2860 2772 1194 2728 487 1271
Std. dev. 8989 3418 3667 1839 1161 660 1126 308 800

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

bib 111,261 0.21 0.39 0.55 0.22 0.91 0.03 0.59 0.58 0.06 0.10
book1 768,771 1.86 2.38 4.19 1.58 22.04 0.05 8.06 3.98 0.48 0.73
book2 610,856 1.30 1.82 3.53 1.16 12.07 0.04 4.88 3.08 0.33 0.51
geo 102,400 0.30 1.15 1.16 0.53 1.56 0.01 1.55 0.84 0.10 0.15
news 377,109 0.80 1.51 2.56 0.96 6.04 0.03 3.18 2.09 0.23 0.34
obj1 21,504 0.05 0.22 0.21 0.12 0.19 0.01 0.18 0.17 0.02 0.04
obj2 246,814 0.45 1.21 1.45 0.61 2.14 0.02 1.56 1.40 0.13 0.22
paper1 53,161 0.10 0.23 0.28 0.12 0.37 0.02 0.27 0.29 0.03 0.06
paper2 82,199 0.16 0.31 0.40 0.18 0.74 0.02 0.47 0.46 0.04 0.08
pic 513,216 0.34 0.70 1.13 0.05 2.19 0.02 1.06 2.05 0.13 0.25
progc 39,611 0.08 0.19 0.23 0.11 0.26 0.02 0.20 0.25 0.02 0.04
progl 71,646 0.13 0.23 0.34 0.12 0.35 0.02 0.26 0.39 0.03 0.05
progp 43,379 0.09 0.17 0.23 0.09 0.21 0.02 0.17 0.26 0.02 0.05
trans 93,695 0.15 0.30 0.46 0.14 0.34 0.02 0.27 0.48 0.04 0.08

Total 3,141,622 6.02 10.81 16.72 5.99 49.41 0.33 22.70 16.32 1.66 2.70

Avg. comp. speed 557 275 190 1118 134 8147 198 176 1946 1072
Std. dev. 273 148 82 2567 74 6937 110 30 690 300

Table 4.14: Decompression times (in seconds) of the algorithms for the Calgary
corpus

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 115

•
•

◦

?
?

•
•

◦

◦

?

?
?

?
?

?

◦

•
?

•
D

W
D

M
LZ

M
A

ac
b

bo
a

bw
c

bz
ip

LZ
W gz

ip

lg
ha P

P
M

N
P

P
M

dH
M

H
M

I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

20
0

50
0

10
00

20
00

2

2.
53

3.
5

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

15
:

C
om

pr
es

si
on

ra
ti

o
ve

rs
us

co
m

pr
es

si
on

sp
ee

d
of

th
e

ex
am

in
ed

al
go

ri
th

m
s

fo
r

th
e

C
al

ga
ry

co
rp

us
.

Th
e

LZ
m

et
ho

ds
ar

e
de

no
te

d
by

◦,
th

e
PP

M
m

et
ho

ds
ar

e
de

no
te

d
by

?
,a

nd
th

e
BW

T-
ba

se
d

m
et

ho
ds

by
•.

116 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

•
•

◦
?

?

•
•

◦

◦

?

?
?

?
?

?

◦

•
?

•
D

W
D

M
LZ

M
A

ac
b

bo
a

bw
c

bz
ip

LZ
W gz

ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

20
0

50
0

10
00

20
00

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

no
rm

al
is

ed
co

m
pr

es
si

on
ra

tio
[b

pc
]

Fi
gu

re
4.

16
:N

or
m

al
is

ed
co

m
pr

es
si

on
ra

ti
o

ve
rs

us
co

m
pr

es
si

on
sp

ee
d

of
th

e
ex

am
in

ed
al

go
ri

th
m

s
fo

r
th

e
C

al
ga

ry
co

rp
us

.T
he

LZ
m

et
ho

ds
ar

e
de

no
te

d
by

◦,
th

e
PP

M
m

et
ho

ds
ar

e
de

no
te

d
by

?
,a

nd
th

e
BW

T-
ba

se
d

m
et

ho
ds

by
•.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 117

•
•

◦

?
?

•
•

◦

◦

?

?
?

?
?

?

◦

•
?

•
D

W
D

M
LZ

M
A

ac
b

bo
a

bw
c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

10
0

20
0

50
0

10
00

20
00

50
00

10
4

2

2.
53

3.
5

de
co

m
pr

es
si

on
sp

ee
d

[k
B

/s
]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

17
:C

om
pr

es
si

on
ra

ti
o

ve
rs

us
de

co
m

pr
es

si
on

sp
ee

d
of

th
e

ex
am

in
ed

al
go

ri
th

m
s

fo
r

th
e

C
al

ga
ry

co
rp

us
.T

he
LZ

m
et

ho
ds

ar
e

de
no

te
d

by
◦,

th
e

PP
M

m
et

ho
ds

ar
e

de
no

te
d

by
?

,a
nd

th
e

BW
T-

ba
se

d
m

et
ho

ds
by

•.

118 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

•
•

◦
?

?

•
•

◦

◦

?

?
?

?
?

?

◦

•
?

•
D

W
D

M
LZ

M
A

ac
b

bo
a

bw
c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

10
0

20
0

50
0

10
00

20
00

50
00

10
4

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

no
rm

al
is

ed
co

m
pr

es
si

on
ra

tio
[b

pc
]

Fi
gu

re
4.

18
:N

or
m

al
is

ed
co

m
pr

es
si

on
ra

ti
o

ve
rs

us
de

co
m

pr
es

si
on

sp
ee

d
of

th
e

ex
am

in
ed

al
go

ri
th

m
s

fo
r

th
e

C
al

ga
ry

co
rp

us
.T

he
LZ

m
et

ho
ds

ar
e

de
no

te
d

by
◦,

th
e

PP
M

m
et

ho
ds

ar
e

de
no

te
d

by
?

,a
nd

th
e

BW
T-

ba
se

d
m

et
ho

ds
by

•.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 119

based compression methods obtain compression ratios comparable to the PPM
methods, but work significantly faster. The only exception is the recent PPMdH
algorithm by Shkarin [155] published in 2002. It obtains very good compression
ratios and compresses relatively fast. We see that this algorithm dominates the
most of the BWT-based algorithms, however standard deviation of compression
ratio and especially compression speed is much higher than for the BWT-based
methods. We can see that also both the BWT-based algorithms proposed in this
dissertation, the DW (BWT-based algorithm with the WFC as the second stage)
and the DM (BWT-based algorithm with the MTF-2 as the second stage), ob-
tain better compression ratios than other BWT-based algorithms and all the LZ
methods.

Let us take a look at Figures 4.17 and 4.18, in which the speeds of decompres-
sion are compared to the compression ratios. We can observe that, the decom-
pression speed of the PPM algorithms is almost identical to their compression
speed. The LZ algorithms decompress much faster than compress. The differ-
ence between decompression and compression speed for the BWT-based algo-
rithms is significant but lower than for the LZ algorithms. Now, the PPMdH
algorithm dominates only two BWT-based methods, however standard devia-
tions of their average decompression speed is much higher than for those al-
gorithms. The DM algorithm is Pareto-optimal, while the DW algorithm leads
to the best compression ratios in the family of the BWT-based methods. An in-
teresting algorithm is the LZMA method, which achieves the best compression
ratios among the LZ methods. The compression speed of this algorithm is low, it
is over two times slower than the slowest BWT-based method, but with regards
to the decompression speed it outperforms all the BWT-based algorithms, and
also the LZW method.

As we can see, the results are almost identical if we analyse the standard
compression ratio and the normalised compression ratio. The advantage of the
normalised ratios is that the standard deviation of compression ratios are much
lower. It is caused by the definition of this ratio, which entails that the best com-
pression ratio can be 1.000. If we calculate the standard deviation of standard
compression ratios, we should remember, that we compress files of different
types, so the possible compression ratio can differ by a large factor. For example,
no algorithm achieves better compression ratio than 3.800 bpc for geo file, while
all the examined compression methods have no problem to break the 1.000 bpc
ratio for pic file. The advantage of the standard compression ratio is that it does
not change when new compression methods are introduced. The normalised
compression ratio changes every time an algorithm that gives the best compres-
sion ratio for any file from the corpus is introduced. Many papers also contain
compression results calculated as the standard compression ratio, so it is easy to
use them for a brief comparison.

120 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] gzip LZW LZMA bzip szip bwc ybs PPMN PPMdH

dickens 10,192,446 3.023 3.145 2.222 2.178 1.968 1.952 1.781 1.800 1.853
mozilla 51,220,480 2.967 5.305 2.093 2.770 2.649 2.684 2.641 2.428 2.476
mr 9,970,564 2.948 3.016 2.204 1.932 1.869 1.841 1.806 1.849 1.883
nci 33,553,445 0.712 0.912 0.412 0.427 0.371 0.328 0.316 0.539 0.439
ooffice 6,152,192 4.019 5.471 3.157 3.693 3.473 3.547 3.465 3.216 3.288
osdb 10,085,684 2.948 3.459 2.262 2.189 1.971 1.908 2.002 1.941 1.894
reymont 6,627,202 2.198 2.265 1.591 1.483 1.330 1.292 1.222 1.293 1.279
samba 21,606,400 2.002 3.262 1.395 1.670 1.600 1.579 1.574 1.429 1.389
sao 7,251,944 5.877 7.429 4.889 5.449 5.314 5.431 5.306 4.959 5.281
webster 41,458,703 2.327 2.680 1.618 1.656 1.491 1.429 1.325 1.310 1.293
xml 5,345,280 0.991 1.697 0.680 0.652 0.599 0.616 0.606 0.643 0.569
x-ray 8,474,240 5.700 6.616 4.224 3.801 3.609 3.584 3.606 3.946 3.682

Average 2.976 3.771 2.229 2.325 2.187 2.183 2.138 2.113 2.111
Std. dev. 1.590 2.000 1.320 1.420 1.390 1.430 1.410 1.330 1.390

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

dickens 10,192,446 1.797 1.928 1.704 2.214 1.931 2.498 1.837 1.986 1.868 1.816
mozilla 51,220,480 2.417 2.237 2.077 2.949 2.436 2.602 2.638 2.777 2.600 2.543
mr 9,970,564 1.857 1.835 1.832 1.977 2.007 2.707 1.874 1.879 1.822 1.770
nci 33,553,445 0.418 0.574 0.293 0.686 0.368 0.534 0.463 0.569 0.299 0.297
ooffice 6,152,192 3.225 2.942 2.834 3.750 3.264 3.573 3.421 3.634 3.459 3.380
osdb 10,085,684 1.844 1.848 1.839 3.085 2.075 2.627 1.957 2.115 1.828 1.835
reymont 6,627,202 1.140 1.413 1.117 1.547 1.313 1.893 1.386 1.471 1.237 1.224
samba 21,606,400 1.342 1.504 1.262 1.917 1.453 1.641 1.516 1.697 1.518 1.518
sao 7,251,944 5.186 4.763 4.775 5.370 5.199 5.555 5.214 5.332 5.294 5.195
webster 41,458,703 1.257 1.402 1.159 1.766 1.441 1.938 1.381 1.488 1.309 1.276
xml 5,345,280 0.556 0.803 0.538 1.075 0.577 0.741 0.641 0.857 0.595 0.602
x-ray 8,474,240 3.637 3.578 3.584 4.411 4.043 5.275 3.772 3.919 3.575 3.518

Average 2.065 2.069 1.918 2.562 2.176 2.632 2.175 2.310 2.117 2.081
Std. dev. 1.370 1.190 1.280 1.400 1.400 1.550 1.370 1.380 1.410 1.380

Table 4.15: Compression ratios (in bpc) of the algorithms for the Silesia corpus

4.4.5 Experiments on the Silesia corpus

In Section 5, we discussed why the Calgary corpus is not a good candidate for a
dataset containing typical files that are used nowadays. In that section, we intro-
duced the Silesia corpus consisting of files of large sizes. In the next experiment,
the compression methods were compared on this corpus. Tables 4.15 and 4.16
contain compression ratios for files from it. The compression and decompres-
sion speeds are shown in Tables 4.17 and 4.18.

Similarly to our discussion of experiments on the Calgary corpus, we may
have a better view of the results if we look at Figures 4.19, 4.20, 4.21, and 4.22.
First, let us look at figures related to compression (4.19 and 4.20). We can make a
similar observation to the one for the Calgary corpus—the PPM algorithms ob-
tain the best compression ratios, but they are in general much slower than other

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 121

File Size [B] gzip LZW LZMA bzip szip bwc ybs PPMN PPMdH

dickens 10,192,446 1.774 1.846 1.304 1.278 1.155 1.146 1.045 1.056 1.087
mozilla 51,220,480 1.429 2.554 1.008 1.334 1.275 1.292 1.272 1.169 1.192
mr 9,970,564 1.666 1.704 1.245 1.092 1.056 1.040 1.020 1.045 1.064
nci 33,553,445 2.430 3.113 1.406 1.457 1.266 1.119 1.078 1.840 1.498
ooffice 6,152,192 1.418 1.930 1.114 1.303 1.225 1.252 1.223 1.135 1.160
osdb 10,085,684 1.613 1.892 1.237 1.197 1.078 1.044 1.095 1.062 1.036
reymont 6,627,202 1.968 2.028 1.424 1.328 1.191 1.157 1.094 1.158 1.145
samba 21,606,400 1.586 2.585 1.105 1.323 1.268 1.251 1.247 1.132 1.101
sao 7,251,944 1.234 1.560 1.026 1.144 1.116 1.140 1.114 1.041 1.109
webster 41,458,703 2.008 2.312 1.396 1.429 1.286 1.233 1.143 1.130 1.116
xml 5,345,280 1.842 3.154 1.264 1.212 1.113 1.145 1.126 1.195 1.058
x-ray 8,474,240 1.620 1.881 1.201 1.080 1.026 1.019 1.025 1.122 1.047

Average 1.716 2.213 1.228 1.265 1.171 1.153 1.124 1.174 1.134
Std. dev. 0.319 0.532 0.143 0.122 0.093 0.090 0.084 0.216 0.124

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

dickens 10,192,446 1.055 1.131 1.000 1.299 1.133 1.466 1.078 1.165 1.096 1.066
mozilla 51,220,480 1.164 1.077 1.000 1.420 1.173 1.253 1.270 1.337 1.252 1.224
mr 9,970,564 1.049 1.037 1.035 1.117 1.134 1.529 1.059 1.062 1.029 1.000
nci 33,553,445 1.427 1.959 1.000 2.341 1.256 1.823 1.580 1.942 1.020 1.014
ooffice 6,152,192 1.138 1.038 1.000 1.323 1.152 1.261 1.207 1.282 1.221 1.193
osdb 10,085,684 1.009 1.011 1.006 1.688 1.135 1.437 1.071 1.157 1.000 1.004
reymont 6,627,202 1.110 1.265 1.000 1.385 1.175 1.695 1.241 1.317 1.107 1.096
samba 21,606,400 1.063 1.192 1.000 1.519 1.151 1.300 1.201 1.345 1.203 1.203
sao 7,251,944 1.089 1.000 1.003 1.127 1.092 1.166 1.095 1.119 1.111 1.091
webster 41,458,703 1.085 1.210 1.000 1.524 1.243 1.672 1.192 1.284 1.129 1.101
xml 5,345,280 1.033 1.493 1.000 1.998 1.072 1.377 1.191 1.593 1.106 1.119
x-ray 8,474,240 1.034 1017 1.019 1.254 1.149 1.499 1.072 1.114 1.016 1.000

Average 1.105 1.203 1.005 1.500 1.155 1.457 1.188 1.310 1.108 1.093
Std. dev. 0.111 0.278 0.011 0.360 0.053 0.200 0.144 0.246 0.084 0.081

Table 4.16: Normalised compression ratios of the algorithms for the Silesia cor-
pus

methods. For the Silesia corpus, the PPMdH algorithm is also the fastest one
from the PPM family, but now the best BWT-based algorithm, the DW, achieves
better compression ratio and is Pareto-optimal. If we consider normalised com-
pression ratio, then also the DM algorithm is non-dominated. The LZ algorithms
for the Silesia corpus are typically (excluding LZMA method) the fastest ones,
but also obtain the poorest compression ratios. If we consider the standard com-
pression ratio, then the DW method obtains only a slightly poorer ratio than
the MH and the MI4 algorithms, but if we look at the normalised compression
ratio, then the DW algorithm outperforms the mentioned ones. The only algo-
rithm that is significantly better than the DW is the MI64. The MI64 algorithm
compresses, however, several times slower than the DW method.

In Figures 4.21 and 4.22, we can see the behaviour of the compression al-

122 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

File Size [B] gzip LZW LZMA bzip szip bwc ybs PPMN PPMdH

dickens 10,192,446 2.96 1.78 149.54 13.02 22.06 16.70 17.08 40.03 13.38
mozilla 51,220,480 28.14 9.53 207.73 52.59 96.13 67.95 68.18 318.65 87.05
mr 9,970,564 4.80 1.57 131.31 8.52 23.54 13.45 13.05 52.63 11.63
nci 33,553,445 7.83 3.98 116.25 63.71 122.17 59.62 55.25 16.10 7.62
ooffice 6,152,192 1.84 1.26 19.03 6.65 10.06 7.97 8.26 47.20 10.62
osdb 10,085,684 1.68 1.99 49.28 11.09 16.75 15.64 16.11 44.87 15.25
reymont 6,627,202 3.60 1.01 35.83 8.43 12.43 10.94 10.21 10.92 5.99
samba 21,606,400 4.20 3.54 89.43 20.95 54.56 27.55 28.44 64.92 18.32
sao 7,251,944 1.93 1.70 23.29 10.61 10.26 12.85 13.16 64.17 25.29
webster 41,458,703 8.91 6.46 267.95 50.27 82.40 78.45 71.63 120.22 40.32
xml 5,345,280 0.67 0.86 13.68 6.17 15.72 6.80 6.67 4.05 1.86
x-ray 8,474,240 1.40 1.76 23.84 8.28 10.13 11.45 11.56 94.85 20.13

Total 211,938,580 67.96 35.44 927.16 260.29 476.21 329.37 319.60 878.61 257.46

Avg. comp. speed 4102 5714 263 855 506 659 695 476 1200
Std. dev. 1846 1074 72 168 153 95 85 592 1174

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

dickens 10,192,446 25.07 20.95 59.97 17.95 417.69 9.75 111.80 45.27 11.38 13.32
mozilla 51,220,480 159.54 242.26 415.90 191.90 984.12 36.74 1172.40 270.15 73.45 83.09
mr 9,970,564 18.30 28.52 43.37 17.46 223.39 7.21 158.96 44.42 12.14 13.48
nci 33,553,445 22.39 26.06 329.00 22.49 307.90 11.00 44.30 114.20 66.66 66.43
ooffice 6,152,192 19.15 42.46 59.53 25.87 205.67 5.18 161.13 37.26 8.19 9.57
osdb 10,085,684 30.60 53.62 85.50 39.84 261.24 9.80 177.14 53.39 14.02 15.51
reymont 6,627,202 12.82 10.45 37.25 7.34 205.63 5.56 39.35 26.05 6.40 7.58
samba 21,606,400 41.28 67.43 230.48 46.32 207.45 12.08 207.30 93.45 28.07 30.78
sao 7,251,944 41.46 109.77 118.58 50.78 402.05 7.77 361.81 51.17 15.09 17.54
webster 41,458,703 82.01 68.33 260.41 64.99 1245.21 31.87 338.50 178.18 57.67 61.66
xml 5,345,280 5.58 6.88 63.91 5.83 42.20 2.17 12.98 19.69 7.13 7.66
x-ray 8,474,240 29.58 72.22 77.90 44.87 288.18 8.64 267.76 58.81 12.69 14.64

Total 211,938,580 487.78 748.95 1781.80 535.64 4790.73 147.77 3053.43 992.04 312.89 341.26

Avg. comp. speed 520 422 125 541 52 1444 155 208 717 640
Std. dev. 354 344 47 387 37 637 211 47 147 117

Table 4.17: Compression times (in seconds) of the algorithms for the Silesia cor-
pus

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 123

File Size [B] gzip LZW LZMA bzip szip bwc ybs PPMN PPMdH

dickens 10,192,446 0.15 0.75 0.75 5.76 6.15 4.66 4.72 40.31 13.98
mozilla 51,220,480 0.87 3.63 3.69 20.82 21.24 21.35 24.11 319.43 91.56
mr 9,970,564 0.21 0.68 0.84 4.06 5.56 4.15 4.59 53.09 12.07
nci 33,553,445 0.28 1.83 0.99 14.25 15.28 11.93 11.93 17.30 8.68
ooffice 6,152,192 0.80 0.52 0.62 3.24 3.14 2.51 3.15 47.51 11.29
osdb 10,085,684 0.19 0.77 0.78 5.80 6.21 4.45 4.88 45.19 15.97
reymont 6,627,202 0.10 0.47 0.41 3.34 3.64 2.57 2.71 11.21 6.34
samba 21,606,400 0.29 1.42 1.11 7.34 8.89 7.19 7.45 65.35 19.45
sao 7,251,944 0.20 0.69 0.99 5.60 5.59 4.42 6.01 64.18 26.49
webster 41,458,703 0.65 2.79 2.44 19.72 22.34 17.55 16.76 121.68 42.29
xml 5,345,280 0.08 0.32 0.19 1.99 2.17 1.47 1.55 4.28 2.04
x-ray 8,474,240 0.28 0.71 1.21 5.39 5.65 4.28 5.31 96.47 20.97

Total 211,938,580 4.10 14.58 14.02 97.31 105.86 86.53 93.17 886.00 271.13

Avg. decomp. speed 56381 13749 15557 2056 1872 2419 2226 456 1106
Std. dev. 26796 2099 7847 474 375 497 583 550 1027

File Size [B] MH MI4 MI64 lgha acb rar boa ufa DM DW

dickens 10,192,446 25.80 22.55 61.20 18.68 417.77 0.38 112.48 50.34 6.43 8.65
mozilla 51,220,480 162.14 273.81 445.49 215.70 982.64 1.80 1193.79 297.32 39.78 52.53
mr 9,970,564 18.82 32.14 46.66 18.50 219.30 0.36 160.79 49.46 6.41 8.17
nci 33,553,445 24.08 28.70 330.35 23.82 305.34 0.65 45.12 130.95 15.74 20.79
ooffice 6,152,192 19.52 46.59 63.76 27.46 203.68 0.29 163.90 40.49 5.16 6.86
osdb 10,085,684 31.31 59.00 90.56 41.52 259.71 0.36 179.82 58.63 7.00 9.30
reymont 6,627,202 13.27 11.51 38.27 7.66 204.62 0.20 39.78 29.33 3.54 4.88
samba 21,606,400 42.21 75.39 238.06 48.85 311.51 0.58 211.45 104.70 12.07 16.44
sao 7,251,944 41.42 125.61 134.28 54.53 401.03 0.43 369.13 55.29 9.72 13.06
webster 41,458,703 84.77 73.45 273.32 67.75 1240.99 1.33 342.61 198.50 25.58 35.17
xml 5,345,280 5.82 7.43 64.46 6.00 42.03 0.14 13.20 22.37 1.80 2.76
x-ray 8,474,240 29.90 82.23 87.00 48.51 287.79 0.44 272.90 63.14 8.59 11.04

Total 211,938,580 499.06 838.41 1873.41 578.98 4876.41 6.96 3104.97 1100.52 141.82 189.65

Avg. decomp. speed 501 385 118 514 50 29272 153 187 1561 1146
Std. dev. 327 316 45 370 34 9241 207 39 564 525

Table 4.18: Decompression times (in seconds) of the algorithms for the Silesia
corpus

124 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

•
•

◦
?

?
•

•

◦

◦

?

?
?

?
?

?

◦

•

?

•
D

W
D

M

LZ
M

A
ac

b
bo

a
bw

c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

50
10

0
20

0
50

0
10

00
20

00
50

00

2

2.
53

3.
5

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

19
:C

om
pr

es
si

on
ra

ti
o

ve
rs

us
co

m
pr

es
si

on
sp

ee
d

of
th

e
ex

am
in

ed
al

go
ri

th
m

s
fo

r
th

e
Si

le
si

a
co

rp
us

.T
he

LZ
m

et
ho

ds
ar

e
de

no
te

d
by

◦,
th

e
PP

M
m

et
ho

ds
ar

e
de

no
te

d
by

?
,a

nd
th

e
BW

T-
ba

se
d

m
et

ho
ds

by
•.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 125

•
•

◦
?

?
•

•

◦

◦

?

?
?

?

?

?

◦

•

?

•

D
W

D
M

LZ
M

A

ac
b

bo
a

bw
c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

50
10

0
20

0
50

0
10

00
20

00
50

00

1

1.
52

2.
5

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

no
rm

al
is

ed
co

m
pr

es
si

on
ra

tio
[b

pc
]

Fi
gu

re
4.

20
:

N
or

m
al

is
ed

co
m

pr
es

si
on

ra
ti

o
ve

rs
us

co
m

pr
es

si
on

sp
ee

d
of

th
e

ex
am

in
ed

al
go

ri
th

m
s

fo
r

th
e

Si
le

si
a

co
rp

us
.

Th
e

LZ
m

et
ho

ds
ar

e
de

no
te

d
by

◦,
th

e
PP

M
m

et
ho

ds
ar

e
de

no
te

d
by

?
,a

nd
th

e
BW

T-
ba

se
d

m
et

ho
ds

by
•.

126 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

•
•

◦
?

?
•

•

◦

◦

?

?
?

?
?

?

◦

•

?

•
D

W
D

M

LZ
M

A
ac

b
bo

a
bw

c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

50
10

0
20

0
50

0
10

00
20

00
50

00
10

4
2×

10
4

2

2.
53

3.
5

de
co

m
pr

es
si

on
sp

ee
d

[k
B

/s
]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

21
:

C
om

pr
es

si
on

ra
ti

o
ve

rs
us

de
co

m
pr

es
si

on
sp

ee
d

of
th

e
ex

am
in

ed
al

go
ri

th
m

s
fo

r
th

e
Si

le
si

a
co

rp
us

.
T

he
LZ

m
et

ho
ds

ar
e

de
no

te
d

by
◦,

th
e

PP
M

m
et

ho
ds

ar
e

de
no

te
d

by
?

,a
nd

th
e

BW
T-

ba
se

d
m

et
ho

ds
by

•.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 127

•
•

◦
?

?
•

•

◦

◦

?

?
?

?

?

?

◦

•

?

•
D

W
D

M

LZ
M

A
ac

b
bo

a
bw

c

bz
ip

LZ
W

gz
ip

lg
ha

P
P

M
N

P
P

M
dH

M
H

M
I4

M
I6

4

ra
r

sz
ip

uf
a

yb
s

50
10

0
20

0
50

0
10

00
20

00
50

00
10

4
2×

10
4

1

1.
52

2.
5

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

no
rm

al
is

ed
co

m
pr

es
si

on
ra

tio
[b

pc
]

Fi
gu

re
4.

22
:

N
or

m
al

is
ed

co
m

pr
es

si
on

ra
ti

o
ve

rs
us

de
co

m
pr

es
si

on
sp

ee
d

of
th

e
ex

am
in

ed
al

go
ri

th
m

s
fo

r
th

e
Si

le
si

a
co

rp
us

.
Th

e
LZ

m
et

ho
ds

ar
e

de
no

te
d

by
◦,

th
e

PP
M

m
et

ho
ds

ar
e

de
no

te
d

by
?

,a
nd

th
e

BW
T-

ba
se

d
m

et
ho

ds
by

•.

128 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

gorithms in the decompress process for the Silesia corpus. The observation is
also similar to that made for the Calgary corpus. The decompression speed of
the LZ methods is significantly higher than their compression speed. The PPM
algorithms compress and decompress with almost identical speed. All the ex-
amined BWT-based methods decompress faster than PPM algorithms, but the
difference between the PPMdH and DW is small.

The standard deviation of the compression and decompression speed is sig-
nificantly lower for the BWT-based algorithms than for the PPM methods. Also
the standard deviation of the normalised compression ratio for the majority of
the BWT-based algorithms is smaller than for the PPM methods (except for MI64
and acb).

Until now, we have analysed the average compression ratio. Let us now take
a look at the specific files from the Silesia corpus. The dominance, in terms of the
compression ratio, of the MI64 algorithm is almost total for the Calgary corpus.
In the experiments for the Silesia corpus, we see that this method achieves the
best compression ratios only for 8 out of 12 files. For one file, sao, the best
compression ratio obtains the MI4 algorithm, while for the other three, the best
are the methods introduced in this dissertation—DW and DM. For two medical
files, mr and x-ray, the DW method achieves significantly better compression
ratio than the MI64 algorithm. For the last file, osdb, the DW algorithm also
outperforms the MI64 method, but the DM algorithm is even better.

4.4.6 Experiments on files of different sizes and similar contents

In the last experiment, we compare the compression algorithms on files of sim-
ilar contents and different sizes. For this purpose, four files from the Silesia
corpus were chosen. Each file is of different type: dickens is a plain text file,
osdb is a binary database file, samba consists of concatenated source code files
of a programming project, and x-ray is a representation of a medical image.

From each file the pieces of sizes 8 kB, 16 kB, 32 kB, 64 kB, . . . , 8192 kB,
and in one case also 16384 kB, were taken starting always from the beginning
of the file. Several compression methods were run on the obtained files. Ta-
bles E.1–E.8 contain the results of these experiments. The results are also plotted
in Figures 4.23–4.30 to show how the properties of the compression methods
depend on the file size.

Figures 4.23 and 4.24 illustrate the experiments with parts of the dickens file.
The compression ratio decreases almost monotonically while the file size grows.
It is what one would expect, as the contents of the dickens file is an English text
and on larger files the probability of symbol occurrence can be estimated better.
The only compression algorithm, for which there is no progress in the compres-
sion ratio for large files is bzip. It happens because if the size of the file to be
compressed is bigger than 900 kB, the bzip program splits the file into pieces of

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 129

size 900 kB, and compresses them separately. More interesting observations can
be made for this file if we look at the dependence of the compression speed on
the file size. For small files, the compression speed grows for all the algorithms
if the file size grows. If the file to be compressed breaks the limit of several tens–
several hundred kB, the compression speed decreases. For the PPM algorithms
it is caused by the need of storing and searching a model of vast size. For the
BWT-based algorithms, the decrease of speed is caused by the sorting procedure
in the BWT, which is super-linear. The speed of the bzip method is steady for
large files, as this program compresses separately pieces of size of 900 kB. The
speed-improved BWT computation algorithm used in the DW method allows
the compressor decrease the speed of compression slowly.

The results of the experiments for a binary database file, osdb, are presented
in Figures 4.25 and 4.26. Looking at the first figure, we see also a monotonic
improvement of the compression ratio for all the compression methods with
growing file size. We notice also how the compression ratio of the BWT-based
methods, ybs and DW, improves, closing to the one obtained by the MI64 al-
gorithm. For the largest file, the compression ratios of the DW and the MI64
algorithms are almost equal. The situation shown in Figure 4.26 is similar to
the one discussed for the dickens file. Here the decrease of speed for the DW
algorithm is also slow.

The samba file is a tarred source code of a programming project. The project
contains files which are: C and Perl sources, documentation in HTML, PDF and
text files, text configuration files, and others. What is important, the files are
rather small and of very different contents. Therefore, the contents of the samba
file is changing from part to part of this file. Figure 4.27 shows how hard are
different parts of the file to compress. All the compression algorithms behave
similarly and as we can see, the PPM, and the LZ algorithms achieve the best
compression ratios. Analysing Figure 4.28 we notice how the compression speed
varies. The general tendency of decreasing the speed with file size growing can-
not be observed. We can, however, notice that the speeds of the bzip, PPMdH,
and DW algorithms are similar for files of different sizes (larger than 50 kB).

The last file in this experiment, x-ray, stores an X-ray image. The compres-
sion ratios, shown in Figure 4.29, decrease with growing file size, however for
the largest files, the ratio slightly deteriorates. For pieces of small size the best
results are obtained by the MI64 and the LZMA algorithms. With the growth of
the file size, the compression ratio improves for them much slower than for the
BWT-based algorithms. When the file size exceeds 100 kB, the DW algorithm
yields the best compression ratio. The DW method outperforms significantly,
with regard to the compression ratio, other methods for this sequence. We
should notice also a very good result of the BWT-based compression method,
ybs, which obtains ratios almost identical to the best PPM algorithm. Similar

130 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

◦

◦

◦

◦

◦

◦

◦
◦

◦
◦

◦

?

?

?

?

?

?

?
?

?
?

?

•

•

•

•

•

•

•
•

•
•

•

�

�

�

�

�

�

�
�

�
�

�

∗

∗

∗

∗

∗

∗

∗
∗

∗
∗

∗

.

.

.

.

.

.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

2

2.
53

3.
5

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

23
:C

om
pr

es
si

on
ra

ti
os

fo
r

pa
rt

s
of

th
e

di
ck

en
s

fil
e

of
di

ff
er

en
ts

iz
es

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 131

◦

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

?

?

?

?
?

?

?

?
?

?
?

•

•

•
•

•
•

•
•

•
•

•

�

�

�
�

�
�

�
�

�
�

�

∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

.
.

.

.

.
.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

15
0

20
0

30
0

40
0

50
0

70
0

10
00

15
00

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

Fi
gu

re
4.

24
:C

om
pr

es
si

on
sp

ee
ds

fo
r

pa
rt

s
of

th
e

di
ck

en
s

fil
e

of
di

ff
er

en
ts

iz
es

132 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

◦

◦

◦

◦

◦
◦

◦
◦

◦
◦

◦

?

?

?

?

?

?

?
?

?
?

?

•

•

•

•

•

•
•

•
•

•
•

�

�

�
�

�

�

�
�

�
�

�

∗

∗

∗

∗

∗
∗

∗
∗

∗
∗

∗

.

.

.

.

.

.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

2345

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

25
:C

om
pr

es
si

on
ra

ti
os

fo
r

pa
rt

s
of

th
e

os
db

fil
e

of
di

ff
er

en
ts

iz
es

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 133

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

?

?

?

?
?

?

?

?
?

?
?

•

•

•

•
•

•
•

•
•

•
•

�

�

�
�

�
�

�
�

�
�

�

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗

.
.

.

.

.
.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

10
0

20
0

50
0

10
00

20
00

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

Fi
gu

re
4.

26
:C

om
pr

es
si

on
sp

ee
ds

fo
r

pa
rt

s
of

th
e

os
db

fil
e

of
di

ff
er

en
ts

iz
es

134 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

◦
◦

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

?
?

?
?

?

?

?

?

?

?

?

?

•
•

•
•

•

•

•

•

•

•

•

•

�
�

�
�

�

�

�

�

�

�

�

�

∗
∗

∗
∗

∗

∗

∗

∗

∗

∗

∗

∗

.
.

.
.

.

.

.

.

.

.

.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

12345

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

27
:C

om
pr

es
si

on
ra

ti
os

fo
r

pa
rt

s
of

th
e

sa
m

ba
fil

e
of

di
ff

er
en

ts
iz

es

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 135

◦

◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦

?

?

?

?

?

?
?

?

?
?

?
?

•

•

•
•

•

•
•

•
•

•
•

•

�

�

�
�

�

�

�

�
�

�

�

�

∗

∗
∗

∗
∗

∗

∗

∗
∗

∗

∗

∗

.
.

.

.
.

.

.

.
.

.

.
.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

10
0

20
0

50
0

10
00

20
00

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

Fi
gu

re
4.

28
:C

om
pr

es
si

on
sp

ee
ds

fo
r

pa
rt

s
of

th
e

sa
m

ba
fil

e
of

di
ff

er
en

ts
iz

es

136 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

results for file sizes from 128 kB to 512 kB gives the bzip method. The improve-
ment of the compression ratio for it is stopped by the maximal size of a piece
which can be compressed by this algorithm. The results of the compression
speed for this file (Figure 4.30) are similar to the ones for the other discussed
files. The ybs and bzip are the fastest algorithms, but the speed of the DW
method deteriorates only slightly and is also high.

4.4.7 Summary of comparison results

The results show that for both corpora the best compression ratios are obtained
by Shkarin’s cPPMII compression algorithm [155, 156]. The advantage in terms
of the compression ratio of this algorithm over other compression methods is
significant. Its main disadvantages are low speed of running and high memory
consumption.

From the LZ algorithms the most interesting one is the LZMA. The compres-
sion ratios obtained by this method are significantly better than those achieved
by other algorithms from this family. Unfortunately, the compression speed is
low, comparable to the PPM methods. This disadvantage is partially compen-
sated by fast decompression. In the situations, in which the compression will be
made rarely, the LZMA is an interesting candidate to employ.

The PPM methods significantly outperform other compression algorithms in
terms of the compression ratio for the files from the Calgary corpus. The main
disadvantage of all the PPM algorithms, as also of the DMC and the CTW (which
unfortunately we could not examine because of the unavailability of their imple-
mentations), is their low speed of compression and decompression.

The BWT-based algorithms yield worse compression ratios for small files
(from the Calgary corpus) than the PPM algorithms. For large files, however, the
distance between these two families of algorithms becomes smaller. The com-
pression speed of the BWT-based algorithms is also higher. In these methods,
the decompression speed is about two or three times higher than the compres-
sion speed, what can be important in some cases.

Analysing the experimental results for different algorithms from the point of
view of multi criteria optimisation, we can roughly split the methods into three
groups. The first group contains the PPM algorithms (also the CTW and the
DMC ones), which achieve the best compression ratios, but work slow. The sec-
ond group contains the LZ algorithms, which work fast, but provide poor com-
pression ratios. The third group contains the BWT-based algorithms, which run
faster than the PPM algorithms, and offer the compression ratios much better
than those obtained with the LZ methods. Many of these algorithms, ybs, szip,
bzip, DW, DM, are non-dominated by other algorithms in some experiments.

The algorithm that leads to the best compression ratios among the BWT-
based family is the improved algorithm introduced in this dissertation—DW.

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 137

◦

◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

?

?

?

?

?

?

?
?

?
?

?

•

•

•

•

•

•

•
•

•
•

•

�

�

�

�

�

�

�

�
�

�
�

∗
∗

∗
∗

∗

∗

∗
∗

∗
∗

∗

.

.

.

.

.

.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

3.
54

4.
55

5.
5

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

ra
tio

[b
pc

]

Fi
gu

re
4.

29
:C

om
pr

es
si

on
ra

ti
os

fo
r

pa
rt

s
of

th
e

x-
ra

y
fil

e
of

di
ff

er
en

ts
iz

es

138 CHAPTER 4. IMPROVED COMPRESSION ALGORITHM BASED . . .

◦

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

?

?

?

?
?

?
?

?

?

?
?

•

•

•

•
•

•
•

•
•

•
•

�

�

�
�

�
�

�
�

�

�
�

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗

.
.

.

.

.
.

.
.

.
.

.

LZ
M

A
◦

yb
s

?
bz

ip
•

P
P

M
dH

�
M

I6
4

∗
D

W
.

10
10

0
10

00
10

4

10
0

20
0

50
0

10
00

20
00

fil
e

si
ze

[k
B

]

co
m

pr
es

si
on

sp
ee

d
[k

B
/s

]

Fi
gu

re
4.

30
:C

om
pr

es
si

on
sp

ee
ds

fo
r

pa
rt

s
of

th
e

x-
ra

y
fil

e
of

di
ff

er
en

ts
iz

es

4.4. EXPERIMENTAL COMPARISON OF THE IMPROVED ALGORITHM . . . 139

The speed of the DW method is comparable to the other BWT-based algorithms.
The tests on files of different sizes show, however, that the speed of compres-
sion and decompression is much more steady for the DW method than for other
BWT-based algorithm which use blocks of large sizes.

Chapter 5

Conclusions

What will be the conclusion of all this?

— ROBERT BOLTON

Instructions for a Right Comforting
Afflicted Consciences (1635)

The subject of the dissertation are universal lossless data compression algo-
rithms. The background of this field of research was presented in Chapter 2.
There we talked about a need of compression, and situations in which univer-
sal lossless methods are useful. The algorithms used contemporarily were de-
scribed in detail. A special, in-depth description of the Burrows–Wheeler trans-
form-based algorithms, was provided (Chapter 3) as the thesis of the disserta-
tion concerns this family of compression methods.

The stages of the BWCA [39] were examined in detail. The first stage is the
transform, introduced by Burrows and Wheeler. The transform is well estab-
lished and the research concentrates on the efficient methods for its computa-
tion. Several approaches to this task were discussed. We proposed a signifi-
cant improvement to the Itoh–Tanaka’s method [90], and some small improve-
ments to the Seward’s method [149] which combined together offer a highly
efficient BWT computation method (Section 4.1.2). A practical performance of
the proposed solution was compared, in Section 4.3.1, with other approaches,
for which the implementation, or detailed description that allows us to imple-
ment it efficiently, was available. The results showed that the combined method
of the improved Itoh–Tanaka’s methods of orders 1 and 2 is significantly faster
than the other examined approaches. Its memory requirement is 8n, where n
is the length of the input sequence. The main disadvantage of this approach

141

142 CHAPTER 5. CONCLUSIONS

is its unknown average-case time complexity and poor worst-case complex-
ity, O(n2 log n). The poor time complexity is caused by the sorting procedure
used—the Seward’s method. It is possible to use different sorting procedures,
but in practice they are less efficient. Since the worst-case time complexity of the
improved Itoh–Tanaka’s method is its significant disadvantage, we proposed,
similarly to Seward [150], a fallback procedure, which is used if the execution
of the main method takes too long. To this end, the maximal time of execu-
tion of the method of time complexity O(n log n) is estimated, and if the im-
proved Itoh–Tanaka’s method exceeds this limit it is stopped to run the fallback
procedure. The fallback can be for example the Manber–Myers’s method [106],
as Seward proposed [150], of the worst-case time complexity O(n(log n)2), or the
Larsson–Sadakane’s method [102] of the worst-case time complexity O(n log n).
The combined solution guarantees the worst-case time complexity O(n log n)
and offers a fast work due to the proposed improved method, which is highly
efficient for typical sequences.

The research on the second stage transform was started from the analysis
of the structure of the Burrows–Wheeler transform output. In Section 4.1.3, we
proved some results regarding the structure of this sequence, concluding that it
can be approximated with high precision as an output of a piecewise stationary
memoryless source. Then, the methods of probability estimation of symbol oc-
currence in such sequences were investigated (Section 4.1.4). We postulated to
weight the symbol importance in the estimation process. We also derived the
bounds on the expected redundancy introduced by this method. The equations
obtained are very hard to solve, so we decided to analyse them numerically
for some weight functions. As the result of these investigations, a transform,
weighted frequency count (WFC), as the second stage of the BWCA was intro-
duced. We showed that the WFC is a generalisation of the well known methods:
move-to-front, frequency count, and sort-by-time. Some of these methods were
formerly used in the versions of the BWCA. We also discussed the time com-
plexity of the WFC, showing a way in which it can be implemented with the
worst-case time complexity O(nkl), where k is the alphabet size, and l is a small
number, lower than 32 on typical computers. The experiments performed in Sec-
tions 4.3.2 and 4.3.3 showed that the WFC transform leads to the best compres-
sion ratios among the second stage methods.

The last stage of the BWCA is an entropy coding. The arithmetic coding is an
optimal solution for this task, in terms of the compression ratio. The most im-
portant part of this stage is a probability estimation of symbol occurrence, which
is then used to assign codes to symbols from the alphabet. For this task we in-
troduced a weighted probability estimation (Section 4.1.6). The experimental
results (Section 4.3.4) confirmed the validity of usage of this method. Because
the sequences are only assumed to be an output of the context tree source of un-

143

known parameters and structure, and the understanding of the BWCA working
is incomplete, we were unable to provide a thorough justification for the usage
of this method of probability estimation in the BWCA.

The improved algorithm was compared to the state of the art methods pub-
lished in the literature. The first task in this comparison was to choose a set of
test data. There are three widely used standard corpora: the Calgary corpus,
the Canterbury corpus, and the large Canterbury corpus. The first corpus is the
most popular and many compression methods were examined on it. As we dis-
cussed in Section 4.2.1, the two Canterbury corpora are not good candidates to
be contemporarily the standard data sets. The main disadvantage of the three
corpora is their lack of files of sizes and contents that are used nowadays. There-
fore, to provide a comparison of the compression methods on modern files, we
introduced the Silesia corpus.

As we discussed in Section 4.2.2, compression methods should be compared
in terms of multi criteria optimisation, as three criteria are important: compres-
sion ratio, compression speed, and decompression speed. Therefore we con-
sidered two processes separately: compression, in which the compression ra-
tio and the compression speed are important, and decompression, in which the
compression ratio and the decompression speed matter.

The comparison showed that the proposed algorithm, denoted by DW in
the tables and figures, yields the best compression ratios for the both corpora
in the family of the BWT-based algorithms. It gives also the best compression
ratios for most component files of the corpora. Its compression speed is compa-
rable to other such algorithms. For the Silesia corpus, the DW algorithm com-
presses about 26% faster than the slowest examined BWT-based method, szip,
and about 34% slower than the fastest such an algorithm, bzip. Typically, the
compression speeds of the BWT-based algorithms differ by about 10%. The de-
compression speed of the DW algorithm is about two times higher than its com-
pression speed. In the decompression, the fastest BWT-based algorithm, bwc, is
however about two times faster than the DW method. From figures shown in
Chapter 4 we can determine also the set of the BWT-based algorithms, which are
non-dominated by other methods from this family. One of the non-dominated
algorithms is the DW method.

We proposed also a variant of this method, the DM algorithm, which obtains
the second best compression ratios from the examined BWT-based algorithms
for the Silesia corpus. Its compression speed is lower only from the bzip al-
gorithm. In the decompression, the DM method is about 35% slower than the
fastest, bwc, algorithm. The DM algorithm is also non-dominated for both the
compression and decompression processes for the both corpora.

The above-described observations of the behaviour of the improved algo-
rithm confirm the thesis of this dissertation.

144 CHAPTER 5. CONCLUSIONS

A comparison of the DW algorithm to the other universal lossless data com-
pression algorithms showed that some PPM algorithms lead to better compres-
sion ratios. They are typically much slower than the BWT-based algorithms, but
one of the recent methods by Shkarin [155], PPMdH, dominates the DW in the
compression of the Calgary corpus. In the decompression, a variant of the DW
algorithm, DM, is non-dominated, though. We should also notice that the stan-
dard deviation of the speeds of the Shkarin’s algorithm is over 3 times larger
than the standard deviation of the speeds of the proposed method. The advan-
tage of the PPMdH algorithm comes from the compression of small files. As we
can see in the experiments described in Section 4.4.6, the BWT-based algorithms
work relatively slow for small files, because of the properties of the BWT com-
putation methods, and they speed up when the file size grows. The experiments
on the Silesia corpus showed that the proposed algorithm is non-dominated in
both processes, and significantly outperforms the best PPM algorithms in the
compression and decompression speed. It also yields the best compression ra-
tios for 3 out of 12 files from the Silesia corpus.

The results in this work can surely be a point of departure for further re-
search. The proposed method for the BWT computation is highly efficient in
practice, but the analysis of its average-case time complexity is missed. The
experiments suggest that it is low, but calculating it is a difficult, open problem.
The theoretical research on the probability estimation for the output of the piece-
wise stationary memoryless source were at some point discontinued, because of
the high complexity of the equations. It could be interesting to provide some
more in-depth theoretical analysis. There is probably also a possibility to pro-
pose weight functions that yield better compression ratios. Finally, it would be
nice if more convincing theoretical grounds for the weighted probability have
been found.

Acknowledgements

If we meet someone who owes us thanks,
we right away remember that.
But how often do we meet someone to whom
we owe thanks without remembering that?

— JOHANN WOLFGANG VON GOETHE

Ottilie’s Diary (1809)

I cannot imagine that this dissertation could be completed without help from
many people. Here, I want to thank all of them.

First, I would like to thank my supervisor, Zbigniew J. Czech, who encour-
aged me to work in the field of theoretical computer science, and motivated me
all the time during the last four years. I am most grateful for his support, stim-
ulating discussions, and constructive remarks on my work. I also thank him
for a vast number of improvements, that he suggested to incorporate into the
dissertation.

Marcin Ciura, Roman Starosolski, and Szymon Grabowski proofread the
whole dissertation or its major parts. Thank them all for their patience in read-
ing the early versions of the dissertation and for suggesting many ways in which
the text can be improved. Thank you Marcin for your enormous persistence in
showing me how I can be more clear and precise in writing. Thank you also
for collaboration on a paper we wrote together. I would like to thank you, Ro-
man, for discussions on the compression algorithms. As Szymon shares my in-
terests in universal lossless data compression, and especially Burrows–Wheeler
transform-based compression, he was a very good discussion partner. Thank
you Szymon for our stimulating discussions, for your relevant remarks, and for
pointing me the papers that I did not know.

Some parts of the compression program accompanying the dissertation are
based on existing source codes. An implementation of one of the BWT com-

145

146 ACKNOWLEDGEMENTS

putation methods is based on the routines by N. Jesper Larsson and Kunihiko
Sadakane. An implementation of some other methods for computing the BWT is
based on source code by Julian Seward. The arithmetic coding routines, used by
me, are modified source codes by John Carpinelli, Alistair Moffat, Radford Neal,
Wayne Salamonsen, Lang Stuiver, Andrew Turpin, and Ian Witten. Thank you
all for publishing the source codes. The contents of the Silesia corpus introduced
in this dissertation was changing, and I want to thank Szymon Grabowski, Uwe
Herklotz, Sami J. Mäkinen, Maxim Smirnov, and Vadim Yoockin, who shared
with me their opinion and suggested improvements. I would like also to thank
Ewa Piętka for her suggestion of including medical data in the experiments, and
for providing me such files. I am grateful to my friend, Adam Skórczyński for
the possibility of developing together the LATEX Editor, which was used to write
the whole dissertation.

During my Ph.D. study I was employed in the Software Department of the
Silesian University of Technology. I am thankful for the possibility to work in
this team. Many thanks go to the manager Przemysław Szmal. I am not able
to enumerate all the staff, so I would like to give special thanks to my closest
friends and colleagues: Marcin Ciura, Agnieszka Debudaj–Grabysz, Aleksan-
dra Łazarczyk, Adam Skórczyński, Roman Starosolski, Bożena Wieczorek, and
Mirosław Wieczorek.

Finally, an exceptional ‘Thank you!’ I would like to say to my mother and
father who are present in my life for the longest time, and who gave me the best
possible upbringing.

Tarnowskie Góry
February, 2003

Bibliography

[1] J. Åberg and Yu. M. Shtarkov. Text compression by context tree weighting. In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference
(DCC’97), pages 377–386, March 25–27, 1997. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 28]

[2] J. Åberg, Yu. M. Shtarkov, and B. J. M. Smeets. Towards understanding and im-
proving escape probabilities in PPM. In J. A. Storer and M. Cohn, editors, Proceedings
of the IEEE Data Compression Conference (DCC’97), pages 22–31, March 25–27, 1997.
IEEE Computer Society Press, Los Alamitos, California. [cited at p. 25]

[3] S. Albers. Improved randomized on-line algorithms for the list update prob-
lem. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 412–419, 1995. [cited at p. 47, 49]

[4] S. Albers and M. Mitzenmacher. Average case analyses of list update algorithms,
with applications to data compression. Algorithmica, 21(3):312–329, July 1998.
[cited at p. 49, 50, 168, 170]

[5] A. Apostolico and S. Lonardi. Compression of biological sequences by greedy
off-line textual substitution. In J. A. Storer and M. Cohn, editors, Proceedings of the
IEEE Data Compression Conference (DCC’2000), pages 143–152, March 28–30, 2000.
IEEE Computer Society Press, Los Alamitos, California. [cited at p. 29]

[6] M. Arimura and H. Yamamoto. Almost sure convergence coding theorem for
block sorting data compression algorithm. In Proceedings of International Sym-
posium on Information Theory and Its Applications (ISITA98), Mexico City, Mexico,
October 14–16, 1998. [cited at p. 45]

[7] M. Arimura and H. Yamamoto. Asymptotic optimality of the block sorting data
compression algorithm. IEICE Transactions on Fundamentals of Electronics Commu-
nications & Computer Sciences, E81-A(10):2117–2122, October 1998. [cited at p. 45]

[8] M. Arimura, H. Yamamoto, and S. Arimoto. A bitplane tree weighting method for
lossless compression of gray scale images. IEICE Transactions on Fundamentals of
Electronics Communications & Computer Sciences, E80-A(11):2268–2271, November
1997. [cited at p. 28]

147

148 BIBLIOGRAPHY

[9] Z. Arnavut. Generalization of the BWT transformation and inversion ranks. In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Confer-
ence (DCC’2002), page 447, April 2–4, 2002. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 57, 105, 107]

[10] Z. Arnavut and S. S. Magliveras. Block sorting and compression. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’97),
pages 181–190, March 25–27, 1997. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 45, 50, 87]

[11] Z. Arnavut and S. S. Magliveras. Lexical permutation sorting algorithm. The
Computer Journal, 40(5):292–295, 1997. [cited at p. 45, 87]

[12] R. Arnold and T. C. Bell. A corpus for the evaluation of lossless compression algo-
rithms. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression
Conference (DCC’97), pages 201–210, March 25–27, 1997. IEEE Computer Society
Press, Los Alamitos, California. [cited at p. 5, 92]

[13] F. D. Awan, N. Zhang, N. Motgi, R. T. Iqbal, and A. Mukherjee. LIPT: A reversible
lossless text transform to improve compression performance. In J. A. Storer and
M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’2001),
page 481, March 27–29, 2001. [cited at p. 59]

[14] F. S. Awan and A. Mukherjee. LIPT: A lossless text transform to improve com-
pression. In Proceedings of International Conference on Information and Theory: Cod-
ing and Computing, IEEE Computer Society, Las Vegas, Nevada, pages 452–460, April
2–4 2001. [cited at p. 59]

[15] R. Bachrach and R. El-Yaniv. Online list accessing algorithms and their applica-
tions: Recent empirical evidence. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 53–62, 1997. [cited at p. 47]

[16] B. Balkenhol and S. Kurtz. Universal data compression based on the Burrows–
Wheeler transformation: Theory and practice. IEEE Transactions on Computers,
49(10):1043–1053, October 2000. [cited at p. 35, 43, 46]

[17] B. Balkenhol, S. Kurtz, and Yu. M. Shtarkov. Modifications of the Burrows and
Wheeler data compression algorithm. In J. A. Storer and M. Cohn, editors, Pro-
ceedings of the IEEE Data Compression Conference (DCC’99), pages 188–197, March
29–31, 1999. IEEE Computer Society Press, Los Alamitos, California. [cited at p. 48,

55, 58, 107]

[18] B. Balkenhol and Yu. M. Shtarkov. One attempt of a compression algorithm using
the BWT. Preprint 99-133, SFB343, Discrete Structures in Mathematics, Faculty
of Mathematics, University of Bielefeld, Postfach 100131 33501, Bielefeld, Ger-
many, 1999. http://www.mathematik.uni-bielefeld.de/sfb343/preprints/pr99133.ps.
gz. [cited at p. 46, 48, 51, 55, 58, 82, 88, 105, 107]

[19] T. Bell and A. Moffat. A note on the DMC data compression scheme. The Computer
Journal, 32(1):16–20, February 1989. [cited at p. 26]

[20] T. Bell, I. H. Witten, and J. G. Cleary. Modelling for text compression. ACM
Computing Surveys, 21(4):557–591, 1989. [cited at p. 5, 34, 50, 92]

http://www.mathematik.uni-bielefeld.de/sfb343/preprints/pr99133.ps.gz
http://www.mathematik.uni-bielefeld.de/sfb343/preprints/pr99133.ps.gz

149

[21] T. C. Bell. Better OPM/L test compression. IEEE Transactions on Communications,
COM-34(12):1176–1182, December 1986. [cited at p. 22]

[22] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, Englewood
Cliffs, NJ, 1990. [cited at p. 9, 92]

[23] T. C. Bell and D. Kulp. Longest-match string searching for Ziv–Lempel compres-
sion. Software–Practice and Experience, 23(7):757–772, July 1993. [cited at p. 22]

[24] T. C. Bell and I. H. Witten. The relationship between greedy parsing and symbol-
wise text compression. Journal of the ACM, 41(4):708–724, 1994. [cited at p. 22]

[25] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 360–369,
1997. [cited at p. 40, 169]

[26] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data com-
pression scheme. Communications of ACM, 29(4):320–330, April 1986. [cited at p. 4,

33, 48, 168, 170]

[27] E. Binder. Distance coder. Usenet group: comp.compression, 2000. [cited at p. 51]

[28] E. Binder. The dc program. ftp://ftp.elf.stuba.sk/pub/pc/pack/dc124.zip, 2000.
[cited at p. 57]

[29] E. Binder. Private communication, 2001. [cited at p. 51]

[30] Ch. Bloom. Solving the problem of context modeling. http://www.cbloom.com/
papers/ppmz.zip, March 1998. [cited at p. 25]

[31] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. C. Lai, and R. L. Mercer. An
estimate of an upper bound for the entropy of English. Computational Linguistics,
18(1):31–40, 1992. [cited at p. 29]

[32] S. Bunton. The structure of DMC. In J. A. Storer and M. Cohn, editors, Proceedings of
the IEEE Data Compression Conference (DCC’95), pages 72–81, March 28–30, 1995.
IEEE Computer Society Press, Los Alamitos, California. [cited at p. 26]

[33] S. Bunton. On-line stochastic processes in data compression. Ph.D. Thesis, University
of Washington, 1996. [cited at p. 25, 26, 27, 108]

[34] S. Bunton. An executable taxonomy of on-line modeling algorithms. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’97),
pages 42–51, March 25–27, 1997. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 25]

[35] S. Bunton. A generalization and improvement to PPM’s blending. UW-CSE
Technical Report UW-CSE-97-01-10, The University of Washington, January 1997.
ftp://ftp.cs.washington.edu/tr/1997/01/UW-CSE-97-01-10.PS.Z (also Proceedings
of DCC’97 p. 426). [cited at p. 25]

[36] S. Bunton. A percolating state selector for suffix-tree context models. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’97),
pages 32–41, March 25–27, 1997. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 25]

ftp://ftp.elf.stuba.sk/pub/pc/pack/dc124.zip
http://www.cbloom.com/papers/ppmz.zip
http://www.cbloom.com/papers/ppmz.zip
ftp://ftp.cs.washington.edu/tr/1997/01/UW-CSE-97-01-10.PS.Z

150 BIBLIOGRAPHY

[37] S. Bunton. Semantically motivated improvements for PPM variants. The Computer
Journal, 40(2-3):76–93, 1997. [cited at p. 25, 107]

[38] S. Bunton. Bayesian state combining for context models (extended abstract). In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference
(DCC’98), pages 329–338, March 30–April 1, 1998. IEEE Computer Society Press,
Los Alamitos, California. [cited at p. 25]

[39] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression al-
gorithm. SRC Research Report 124, Digital Equipment Corporation, Palo Alto,
California, May 10, 1994. ftp://ftp.digital.com/pub/DEC/SRC/research-reports/
SRC-124.ps.zip. [cited at p. 4, 31, 34, 38, 45, 48, 53, 107, 141]

[40] G. Buyanovsky. Associative coding. The Monitor, 8:10–22, 1994. In Russian.
[cited at p. 107]

[41] G. Buyanovsky. The acb 2.00c program. ftp://ftp.elf.stuba.sk/pub/pc/pack/acb
200c.zip, 1997. [cited at p. 107]

[42] J. Carpinelli, A. Moffat, R. Neal, W. Salamonsen, L. Stuiver, A. Turpin, and
I. H. Witten. The source codes for word, character, integer, and bit based com-
pression using arithmetic coding. http://www.cs.mu.oz.au/∼alistair/arith coder/
arith coder-3.tar.gz, February 1999. [cited at p. 170]

[43] B. Chapin. Switching between two on-line list update algorithms for higher com-
pression of Burrows–Wheeler transformed data. In J. A. Storer and M. Cohn, ed-
itors, Proceedings of the IEEE Data Compression Conference (DCC’2000), pages 183–
192, March 28–30, 2000. IEEE Computer Society Press, Los Alamitos, California.
[cited at p. 49]

[44] B. Chapin and S. R. Tate. Higher compression from the Burrows–Wheeler trans-
form by modified sorting. In J. A. Storer and M. Cohn, editors, Proceedings of the
IEEE Data Compression Conference (DCC’98), page 532, March 30–April 1, 1998.
IEEE Computer Society Press, Los Alamitos, California. [cited at p. 57]

[45] X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences
and its applications in genome comparison. Genome Informatics, 10:51–61, 1999.
[cited at p. 29]

[46] J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference
(DCC’2001), pages 163–172, March 27–29, 2001. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 165]

[47] M. G. Ciura and S. Deorowicz. How to squeeze a lexicon. Software–Practice and
Experience, 31(11):1077–1090, 2001. [cited at p. 6, 29]

[48] J. Cleary and I. Witten. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, COM-32:396–402, 1984.
[cited at p. 3, 23, 24]

[49] J. G. Cleary and W. J. Teahan. Unbounded length context for PPM. The Computer
Journal, 40(2/3):67–75, 1997. [cited at p. 23, 25, 42]

ftp://ftp.digital.com/pub/DEC/SRC/research-reports/SRC-124.ps.zip
ftp://ftp.digital.com/pub/DEC/SRC/research-reports/SRC-124.ps.zip
ftp://ftp.elf.stuba.sk/pub/pc/pack/acb_200c.zip
ftp://ftp.elf.stuba.sk/pub/pc/pack/acb_200c.zip
http://www.cs.mu.oz.au/~alistair/arith_coder/arith_coder-3.tar.gz
http://www.cs.mu.oz.au/~alistair/arith_coder/arith_coder-3.tar.gz

151

[50] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length context for PPM. In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference
(DCC’95), pages 52–61, March 28–30, 1995. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 42]

[51] G. V. Cormack and R. N. Horspool. Algorithms for adaptive Huffman codes.
Information Processing Letters, 18(3):159–165, 1984. [cited at p. 14]

[52] G. V. Cormack and R. N. Horspool. Data compression using dynamic Markov
modeling. The Computer Journal, 30(6):541–550, December 1987. [cited at p. 4, 26, 108]

[53] J. Daciuk, S. Mihov, B. W. Watson, and R. E. Watson. Incremental construction of
minimal acyclic finite-state automata. Computational Linguistics, 26(1):3–16, 2000.
[cited at p. 29]

[54] S. Deorowicz. Improvements to Burrows–Wheeler compression algorithm.
Software–Practice and Experience, 30(13):1465–1483, 10 November 2000. [cited at p. 5,

84, 102]

[55] S. Deorowicz. Second step algorithms in the Burrows–Wheeler compression al-
gorithm. Software–Practice and Experience, 32(2):99–111, 2002. [cited at p. 5, 57, 81, 84,

102]

[56] M. Effros. Universal lossless source coding with the Burrows Wheeler transform.
In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Confer-
ence (DCC’99), pages 178–187, March 29–31, 1999. IEEE Computer Society Press,
Los Alamitos, California. [cited at p. 45]

[57] N. Ekstrand. Lossless compression of grayscale images via context tree weighting.
In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Confer-
ence (DCC’96), pages 132–139, April 1–3, 1996. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 28]

[58] N. Ekstrand. Universal Lossless Source Coding Techniques for Images and Short Data
Sequences. Ph.D. Thesis, Lund Institute of Technology, Lund University, 2001.
[cited at p. 28]

[59] P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory, IT-21:194–203, 1975. [cited at p. 57, 87]

[60] P. Elias. Interval and recency rank source coding: Two on-line adaptive variable
length schemes. IEEE Transactions on Information Theory, IT-33:3–10, January 1987.
[cited at p. 51]

[61] Erlangen/bethesda data and online services. http://cactus.nci.nih.gov/, 2002.
[cited at p. 164]

[62] N. Faller. An adaptive system for data compression. In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pages 593–597, 1973. [cited at p. 14]

[63] M. Farach. Optimal suffix construction with large alphabets. In Proceedings of the
38th Annual IEEE Symposium on Foundations of Computer Science, pages 137–143,
October 1997. [cited at p. 39]

http://cactus.nci.nih.gov/

152 BIBLIOGRAPHY

[64] P. Fenwick. A new data structure for cumulative frequency tables. Software–
Practice and Experience, 24(3):327–336, March 1994. (Errata published in 24(7):677,
July 1994.). [cited at p. 15]

[65] P. Fenwick. Experiments with a block sorting text compression algorithm. Tech-
nical Report 111, The University of Auckland, Department of Computer Science,
May 1995. ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep111.ps. [cited at p. 48]

[66] P. Fenwick. Improvements to the block sorting text compression algorithm. Tech-
nical Report 120, The University of Auckland, Department of Computer Science,
August 1995. ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep120.ps. [cited at p. 45]

[67] P. Fenwick. Block sorting text compression—final report. Technical Report 130,
The University of Auckland, Department of Computer Science, April 1996. ftp:
//ftp.cs.auckland.ac.nz/pub/peter-f/TechRep130.ps. [cited at p. 34, 35, 48, 82, 88]

[68] P. Fenwick. The Burrows–Wheeler transform for block sorting text compres-
sion: Principles and improvements. The Computer Journal, 39(9):731–740, 1996.
[cited at p. 45, 48, 53, 56, 107, 108]

[69] P. Fenwick. Burrows–Wheeler compression with variable length integer codes.
Software–Practice and Experience, 32(13):1307–1316, 2002. [cited at p. 57]

[70] E. R. Fiala and D. H. Greene. Data compression with finite windows. Communi-
cations of ACM, 32(4):490–505, 1989. [cited at p. 22]

[71] A. S. Fraenkel and S. T. Klein. Robust universal complete codes for transmission
and compression. Discrete Applied Mathematics, 64:31–55, 1996. [cited at p. 57]

[72] J. L. Gailly. The gzip program. http://www.gzip.org/, 1993. [cited at p. 108]

[73] R. G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, 24(6):668–674, 1978. [cited at p. 14]

[74] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unify-
ing view of linear-time suffix tree construction. Algorithmica, 19:331–353, 1997.
[cited at p. 39]

[75] S. Golomb. Runlength encodings. IEEE Transactions on Information Theory, IT-
12(3):399–401, July 1966. [cited at p. 45]

[76] Sz. Grabowski. Text preprocessing for Burrows–Wheeler block sorting compres-
sion. In VII Konferencja Sieci i Systemy Informatyczne Łódź’1999, Materiały konferen-
cyjne, pages 229–239, 1999. [cited at p. 58]

[77] Sz. Grabowski. Private communication, November 2000. [cited at p. 51]

[78] M. Guazzo. A general minimum-redundancy source-coding algorithm. IEEE
Transactions on Information Theory, IT-26(1):15–25, January 1980. [cited at p. 15]

[79] P. C. Gutmann and T. C. Bell. A hybrid approach to text compression. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’94),
pages 225–233, March 29–31, 1994. [cited at p. 22]

[80] D. T. Hoang, P. M. Long, and J. S. Vitter. Dictionary selection using partial match-
ing. Information Sciences, 119(1-2):57–72, 1999. [cited at p. 23]

ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep111.ps
ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep120.ps
ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep130.ps
ftp://ftp.cs.auckland.ac.nz/pub/peter-f/TechRep130.ps
http://www.gzip.org/

153

[81] C. A. R. Hoare. Quicksort. The Computer Journal, 4:10–15, 1962. [cited at p. 41]

[82] R. N. Horspool. The effect of non-greedy parsing in Ziv-Lempel compression
methods. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compres-
sion Conference (DCC’95), pages 302–311, March 28–30, 1995. [cited at p. 22]

[83] P. G. Howard. The design and analysis of efficient lossless data compression sys-
tems. Technical Report CS-93-28, Department of Computer Science, Brown Uni-
versity, Providence, Rhode Island, 1993. http://www.cs.brown.edu/publications/
techreports/reports/CS-93-28.html. [cited at p. 25]

[84] P. G. Howard and J. S. Vitter. Analysis of arithmetic coding for data compression.
Information Processing and Management, 28(6):749–763, 1992. [cited at p. 15]

[85] P. G. Howard and J. S. Vitter. Practical implementations of arithmetic cod-
ing. Image and text compression. Kluwer Academic Publishers, pages 85–112, 1992.
[cited at p. 15]

[86] P. G. Howard and J. S. Vitter. Arithmetic coding for data compression. Proceedings
of the IEEE, 82(6):857–865, June 1994. [cited at p. 15]

[87] D. A. Huffman. A method for the construction of minimum-redundancy codes.
In Proceedings of the Institute of Radio Engineers, pages 1098–1101, September 1952.
[cited at p. 13]

[88] S. J. Inglis. Lossless Document Image Compression. Ph.D. Thesis, The University of
Waikato, March 1999. [cited at p. 29]

[89] S. Irani. Two results on the list update problem. Information Processing Letters,
38(6):301–306, 1991. [cited at p. 47]

[90] H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix
arrays. In Proceedings of the IEEE String Processing and Information Retrieval Sym-
posium & International Workshop on Groupware, pages 81–88, 1999. [cited at p. 5, 41, 62,

101, 141]

[91] F. Jelinek. Probabilistic Information Theory. New York: McGraw-Hill, 1968.
[cited at p. 14]

[92] A. Kadach. Effective algorithms for lossless compression of textual data. Ph.D.
Thesis, Russian Science Society, Novosibirsk, Russia, 1997. In Russian, http:
//www.compression.graphicon.ru/download/articles/lz/kadach cndd 1997 ps.rar.
[cited at p. 50]

[93] D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.
[cited at p. 14]

[94] D. E. Knuth. The Art of Computer Programming. Sorting and Searching, volume 3.
Addison-Wesley, Reading, MA, second edition, 1998. [cited at p. 169]

[95] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding.
IEEE Transactions on Information Theory, 27:199–207, 1981. [cited at p. 28, 74, 88]

[96] S. Kurtz and B. Balkenhol. Space efficient linear time computation of the Bur-
rows and Wheeler transformation. Numbers, Information and Complexity, Kluwer
Academic Publishers, pages 375–383, 2000. [cited at p. 39]

http://www.cs.brown.edu/publications/techreports/reports/CS-93-28.html
http://www.cs.brown.edu/publications/techreports/reports/CS-93-28.html
http://www.compression.graphicon.ru/download/articles/lz/kadach_cndd_1997_ps.rar
http://www.compression.graphicon.ru/download/articles/lz/kadach_cndd_1997_ps.rar

154 BIBLIOGRAPHY

[97] G. G. Langdon. An introduction to arithmetic coding. IBM Journal of Research and
Development, 28(2):135–149, March 1984. [cited at p. 15]

[98] Large Canterbury corpus. http://corpus.canterbury.ac.nz/descriptions/, 1997.
[cited at p. 5, 93]

[99] N. J. Larsson. The context trees of block sorting compression. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’98),
pages 189–198, March 30–April 1, 1998. IEEE Computer Society Press, Los Alami-
tos, California. [cited at p. 46]

[100] N. J. Larsson. The source code for the Larsson–Sadakane suffix array computation
algorithm. http://www.dna.lth.se/∼jesper/research.html, 1999. [cited at p. 169]

[101] N. J. Larsson. Structures of String Matching and Data Compression. Ph.D. Thesis, De-
partment of Computer Science, Lund University, Box 118, S-22100 Lund, Sweden,
September 1999. [cited at p. 46]

[102] N. J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report LU-CS-
TR:99-214, Department of Computer Science, Lund University, Box 118, S-22100
Lund, Sweden, May 1999. http://www.cs.lth.se/∼jesper/ssrev-tr.pdf. [cited at p. 40,

101, 142, 167, 169]

[103] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys, editors.
The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley and Sons, Chichester, West Sussex, New York, 1985. [cited at p. 58]

[104] D. Loewenstern and P. N. Yianilos. Significantly lower entropy estimates for natu-
ral DNA sequences. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data
Compression Conference (DCC’97), pages 151–160, March 25–27, 1997. [cited at p. 29]

[105] G. Lyapko. The lgha program. http://www.geocities.com/SiliconValley/Lab/6606/
lgha.htm, 1999. [cited at p. 108]

[106] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993. [cited at p. 40, 101, 142, 167,

169]

[107] G. Manzini. An analysis of the Burrows–Wheeler transform (extended abstract).
In Proceedings of the tenth annual ACM-SIAM symposium on discrete algorithms
(SODA’99), pages 669–677, 1999. [cited at p. 45]

[108] G. Manzini. The Burrows–Wheeler transform: Theory and practice. Lecture Notes
in Computer Science, Springer Verlag, 1672:34–47, 1999. [cited at p. 45]

[109] G. Manzini. An analysis of the Burrows–Wheeler transform. Journal of the ACM,
48(3):407–430, 2001. [cited at p. 45]

[110] J. McCabe. On serial files with relocatable records. Operations Research, 13:609–
618, 1965. [cited at p. 46]

[111] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, 1976. [cited at p. 38]

http://corpus.canterbury.ac.nz/descriptions/
http://www.dna.lth.se/~jesper/research.html
http://www.cs.lth.se/~jesper/ssrev-tr.pdf
http://www.geocities.com/SiliconValley/Lab/6606/lgha.htm
http://www.geocities.com/SiliconValley/Lab/6606/lgha.htm

155

[112] V. Miller and M. Wegman. Variations on a theme be Ziv and Lempel. In A. Apos-
tolico and Z. Galil, editors, Combinatorial Algorithms on Words, Volume 12, pages 131–
140, 1985. NATO ASI Series F. [cited at p. 23]

[113] A. Moffat. Implementing the PPM data compression scheme. IEEE Transactions
on Communications, 28(11):1917–1921, November 1990. [cited at p. 25]

[114] A. Moffat. An improved data structure for cumulative probability tables.
Software–Practice and Experience, 29(7):647–659, 1999. [cited at p. 15]

[115] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM Trans-
actions on Information Systems, 16(3):256–294, 1998. [cited at p. 15, 170]

[116] A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer Academic
Publishers, Norwell, Massachusetts, 2002. [cited at p. 9]

[117] Mozilla Project. http://www.mozilla.org/, 1998–2002. [cited at p. 163]

[118] M. Nelson and J. L. Gailly. The Data Compression Book. M&T Books, New York,
NY, second edition, 1995. [cited at p. 9]

[119] C. G. Nevill-Manning and I. H. Witten. Protein is incompressible. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’99),
pages 257–266, March 29–31, 1999. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 29]

[120] Open source database benchmark. http://sourceforge.net/projects/osdb, 2002.
[cited at p. 164]

[121] Openoffice.org source project. http://www.openoffice.org, 2002. [cited at p. 164]

[122] V. Pareto. Cours d’économie politique, professé à l’Université de Lausanne, tome I. Lau-
sanne: Rouge, 1896. [cited at p. 97]

[123] V. Pareto. Cours d’économie politique, professé à l’Université de Lausanne, tome II.
Lausanne: Rouge, 1897. [cited at p. 97]

[124] V. Pareto. Manuale di economia politica, conuna introduzione alla scienca Sociale, vol-
ume in-8. Milano, 1906. [cited at p. 97]

[125] R. Pasco. Source coding algorithms for fast data compression. Ph.D. Thesis, Depart-
ment of Electrical Engineering, Stanford University, Stanford, 1976. [cited at p. 15]

[126] I. Pavlov. The ufa 0.04 beta 1 program. ftp://ftp.elf.stuba.sk/pub/pc/pack/ufa004b1.
zip, 1998. [cited at p. 109]

[127] I. Pavlov. The 7-zip 2.30 beta 17 program. http://www.7-zip.org, 2002. [cited at p. 108]

[128] G. Perec. La Disparition. Denoël, 1969. In French. [cited at p. 12]

[129] G. Perec. A Void. Harvill, 1994. (English translation by A. Gilbert). [cited at p. 12]

[130] N. Porter, editor. Webster’s Revised Unabridged Dictionary. C. & G. Merriam Co.,
Springfield, Massachusetts, 1913. [cited at p. 96, 165]

[131] Project Gutenberg. http://www.promo.net/pg/, 1971–2002. [cited at p. 96, 163, 165]

[132] N. Reingold and J. Westbrook. Off-line algorithms for the list update problem.
Information Processing Letters, 60:75–80, 1996. [cited at p. 47]

http://www.mozilla.org/
http://sourceforge.net/projects/osdb
http://www.openoffice.org
ftp://ftp.elf.stuba.sk/pub/pc/pack/ufa004b1.zip
ftp://ftp.elf.stuba.sk/pub/pc/pack/ufa004b1.zip
http://www.7-zip.org
http://www.promo.net/pg/

156 BIBLIOGRAPHY

[133] W. Reymont. Chłopi. 1904–09. [cited at p. 96, 164]

[134] J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal of
Research and Development, 20:198–203, 1976. [cited at p. 15]

[135] J. Rissanen. Complexity of strings in the class of Markov sources. IEEE Transac-
tions on Information Theory, IT-32:526–532, July 1986. [cited at p. 18]

[136] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of Research and
Development, 23:149–162, 1979. [cited at p. 15]

[137] E. Roshal. The rar 2.90 program. http://www.rarlab.com, 2001. [cited at p. 108]

[138] F. Rubin. Arithmetic stream coding using fixed precision registers. IEEE Transac-
tions on Information Theory, IT-25(6):672–675, November 1979. [cited at p. 15]

[139] K. Sadakane. A fast algorithm for making suffix arrays and for Burrows–Wheeler
transformation. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data
Compression Conference (DCC’98), pages 129–138, March 30–April 1, 1998. IEEE
Computer Society Press, Los Alamitos, California. [cited at p. 40]

[140] K. Sadakane, T. Okazaki, and H. Imai. Implementing the context tree weighting
method for text compression. In J. A. Storer and M. Cohn, editors, Proceedings of
the IEEE Data Compression Conference (DCC’2000), pages 123–132, April 2–4, 2000.
IEEE Computer Society Press, Los Alamitos, California. [cited at p. 28]

[141] The Samba Project. http://www.samba.org, 2002. [cited at p. 164]

[142] SAO star catalogue. http://tdc-www.harvard.edu/software/catalogs/sao.html, 2002.
[cited at p. 164]

[143] K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers, sec-
ond edition, 2000. [cited at p. 9]

[144] M. Schindler. A fast block-sorting algorithm for lossless data compression. In
J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Confer-
ence (DCC’97), page 469, March 25–27, 1997. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 48, 108]

[145] M. Schindler. The szip 1.11 beta program, 1998. http://www.compressconsult.com/
szip/. [cited at p. 108]

[146] F. Schulz. Adaptive Suchverfahren. Ph.D. Thesis, der Universitat des Saarlandes,
Saarbrücken, Germany, 1999. In German. [cited at p. 82]

[147] R. Sedgewick. A new upper bound for Shellsort. Journal of Algorithms, 7:159–173,
1986. [cited at p. 169]

[148] J. Seward. The bzip 0.21 program, 1996. http://www.muraroa.demon.co.uk.
[cited at p. 107, 108]

[149] J. Seward. On the performance of BWT sorting algorithms. In J. A. Storer and
M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’2000),
pages 173–182, March 28–30, 2000. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 41, 101, 141, 168, 169]

http://www.rarlab.com
http://www.samba.org
http://tdc-www.harvard.edu/software/catalogs/sao.html
http://www.compressconsult.com/szip/
http://www.compressconsult.com/szip/
http://www.muraroa.demon.co.uk

157

[150] J. Seward. The bzip2 program, 2002. http://www.muraroa.demon.co.uk. [cited at p. 53,

101, 142, 168, 169]

[151] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423,623–656, 1948. [cited at p. 12]

[152] C. E. Shannon. Prediction and entropy of printed English. Bell System Technical
Journal, 30:50–64, 1951. [cited at p. 29]

[153] D. L. Shell. A high-speed sorting procedure. Communications of ACM, 2(7):30–32,
1959. [cited at p. 169]

[154] D. Shkarin. Improving the efficiency of PPM algorithm. Problems of Informa-
tion Transmission, 34(3):44–54, 2001. In Russian, http://sochi.net.ru/∼maxime/doc/
PracticalPPM.ps.gz. [cited at p. 25, 108]

[155] D. Shkarin. PPM: One step to practicality. In J. A. Storer and M. Cohn, editors, Pro-
ceedings of the IEEE Data Compression Conference (DCC’2002), pages 202–211, April
2–4, 2002. IEEE Computer Society Press, Los Alamitos, California. [cited at p. 25, 108,

119, 136, 144]

[156] D. Shkarin. The PPMII/cPPMII program. ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi.
rar, 2002. [cited at p. 25, 108, 136]

[157] W. Skarbek. Metody reprezentacji obrazów cyfrowych. Akademicka Oficyna
Wydawnicza PLJ, Warszawa, 1993. In Polish. [cited at p. 9]

[158] M. Smirnov. The PPMNB1+ program. ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmnb1.
rar, 2002. [cited at p. 108]

[159] J. Storer and T. G. Szymanski. Data compression via textual substitution. Journal
of the ACM, 29:928–951, 1982. [cited at p. 22]

[160] I. Sutton. The boa 0.58b program. ftp://ftp.elf.stuba.sk/pub/pc/pack/boa058.zip,
1998. [cited at p. 107]

[161] J. Suzuki. A relationship between context tree weighting and general model
weighting techniques for tree sources. IEICE Transactions on Fundamentals of
Electronics Communications & Computer Sciences, E81-A(11):2412–2417, November
1998. [cited at p. 28]

[162] W. J. Teahan. The ppmd+ program. ftp://ftp.cs.waikato.ac.nz/pub/compression/
ppm/ppm.tar.gz, 1997. [cited at p. 108]

[163] W. J. Teahan. Modelling English text. Ph.D. Thesis, University of Waikato, Hamil-
ton, New Zealand, May 1998. [cited at p. 29, 59, 108]

[164] W. J. Teahan and J. G. Cleary. The entropy of English using PPM-based models.
In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Con-
ference (DCC’96), pages 53–62, April 1–3, 1996. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 29]

[165] W. J. Teahan and J. G. Cleary. Models of English text. In J. A. Storer and M. Cohn,
editors, Proceedings of the IEEE Data Compression Conference (DCC’97), pages 12–
21, March 25–27, 1997. IEEE Computer Society Press, Los Alamitos, California.
[cited at p. 29]

http://www.muraroa.demon.co.uk
http://sochi.net.ru/~maxime/doc/PracticalPPM.ps.gz
http://sochi.net.ru/~maxime/doc/PracticalPPM.ps.gz
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi.rar
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi.rar
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmnb1.rar
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmnb1.rar
ftp://ftp.elf.stuba.sk/pub/pc/pack/boa058.zip
ftp://ftp.cs.waikato.ac.nz/pub/compression/ppm/ppm.tar.gz
ftp://ftp.cs.waikato.ac.nz/pub/compression/ppm/ppm.tar.gz

158 BIBLIOGRAPHY

[166] W. J. Teahan and J. G. Cleary. Tag based models of English text. In J. A. Storer
and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference (DCC’98),
pages 43–52, March 30–April 1, 1998. IEEE Computer Society Press, Los Alamitos,
California. [cited at p. 29]

[167] W. J. Teahan, S. Inglis, J. G. Cleary, and G. Holmes. Correcting English text using
PPM models. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data Com-
pression Conference (DCC’98), pages 289–298, March 30–April 1, 1998. [cited at p. 29]

[168] B. Teia. A lower bound for randomised list update algorithms. Information Pro-
cessing Letters, 47:5–9, 1993. [cited at p. 47]

[169] J. Teuhola and T. Raita. Application of a finite-state model to text compression.
The Computer Journal, 36(7):607–614, 1993. [cited at p. 26]

[170] T. J. Tjalkens, P. A. J. Volf, and F. M. J. Willems. A context-tree weighting method
for text generating sources. In J. A. Storer and M. Cohn, editors, Proceedings of the
IEEE Data Compression Conference (DCC’97), page 472, March 25–27, 1997. IEEE
Computer Society Press, Los Alamitos, California. [cited at p. 28]

[171] T. J. Tjalkens and F. M. J. Willems. Implementing the context-tree weighting
method: Arithmetic coding. In International Conference on Combinatorics, Infor-
mation Theory & Statistics, page 83, Portland, July 18–20 1997. [cited at p. 28]

[172] K. Tsai-Hsing. Improving suffix-array construction algorithms with applications.
Master’s thesis, Gunma University, Kiryu, 376-8515, Japan, 2001. http://www.isl.
cs.gunma-u.ac.jp/Yokoo/dataroom/paper/00/thkao/thesis.ps. [cited at p. 63]

[173] E. Ukkonen. On-line construction of suffix tress. Algorithmica, 14(3):249–260, 1995.
[cited at p. 39]

[174] V. N. Vapnik. Estimation of Dependencies based on Empirical Data. Springer Verlag,
NJ, 1982. [cited at p. 74]

[175] S. Verdu. Private communication, August 2001. [cited at p. 70]

[176] J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,
34(4):825–845, 1987. [cited at p. 14]

[177] J. S. Vitter. Algorithm 673: dynamic Huffman coding. ACM Transactions on Math-
ematical Software, 15(2):158–167, 1989. [cited at p. 14]

[178] Vitrual library of Polish literature. http://monika.univ.gda.pl/∼literat/books.htm,
2002. [cited at p. 164]

[179] P. A. J. Volf. Context-tree weighting for text-sources. In Proceedings of the IEEE
International Symposium on Information Theory, Ulm, Germany, page 64, June 29–
July 4, 1997. [cited at p. 28]

[180] P. A. J. Volf and F. M. J. Willems. Context-tree weighting for extended tree sources.
In Proceedings of the 17th Symposium on Information Theory in the Benelux, Enschede,
The Netherlands, pages 95–101, May 30–31, 1996. [cited at p. 28]

[181] P. A. J. Volf and F. M. J. Willems. A context-tree branch-weighting algorithm. In
Proceedings of the 18th Symposium on Information Theory in the Benelux, Veldhoven,
The Netherlands, pages 115–122, May 15–16, 1997. [cited at p. 28]

http://www.isl.cs.gunma-u.ac.jp/Yokoo/dataroom/paper/00/thkao/thesis.ps
http://www.isl.cs.gunma-u.ac.jp/Yokoo/dataroom/paper/00/thkao/thesis.ps
http://monika.univ.gda.pl/~literat/books.htm

159

[182] P. A. J. Volf and F. M. J. Willems. Switching between two universal source cod-
ing algorithms. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data
Compression Conference (DCC’98), pages 491–500, March 30–April 1, 1998. IEEE
Computer Society Press, Los Alamitos, California. [cited at p. 28, 49, 109]

[183] P. A. J. Volf and F. M. J. Willems. The switching method: Elaborations. In Pro-
ceedings of the 19th Symposium on Information Theory in the Benelux, Veldhoven, The
Netherlands, pages 13–20, May 28–29, 1998. [cited at p. 28, 49, 109]

[184] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour.
Princeton University Press, Princeton, 1953. [cited at p. 98]

[185] M. J. Weinberger, J. Rissanen, and M. Feder. A universal finite memory source.
IEEE Transactions on Information Theory, IT-41:643–652, May 1995. [cited at p. 19]

[186] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, The University of Iowa, pages
1–11, 1973. [cited at p. 38]

[187] T. A. Welch. A technique for high-performance data compression. Computer,
17(6):8–19, 1984. [cited at p. 23, 108]

[188] F. M. J. Willems. The context-tree weighting method: Extentensions. IEEE Trans-
actions on Information Theory, pages 792–798, March 1998. [cited at p. 28]

[189] F. M. J. Willems, Yu. M. Shtarkov, and T. J. Tjalkens. The context tree weighting
method: Basic properties. IEEE Transactions on Information Theory, 41:653–664,
May 1995. [cited at p. 4, 27, 107]

[190] F. M. J. Willems, Yu. M. Shtarkov, and T. J. Tjalkens. Context weighting for general
finite-context sources. IEEE Transactions on Information Theory, 42(5):1514–1520,
September 1996. [cited at p. 28]

[191] F. M. J. Willems, Yu. M. Shtarkov, and T. J. Tjalkens. Reflections on: The context-
tree weighting method: Basic properties. IEEE Information Theory Society Newslet-
ter, 47:1, 20–27, March 1997. [cited at p. 28]

[192] F. M. J. Willems and T. J. Tjalkens. Complexity reduction of the context-tree
weighting method. In Proceedings of the 18th Symposium Information Theory in
Benelux, Veldhoven, pages 123–130, May 15–16, 1997. [cited at p. 28]

[193] R. N. Williams. An extremely fast Ziv–Lempel data compression algorithm. In
J. A. Storer and J. H. Reif, editors, Proceedings of the IEEE Data Compression Conference
(DCC’91), pages 362–371, April 8–11, 1991. IEEE Computer Society Press, Los
Alamitos, California. [cited at p. 22]

[194] R. N. Williams. The LZRW algorithms family. http://www.ross.net/compression/
introduction.html, 1991. [cited at p. 22]

[195] A. I. Wirth and A. Moffat. Can we do without ranks in Burrows Wheeler trans-
form compression. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE Data
Compression Conference (DCC’2001), pages 419–428, 2001. IEEE Computer Society
Press, Los Alamitos, California. [cited at p. 56, 82, 88, 105, 109]

http://www.ross.net/compression/introduction.html
http://www.ross.net/compression/introduction.html

160 BIBLIOGRAPHY

[196] I. H. Witten and T. C. Bell. The zero-frequency problem: estimating the probabili-
ties of novel events in adaptive text compression. IEEE Transactions on Information
Theory, 37(3):1085–1094, 1991. [cited at p. 25]

[197] I. H. Witten, Z. Bray, M. Mahoui, and B. Teahan. Text mining: A new frontier
for lossless compression. In J. A. Storer and M. Cohn, editors, Proceedings of the IEEE
Data Compression Conference (DCC’99), March 29–31, 1999. IEEE Computer Society
Press, Los Alamitos, California. [cited at p. 29]

[198] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann Publishers, San Francisco, second
edition, 1999. [cited at p. 9]

[199] I. H. Witten, R. M. Neal, and J. F. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540, 1987. [cited at p. 15]

[200] V. Yoockin. The ybs 0.03 program. ftp://ftp.elf.stuba.sk/pub/pc/pack/ybs003ew.zip,
2002. [cited at p. 105, 109]

[201] T. L. Yu. Dynamic Markov compression. Dr. Dobb’s Journal, (243):30–33, 96–100,
January 1996. [cited at p. 26]

[202] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, IT-23:337–343, 1977. [cited at p. 3, 21, 108]

[203] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate cod-
ing. IEEE Transactions on Information Theory, IT-24:530–536, 1978. [cited at p. 3, 21,

22]

ftp://ftp.elf.stuba.sk/pub/pc/pack/ybs003ew.zip

Appendices

161

Appendix A

Silesia corpus

In this appendix, a more detailed description of the files in the Silesia corpus is
presented.

dickens

Charles Dickens wrote many novels. The file is a concatenation of fourteen of
his works that can be found in the Project Gutenberg [131]. This is a simple text
file. The included novels are: A Child’s History Of England, All The Year Round:
Contributions, American Notes, The Battle Of Life, Bleak House, A Christmas Carol,
David Copperfield, Dombey And Son, Doctor Marigold, Going Into Society, George
Silverman’s Explanation, Barnaby Rudge: a tale of the Riots of ’eighty, The Chimes,
The Cricket On The Hearth.

mozilla

A Mozilla 1.0 [117] open source web browser was installed on the Tru64 UNIX
operating system and then the contents of the Mozilla.org directory were tarred.
There are 525 files of types such as: executables, jar archives, HTML, XML, text,
and others.

mr

A magnetic resonance medical picture of a head. This file is stored in a DICOM
format and contains 19 planes.

nci

The chemical databases of structures contain information of structures, their
components, 2D or 3D coordinates, properties, etc. The file is a part of the Au-

163

164 APPENDIX A. SILESIA CORPUS

gust 2000 2D file stored in an SDF format which is a common file format devel-
oped to handle a list of molecular structures associated with properties [61]. The
original database is of size 982 MB so it is necessary to truncate it to be suitable
for a part of the corpus. The 32 MB piece (rounded down to the nearest end of
the record) is taken from about the middle of the original file (starting at the first
record after leaving 400 MB of data).

ooffice

An OpenOffice.org [121] is an open source project, which is composed of the
word processor, spreadsheet program, presentation maker, and graphical pro-
gram. The file is a dynamic linked library from version 1.01 for Windows oper-
ating system.

osdb

An Open Source Database Benchmark [120] is a project created to provide a free
test for database systems. Some of the parts of the project are sample databases.
The 40 MB benchmark was run on a MySQL 3.23 server. The file is one of the
MySQL database files, hundred.med.

reymont

A book Chłopi [133] by Władysław Reymont was honoured the Nobel Price
in 1924. The text of the book was taken from the Virtual Library of Polish Litera-
ture [178]. Then it was converted to the LATEX files from which the uncompressed
PDF file was produced. The file is uncompressed, because the build-in compres-
sion in the PDF format is rather poor, and much better results can be obtained
when we compress the uncompressed PDF files.

samba

Samba [141] is an open source project that is intended to be a free alternative to
the SMB/CIFS clients. The file contains tarred source code (also documentation
and graphics) of the Samba 2.2-3 version.

sao

There are many star catalogues containing the data of sky objects. The chosen
one, SAO catalogue [142], is suitable especially for the amateur astronomers. It
contains the description of 258,996 stars, and is composed of binary records.

165

webster

The 1913 Webster Unabridged Dictionary [130] is an English dictionary stored
in a rather simple HTML. The file is a concatenation of files that can be obtained
from Project Gutenberg [131].

xml

A concatenation of 21 XML files used by Cheney [46]. The chosen files are highly,
mixed, and little structured and tagged.

x-ray

An X-ray medical picture of child’s hand. This is a 12-bit grayscale image.

Appendix B

Implementation details

The compression program introduced in the thesis is implemented in C++. Here
we provide a brief description of its usage and the contents of source code files.

B.1 Program usage

The compression program sdc can be executed with several command line pa-
rameters to choose the compression method. The syntax of the execution is:

sdc 〈e|d|i〉 [switches] 〈input file name〉 〈output file name〉
The options are:

• e—encoding,

• d—decoding; if this option is chosen, then switches are ignored,

• i—show info of the compressed file; if this option is chosen, then switches
are ignored.

The available switches are:

• –b〈size〉—sets the block size. The proper values are expressed in MB and
must lie in the range [1, 128]. It should be remembered that the memory
used by program is about 9 times greater than the block size. The special
value 0 sets the block size equal to the size of the file to be compressed but
not greater than 128 MB. The default value is 0.

• –f{L|S|I|C}—chooses the BWT computation method. The available op-
tions are:

– M—the Manber–Myers’s method [106],

– L—the Larsson–Sadakane’s method [102],

167

168 APPENDIX B. IMPLEMENTATION DETAILS

– S—the improved Seward’s copy method [149] implemented in the
bzip2 program [150], with the Manber–Myers’s method as a fallback,

– IT1—the improved Itoh–Tanaka-based method (Section 4.1.2) of or-
der 1, with the Manber–Myers’s method as a fallback,

– IT2—the improved Itoh–Tanaka-based method of order 2, with the
Manber–Myers’s method as a fallback,

– IT—the improved Itoh–Tanaka-based method of order chosen relat-
ing on the contents of the file, with the Manber–Myers’s method as a
fallback,

– C—the combined method; depending on the contents of the file, the
program chooses between all the available methods.

The choice of the method affects the compression speed only. Usually the
fastest method is C, but the best worst-case time complexity gives the L
method. The default value is C.

• –s{W|M|T}—chooses the second stage transform. The available options
are:

– M—the move-to-front transform [26],

– T—the time-stamp(0) transform [4],

– W—the weighted frequency count transform (Section 4.1.5).

The default value is W.

• –w〈wf〉—chooses the weight function if the WFC transform is used. (Al-
ways the quantised versions of the weight functions are used.) The proper
values for wf are from the range [1, 9]. The weight functions are shown
in Figure 4.8. The default value is 9.

• –t〈dist〉—chooses the maximum distance in the WFC weight functions.
The proper values are from the range [1, 15]. The distance is set accord-
ing to the rule tmax = 2 dist. The default value is 11.

• –m{0|1|2}—chooses the version of the move-to-front transform. The avail-
able options are:

– 0—the original MTF transform,

– 1—the MTF-1 transform,

– 2—the MTF-2 transform.

The default value is 2.

B.2. SOURCE CODE 169

B.2 Source code

Burrows–Wheeler transform

Several BWT computation methods are implemented in the compression pro-
gram. The Larsson–Sadakane’s method [102], implemented in a class CLSBWT,
is located in the files lsbwt.cpp and lsbwt.h. This source code is based on the
original implementation by Larsson and Sadakane [100].

The other BWT computation methods are implemented in a class CSITBWT,
located in the source code files sitbwt.cpp and sitbwt.h. The main sorting proce-
dure is based on the Seward’s method [149]. It executes as follows:

1. Sort the suffixes with the bucket sort procedure according to one (large
buckets) and two (small buckets) initial symbols.

2. Sort the large buckets with the Shell sort [153] procedure according to their
size.

3. Sort the suffixes in the buckets with a ternary quick sort procedure [25].
As the pivot in the quick sort procedure a median of three is used. If the
number of suffixes to be sorted is less than some threshold then the Shell
sort procedure is used.

4. If a level of recursive calls of the quick sort procedure is higher than an
assumed number, the Shell sort procedure for sorting the remaining part
is executed.

5. If the sorting takes too long (longer than the assumed complexity) the
quick sort procedure is stopped and the fallback procedure is used, which
is the Manber–Myers’s method [106].

We introduced several improvements to the implementation based on the
bzip2 program [150]. The most important are:

• The increments in the Shell sort procedure [153] are replaced from Knuth
proposal [94] to Sedgewick proposal [147]. The experiments show that this
change accelerates the sorting process.

• If the number of suffixes to be sorted with the quick sort procedure is larger
than some threshold, a pseudo-median of nine is used to choose the pivot.

• If the number of suffixes is small (lest than 8) an insertion sort procedure
is employed.

• A number of the recursive levels of the quick sort procedure is increased
from 12 to 256.

170 APPENDIX B. IMPLEMENTATION DETAILS

• A speed up for sorting strings with a long common prefix is used. Such
strings are compared in a special way without the recursive calls of the
quick sort procedure.

The class CSITBWT includes also an implementation of the improved Itoh–
Tanaka’s method (Section 4.1.2). The working of the Itoh–Tanaka’s method is as
follows:

1. Sort the suffixes with the bucket sort procedure according to one (large
buckets) and two (small buckets) initial symbols, splitting meanwhile the
buckets into types D, E, and I.

2. Calculate what is the number of buckets of type E. If it is higher than 0.07n,
then use the improved Itoh–Tanaka’s method of order 1. In the other case,
use the improved Itoh–Tanaka’s method of order 2.

3. Calculate the total number of suffixes of types D and I. Choose the smaller
number and use according to it a forward or a reverse lexicographic order
to sort with the string-sorting procedure the smaller number of suffixes.

4. Execute the improved Seward’s method for sorting strings. If the im-
proved Itoh–Tanaka’s method of order 1 is used, the special processing
of the suffixes of type E is cared during sorting.

5. Sort the remaining unsorted suffixes.

Other stages

A weighted frequency count transform (Section 4.1.5) is implemented in a class
CWFC, stored in the files wfc.cpp and wfc.h. The implementation is highly op-
timised for speed to minimise the cost of maintaining the list L. The worst-case
time complexity of this implementation is O(nlk).

A move-to-front transform [26] is implemented in a class CMTF located in
the files mtf.cpp and mtf.h. This is an optimised implementation of the worst-
case time complexity O(nk).

A time-stamp(0) transform [4] is implemented in a class CTS located in the
files ts.cpp and ts.h. This is an implementation of the worst-case time complex-
ity O(nk).

A zero run length encoding is implemented in a class CRLE0 located in
the files rle0.cpp and rle0.h. The worst-case time complexity of this transform
is O(n).

The arithmetic coding class CBAC is an implementation based on the source
code by Moffat et al. [42] presented, in 1998, with the paper revisiting the arith-
metic coding [115]. This class implements the weighted probability estimation
method introduced in this thesis, as well as the coding of symbols being the

B.2. SOURCE CODE 171

output of the RLE-0 stage into a binary code. This class is located in the files
aac.cpp and aac.h.

Auxiliary program components

A class CCompress is a class gathering all the stages of the proposed compres-
sion algorithm. It is located in the files compress.cpp and compress.h.

All the classes implementing the stages of the compression algorithm inher-
its from the class CStage. An implementation of this abstract class is located in
the files stage.cpp and stage.h. As all the stages of the compression algorithm
are implemented in the separate classes, the memory buffers are necessary to
store the intermediate results. To this end, a class CMemBuf is implemented.
It is located in the files membuf.cpp and membuf.h. For easy processing of pa-
rameters of the compression algorithm, e.g., the version of the move-to-front
transform, the chosen weight function, etc. a class CParameters is designed. It
is located in the files pars.cpp and pars.h.

The main class of the compression program, CSDC, implements the full
functionality of the utility sdc. It is located in the files sdc.cpp and sdc.h.

Appendix C

Detailed options of examined
compression programs

This appendix contains a more detailed description of the options chosen for the
examined programs.

7-zip

The method LZMA is chosen with the option –m0=LZMA. The memory for the
dictionary is set to be 10 times larger (but not less than 16 MB) than the size of
the file to compress. The option –mx is used to get the maximum compression.

acb 2.00c

The maximum compression method, u, is used.

boa 0.58b

The program is executed with a compression method –m15.

bzip 0.21

The block size is set, with the option –9, to the maximal possible value, 900 kB.

compress

The maximum size of the dictionary is used.

DW, DM

The size of the block is chosen to be the size of the file to compress.

173

174 APPENDIX C. DETAILED OPTIONS OF EXAMINED . . .

gzip

The option –9 is used for maximum compression.

lgha

The default options are used.

PPMd var. H

The PPM order is set to 16 with the option –o16. The memory limit is set, with
the option –m, to be 10 times the size of the file to compress, but not less than
16 MB.

ppmnb1+

The order of the PPM is set to a pseudo order 9 with the option –O9. The mem-
ory limit is set, with the option –M:50, to maximum possible value, which is
50 MB. Also options –DA, –ICd, –E8d are used to disable data-specific filters.

PPMonstr var. H

The PPM order is set to 16 with the option –o16. The memory limit is set, with
the option –m, to be 10 times the size of the file to compress, but not less than
16 MB.

PPMonstr var. I

The PPM order is set to 4 and 64, with the options –o4 and –o64 respectively, as
we examine two sets of parameters for this program. The memory limit is set,
with the option –m, to be 10 times the size of the file to compress, but not less
than 16 MB. The special memory limit of 256 MB was set for file mozilla, because
with larger memory limit for this file the program crushed.

rar 2.90

The program is used with a compression method –m3. The maximum size of
the dictionary is chosen with the option –md4096. The multimedia filters are
turned off using –mm–.

szip

The order of the BWT is set to unlimited (as in the classical BWT) with the option
–o0. The size of the block is set to 4.1 MB (maximal possible value) with the
option –b41.

175

ufa 0.04 Beta 1

The program is executed with the option –m5, which chooses the binary PPM
algorithm.

ybs

The block size is set to 16 MB, which is the maximum possible value, with the
option –m16m.

Appendix D

Illustration of the properties
of the weight functions

This appendix contains additional figures presenting the results of the experi-
ments with probability estimation methods for the output of the piecewise sta-
tionary memoryless source.

177

178 APPENDIX D. ILLUSTRATION OF THE PROPERTIES OF . . .

q
=

0.
35

q
=

0.
25

q
=

0.
20

q
=

0.
15

q
=

0.
05

q
=

0.
10

0
5

10
15

20
0.

06

0.
06

5

0.
07

0.
07

5

0.
08

0.
08

5

d

R
∗

q
=

0.
90

q
=

0.
25

q
=

0.
85

q
=

0.
35

q
=

0.
80

q
=

0.
50

q
=

0.
75

q
=

0.
70

q
=

0.
65

0
5

10
15

20

0.
180.
2

0.
22

0.
24

0.
26

0.
28

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

q
=

0.
25

q
=

0.
60

q
=

0.
70

q
=

0.
92

q
=

0.
85

0
5

10
15

20
0.

080.
1

0.
12

0.
14

0.
16

0.
180.
2

d

R
∗

q
=

0.
30

q
=

0.
20

q
=

0.
15

q
=

0.
10

q
=

0.
05

0
5

10
15

20

0.
03

0.
03

5

0.
04

0.
04

5

0.
05

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.1
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
2

fo
r

m
=

20

179

p
=

0.
25

p
=

0.
50

p
=

1.
00

p
=

2.
00

p
=

5.
00

p
=

13
.0

0

0
5

10
15

20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

d

R
∗

p
=

0.
25

p
=

5.
00

p
=

2.
50

p
=

1.
00

p
=

0.
75

p
=

0.
50

0
5

10
15

20

0.
2

0.
250.
3

0.
350.
4

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

p
=

0.
50

p
=

10
.0

0
p

=
3.

00

p
=

1.
00

p
=

5.
00

0
5

10
15

20

0.
1

0.
150.
2

0.
250.
3

0.
35

d

R
∗

p
=

0.
25

p
=

0.
50

p
=

1.
00

p
=

5.
00

p
=

2.
00

p
=

10
.0

0

0
5

10
15

20
0

0.
2

0.
4

0.
6

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.2
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
3

fo
r

m
=

20

180 APPENDIX D. ILLUSTRATION OF THE PROPERTIES OF . . .

p
=

0.
25

p
=

10
.0

0
p

=
0.

50
p

=
0.

70
p

=
0.

90
p

=
2.

00
p

=
1.

30

0
5

10
15

20

0.
150.
2

0.
250.
3

d

R
∗

p
=

0.
25

p
=

0.
50

p
=

0.
75

p
=

0.
90

p
=

5.
00

p
=

1.
50

0
5

10
15

20

0.
180.
2

0.
22

0.
24

0.
26

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

p
=

0.
25

p
=

5.
00

p
=

2.
00

p
=

1.
00

p
=

0.
50

0
5

10
15

20

0.
1

0.
150.
2

0.
25

d

R
∗

p
=

5.
00

p
=

0.
25

p
=

0.
50

p
=

2.
00

p
=

1.
10

0
5

10
15

20

0.
1

0.
150.
2

0.
250.
3

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.3
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
4

fo
r

m
=

20

181

p
=

0.
20

,q
=
−

0.
10

p
=

0.
40

,q
=
−

0.
60

p
=

0.
50

,q
=
−

0.
60

p
=

0.
90

,q
=
−

1.
10

p
=

1.
30

,q
=
−

1.
35

0
5

10
15

20

0.
14

0.
16

0.
180.
2

d

R
∗

p
=

0.
20

,q
=
−

0.
10

p
=

0.
50

,q
=
−

0.
30

p
=

0.
80

,q
=
−

0.
70

p
=

1.
00

,q
=
−

0.
90

p
=

1.
10

,q
=
−

1.
10

p
=

1.
30

,q
=
−

1.
20

0
5

10
15

20

0.
180.
2

0.
22

0.
24

0.
26

0.
280.
3

0.
32

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

p
=

0.
20

,q
=
−

0.
10

p
=

0.
80

,q
=
−

0.
60

p
=

1.
30

,q
=
−

1.
00

0
5

10
15

20
0.

080.
1

0.
12

0.
14

0.
16

0.
180.
2

d

R
∗

p
=

0.
20

,q
=
−

0.
20

p
=

0.
60

,q
=
−

0.
70

p
=

1.
30

,q
=
−

1.
10

0
5

10
15

20
0.

080.
1

0.
12

0.
14

0.
16

0.
180.
2

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.4
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
5

fo
r

m
=

20

182 APPENDIX D. ILLUSTRATION OF THE PROPERTIES OF . . .

p
=

0.
75

,q
=

0.
35

p
=

1.
00

,q
=

0.
35

p
=

2.
00

,q
=

0.
35

p
=

10
.0

0,
q

=
0.

85
p

=
6.

00
,q

=
0.

65

0
5

10
15

20

0.
06

0.
07

0.
08

0.
090.
1

0.
11

d

R
∗

p
=

1.
30

,q
=

1.
10

p
=

1.
10

,q
=

1.
02

p
=

0.
80

,q
=

0.
95

p
=

0.
30

,q
=

0.
85

p
=

0.
50

,q
=

0.
85

0
5

10
15

20

0.
2

0.
250.
3

0.
35

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

p
=

8.
00

,q
=

1.
30

p
=

6.
00

,q
=

1.
20

p
=

0.
90

,q
=

1.
06

p
=

4.
00

,q
=

1.
10

p
=

1.
50

,q
=

1.
06

0
5

10
15

20

0.
080.
1

0.
12

0.
14

0.
16

0.
180.
2

0.
22

0.
24

d

R
∗

p
=

1.
00

,q
=

1.
00

p
=

1.
50

,q
=

0.
97

p
=

2.
00

,q
=

0.
98

p
=

5.
00

,q
=

1.
03

p
=

10
.0

0,
q

=
1.

10
p

=
20

.0
0,

q
=

1.
15

0
5

10
15

20
0

0.
050.
1

0.
150.
2

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.5
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
6

fo
r

m
=

20

183

p
=
−

1.
00

,q
=

0.
10

p
=
−

0.
50

,q
=

0.
10

p
=

0.
00

,q
=

0.
10

p
=

0.
50

,q
=

0.
10

p
=

1.
00

,q
=

0.
10

p
=

2.
00

,q
=

0.
10

0
5

10
15

20

0.
06

0.
06

05

0.
06

1

0.
06

15

0.
06

2

d

R
∗

p
=
−

0.
80

,q
=

0.
92

p
=

0.
00

,q
=

0.
75

p
=
−

0.
30

,q
=

0.
80

p
=

0.
30

,q
=

0.
65

p
=

1.
00

,q
=

0.
50

0
5

10
15

20

0.
180.
2

0.
22

0.
24

d

R
∗

θ j
−

1
=

0.
15

,θ
j
=

0.
65

θ j
−

1
=

0.
25

,θ
j
=

0.
85

p
=

0.
70

,q
=

0.
75

p
=

0.
00

,q
=

0.
90

p
=
−

0.
50

,q
=

0.
96

0
5

10
15

20
0.

080.
1

0.
12

0.
14

0.
16

0.
180.
2

d

R
∗

p
=
−

2.
00

,q
=

0.
05

p
=
−

1.
00

,q
=

0.
05

p
=

0.
00

,q
=

0.
05

p
=

0.
50

,q
=

0.
05

p
=

1.
00

,q
=

0.
05

p
=

2.
00

,q
=

0.
05

0
5

10
15

20

0.
02

68

0.
02

7

0.
02

72

0.
02

74

d

R
∗

θ j
−

1
=

0.
55

,θ
j
=

0.
30

θ j
−

1
=

0.
90

,θ
j
=

0.
60

Fi
gu

re
D

.6
:I

llu
st

ra
ti

on
of

th
e

pr
op

er
ti

es
of

th
e

w
ei

gh
tf

un
ct

io
n

w
7

fo
r

m
=

20

Appendix E

Detailed compression results
for files of different sizes
and similar contents

This appendix contains detailed results of compression ratios and speeds for
parts of different sizes of standard data files.

185

186 APPENDIX E. DETAILED COMPRESSION RESULTS FOR FILES . . .

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

di 00008 8 3.773 3.438 3.465 3.219 3.136 3.403
di 00016 16 3.431 3.120 3.207 2.939 2.855 3.119
di 00032 32 3.174 2.843 2.961 2.700 2.615 2.867
di 00064 64 2.983 2.608 2.743 2.496 2.407 2.645
di 00128 128 2.791 2.383 2.526 2.297 2.204 2.427
di 00256 256 2.619 2.188 2.337 2.125 2.028 2.233
di 00512 512 2.459 2.014 2.164 1.971 1.872 2.058
di 01024 1024 2.366 1.934 2.157 1.992 1.821 1.978
di 02048 2048 2.346 1.927 2.202 1.997 1.828 1.971
di 04096 4096 2.288 1.856 2.183 1.922 1.753 1.897
di 08192 8192 2.232 1.794 2.173 1.864 1.712 1.832

Table E.1: Compression ratios (in bpc) for parts of dickens file of different sizes

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

di 00008 8 200 500 571 500 129 333
di 00016 16 320 800 800 800 160 348
di 00032 32 390 1231 1067 1067 176 432
di 00064 64 478 1600 1067 1032 189 627
di 00128 128 460 1488 1164 1049 198 744
di 00256 256 409 1267 1164 941 204 837
di 00512 512 349 1004 839 911 211 839
di 01024 1024 309 853 812 908 193 846
di 02048 2048 275 775 802 867 186 815
di 04096 4096 241 697 793 821 188 794
di 08192 8192 213 622 788 774 188 756

Table E.2: Compression speeds (in kB/s) for parts of dickens file of different
sizes

187

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

os 00008 8 5.098 5.413 5.360 4.968 4.867 5.241
os 00016 16 4.239 4.656 4.612 4.120 4.016 4.496
os 00032 32 3.532 3.905 3.865 3.387 3.275 3.752
os 00064 64 3.035 3.315 3.233 3.381 2.704 3.114
os 00128 128 2.758 2.929 2.798 2.753 2.353 2.653
os 00256 256 2.580 2.663 2.489 2.447 2.135 2.358
os 00512 512 2.470 2.477 2.289 2.104 2.013 2.172
os 01024 1024 2.396 2.337 2.261 2.079 1.949 2.056
os 02048 2048 2.342 2.216 2.221 2.023 1.909 1.970
os 04096 4096 2.298 2.110 2.193 1.963 1.866 1.905
os 08192 8192 2.268 2.017 2.191 1.914 1.835 1.854

Table E.3: Compression ratios (in bpc) for parts of osdb file of different sizes

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

os 00008 8 190 500 400 500 73 308
os 00016 16 296 800 571 667 88 286
os 00032 32 327 1231 800 941 108 421
os 00064 64 352 1455 1067 914 125 525
os 00128 128 344 1362 1067 1085 136 640
os 00256 256 327 1347 1067 1113 147 711
os 00512 512 300 1094 1004 962 156 716
os 01024 1024 277 895 930 890 144 715
os 02048 2048 251 802 925 870 143 696
os 04096 4096 228 730 909 784 144 666
os 08192 8192 209 651 916 702 143 635

Table E.4: Compression speeds (in kB/s) for parts of osdb file of different sizes

188 APPENDIX E. DETAILED COMPRESSION RESULTS FOR FILES . . .

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

sa 00008 8 2.966 2.664 2.674 2.463 2.380 2.621
sa 00016 16 2.850 2.576 2.611 2.397 2.305 2.561
sa 00032 32 2.649 2.427 2.505 2.261 2.174 2.438
sa 00064 64 2.547 2.324 2.434 2.317 2.087 2.349
sa 00128 128 2.525 2.708 2.673 2.442 2.254 2.591
sa 00256 256 4.786 5.074 4.956 4.834 4.622 4.846
sa 00512 512 3.243 3.529 3.441 3.272 3.089 3.357
sa 01024 1024 2.205 2.366 2.350 2.174 1.988 2.262
sa 02048 2048 1.766 1.835 1.930 1.730 1.552 1.788
sa 04096 4096 1.256 1.302 1.566 1.321 1.156 1.281
sa 08192 8192 2.131 2.281 2.466 2.126 2.042 2.205
sa 16384 16384 1.503 1.711 1.804 1.518 1.363 1.664

Table E.5: Compression ratios (in bpc) for parts of samba file of different sizes

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

sa 00008 8 190 500 444 500 143 364
sa 00016 16 296 889 727 800 178 400
sa 00032 32 390 1455 1067 1143 198 516
sa 00064 64 478 1882 1067 1333 213 711
sa 00128 128 368 1600 1280 1422 183 736
sa 00256 256 456 1000 853 612 78 463
sa 00512 512 403 1133 1024 826 116 660
sa 01024 1024 334 1112 1077 1144 154 799
sa 02048 2048 303 934 1018 1223 168 796
sa 04096 4096 310 818 1008 1288 192 769
sa 08192 8192 329 718 929 833 137 614
sa 16384 16384 237 732 1001 1136 171 670

Table E.6: Compression speeds (in kB/s) for parts of samba file of different sizes

189

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

xr 00008 8 4.730 5.430 5.176 5.340 4.499 5.019
xr 00016 16 4.601 5.087 4.857 5.111 4.401 4.745
xr 00032 32 4.472 4.695 4.520 4.822 4.285 4.428
xr 00064 64 4.406 4.406 4.306 4.610 4.219 4.215
xr 00128 128 4.366 4.195 4.160 4.454 4.151 4.053
xr 00256 256 4.181 3.903 3.920 4.131 3.913 3.789
xr 00512 512 4.058 3.668 3.729 3.866 3.715 3.571
xr 01024 1024 4.079 3.585 3.693 3.713 3.611 3.482
xr 02048 2048 4.113 3.542 3.675 3.683 3.550 3.451
xr 04096 4096 4.225 3.626 3.788 3.726 3.617 3.532
xr 08192 8192 4.227 3.608 3.804 3.685 3.587 3.521

Table E.7: Compression ratios (in bpc) for parts of x-ray file of different sizes

File Size [kB] LZMA ybs bzip PPMdH MI64 DW

xr 00008 8 222 444 286 364 68 286
xr 00016 16 308 667 471 500 82 250
xr 00032 32 471 889 800 640 95 390
xr 00064 64 640 1333 1032 744 101 464
xr 00128 128 727 1455 1153 753 104 566
xr 00256 256 731 1438 1158 744 118 610
xr 00512 512 638 1422 1067 716 130 644
xr 01024 1024 555 1247 1122 634 132 651
xr 02048 2048 472 1039 1063 602 129 620
xr 04096 4096 417 845 1001 479 113 582
xr 08192 8192 357 745 1008 419 110 563

Table E.8: Compression speeds (in kB/s) for parts of x-ray file of different sizes

List of Symbols
and Abbreviations

Abbreviation Description Definition

$ sentinel character—higher than the last in the al-
phabet

page 32

0-run run consisting of zeros page 34
a the number of zeros in probability estimation page 71
ai ith character of the alphabet page 10
A alphabet of symbols in the input sequence page 10
Amtf alphabet of symbols in the sequence x mtf page 33
Amtf,1 alphabet of symbols {0, 1, 2} page 52
A rle-0 alphabet of symbols in the sequence x rle-0 page 35
b the number of ones in probability estimation page 71
BWCA Burrows–Wheeler compression algorithm page 31
BWT Burrows–Wheeler transform page 31
c-competitive property of LUP solving algorithms page 47
CT-component component of the BWT output sequence related

to one leaf in the context tree source
page 44

CT-source context tree source page 19
CTW context tree weighting page 27
DC distance coder page 51
DMC dynamic Markov coder page 26
Esc escape code page 23
FC frequency count page 81
FSM finite-state machine page 16
FSMX kind of finite-state machine page 18
G(n) the number of non-BWT-equivalent sequences page 67
Hj the entropy of a memoryless source page 71
IF inversion frequencies transform page 50
k alphabet size page 10
KT-estimator Krichevsky–Trofimov estimator page 74

191

192 LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description Definition

L list maintained by the algorithms solving the list
update problem

page 33

l number of symbols on the list L processed by the
list update problem solving algorithm

page 47

lb the length of the buffer storing the past characters
in the LZ77 algorithm

page 21

ls the maximum length of the identical subse-
quences in the LZ77 algorithm

page 21

LIPT length index preserving transform page 59
LOE local order estimation page 25
LUP list update problem page 46
LZ77 kind of Ziv–Lempel algorithms page 21
LZ78 kind of Ziv–Lempel algorithms page 22
LZFG Ziv–Lempel–Fiala–Greene algorithm page 22
LZRW Ziv–Lempel–Williams algorithm page 22
LZSS Ziv–Lempel–Storer–Szymanski algorithm page 21
LZW Ziv–Lempel–Welch algorithm page 23
M(·) matrix formed from the input sequence by rotat-

ing it
page 32

M̃(·) lexicographically sorted matrix M(·) page 32
MTF move-to-front transform page 33
MTF-1 modified move-to-front transform page 48
MTF-2 modified move-to-front transform page 48
ω finite memory CT-source page 19
n sequence length page 10
Pe(a, b) probability estimator page 71
P0(j, a, b) probability that a memoryless source produce a

sequence of a zeros and b ones
page 71

Pd
c (a|sd

c) probability estimation method page 88
Pd1,d2

c (a|smax(d1,d2)
c) weighted probability estimation method page 89

PPM prediction by partial matching page 23
PPMA PPM algorithm with escape mechanism A page 24
PPMB PPM algorithm with escape mechanism B page 24
PPMC PPM algorithm with escape mechanism C page 24
PPMD PPM algorithm with escape mechanism D page 25
PPME PPM algorithm with escape mechanism E page 25
PPMP PPM algorithm with escape mechanism P page 25
PPMX PPM algorithm with escape mechanism X page 25
PPMXC PPM algorithm with escape mechanism XC page 25
PPM* PPM algorithm with unbounded context length page 23
R(·) row number where in the matrix M̃(·) the input

sequence appears
page 32

R∗
w(j, d) expected redundancy in probability estimation

with weight functions
page 74

RLE run length encoding page 45

193

Abbreviation Description Definition

RLE-0 zero run length encoding page 34
S set of states or contexts page 17
s state or context page 19
sd

c last d bits encoded in the context c page 88
SEE secondary escape estimation page 25
SBT sort-by-time transform page 82
σ sequence of requests in the list update problem page 47
Θ set of parameters of the source page 16
θj probability of occurrence of bit 1 in the jth CT-

component
page 71

θj−1 probability of occurrence of bit 1 in the (j − 1)th
CT-component

page 71

td
c (a|sd

c) the number of occurrence of bit a in the context c,
provided the last d coded bits were sd

c

page 88

td1
max threshold for counters in arithmetic coding page 91

td2
max threshold for counters in arithmetic coding page 91

TS time stamp algorithm page 49
TS(0) deterministic version of the time stamp algorithm page 49
U(n) the number of sequences that are not identical to

cyclic shifts of themselves
page 67

w(·) weight function page 72
w1(·) weight function w1(·) page 75
w2(·) weight function w2(·) page 75
w3(·) weight function w3(·) page 75
w4(·) weight function w4(·) page 75
w5(·) weight function w5(·) page 75
w6(·) weight function w6(·) page 75
w7(·) weight function w7(·) page 75
w8(·) weight function w8(·) page 84
w9(·) weight function w9(·) page 84
Wi(aj) sum assigned to the ajth character by the WFC

transform
page 81

WFC weighted frequency count page 81
x input sequence page 10
x−1 reversed input sequence page 10
xi..j subsequence starting from ith character to jth

character
page 10

x bwt sequence after the Burrows–Wheeler transform page 32
x mtf sequence after the move-to-front transform page 33
x mtf,1 part of the sequence x mtf page 52
x mtf,2 part of the sequence x mtf page 52
x dc sequence after the distance coder transform page 51
x if sequence after the inversion frequencies trans-

form
page 50

194 LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description Definition

x lup sequence after the algorithm solving the list up-
date problem

page 47

x rle-0 sequence after the zero run length encoding page 35
X (s) set of positions where CT-components starts in

the x bwt sequence
page 43

ZL Ziv–Lempel algorithms page 20

List of Figures

2.1 Example of the Huffman tree . 13
2.2 Example of the arithmetic coding process 15
2.3 Example of the memoryless source . 17
2.4 Example of the Markov source . 18
2.5 Example of the finite-order FSM source 18
2.6 Example of the binary CT-source . 19
2.7 Example of the LZ77 algorithm . 22
2.8 Example of the LZ78 algorithm . 22
2.9 Example of the PPMC algorithm (1) 24
2.10 Example of the PPMC algorithm (2) 25
2.11 Initial situation in the DMC algorithm 26
2.12 Before cloning in the DMC algorithm 27
2.13 After cloning in the DMC algorithm 27

3.1 Burrows–Wheeler compression algorithm 32
3.2 Example of the BWT (non-sentinel version) 33
3.3 Example of the BWT (sentinel version) 34
3.4 Example of the move-to-front transform 35
3.5 Example of the RLE-0 transform . 35
3.6 Burrows–Wheeler decompression algorithm 36
3.7 Example of the reverse move-to-front transform 36
3.8 Example of the reverse Burrows–Wheeler transform 37
3.9 Example of the suffix tree . 39
3.10 Example of the suffix array . 40
3.11 Example of the Itoh–Tanaka’s method of order 1 43
3.12 Comparison of methods for the BWT computation 44
3.13 Comparison of the MTF, MTF-1, and MTF-2 transforms 49
3.14 Example of the time-stamp(0) transform 50
3.15 Example of the inversion frequencies transform 51
3.16 Example of the distance coding transform 52

195

196 LIST OF FIGURES

3.17 Encoding method of symbols in Fenwick’s Shannon coder 53
3.18 Grouping method of symbols in Fenwick’s structured coder 54
3.19 Grouping method in a hierarchical coder by Balkenhol et al. 55

4.1 Improved compression algorithm based on the BWT 62
4.2 Number of different short non-BWT-equivalent sequences 69
4.3 Examined weight functions . 75
4.4 Distance from the entropy rate for some weight functions 76
4.5 Distance from the entropy for some of the examined weight functions

(weighted over all possible values of parameters) (1) 78
4.6 Distance from the entropy for some of the examined weight functions

(weighted over all possible values of parameters) (2) 79
4.7 Comparison of the best results for different weight functions 80
4.8 Weight functions examined in the WFC transform 85
4.9 Example of the WFC transform . 86
4.10 Encoding the alphabet A rle-0 . 87
4.11 Calculating the context in the improved BWCA 88
4.12 Average value of symbols in the consecutive fragments of the output

sequence of the MTF transform . 90
4.13 Encoding the alphabet A rle-0 for a high average symbol value 91
4.14 Thresholds for counter halving in different contexts 91
4.15 Compression ratio versus compression speed of the examined algo-

rithms for the Calgary corpus . 115
4.16 Normalised compression ratio versus compression speed of the ex-

amined algorithms for the Calgary corpus 116
4.17 Compression ratio versus decompression speed of the examined al-

gorithms for the Calgary corpus . 117
4.18 Normalised compression ratio versus decompression speed of the ex-

amined algorithms for the Calgary corpus 118
4.19 Compression ratio versus compression speed of the examined algo-

rithms for the Silesia corpus . 124
4.20 Normalised compression ratio versus compression speed of the ex-

amined algorithms for the Silesia corpus 125
4.21 Compression ratio versus decompression speed of the examined al-

gorithms for the Silesia corpus . 126
4.22 Normalised compression ratio versus decompression speed of the ex-

amined algorithms for the Silesia corpus 127
4.23 Compression ratios for parts of the dickens file of different sizes . . . 130
4.24 Compression speeds for parts of the dickens file of different sizes . . 131
4.25 Compression ratios for parts of the osdb file of different sizes 132
4.26 Compression speeds for parts of the osdb file of different sizes 133
4.27 Compression ratios for parts of the samba file of different sizes . . . 134

197

4.28 Compression speeds for parts of the samba file of different sizes . . . 135
4.29 Compression ratios for parts of the x-ray file of different sizes 137
4.30 Compression speeds for parts of the x-ray file of different sizes 138

D.1 Illustration of the properties of the weight function w2 178
D.2 Illustration of the properties of the weight function w3 179
D.3 Illustration of the properties of the weight function w4 180
D.4 Illustration of the properties of the weight function w5 181
D.5 Illustration of the properties of the weight function w6 182
D.6 Illustration of the properties of the weight function w7 183

List of Tables

4.1 Description of the Calgary corpus . 93
4.2 Description of the Canterbury corpus 94
4.3 Description of the large Canterbury corpus 94
4.4 Description of the Silesia corpus elaborated within the dissertation . 95
4.5 Comparison of different BWT computation methods for the Calgary

corpus . 99
4.6 Comparison of different BWT computation methods for the Silesia

corpus . 100
4.7 Comparison of the weight functions for the Calgary corpus 103
4.8 Comparison of the second stage methods for the Calgary corpus . . . 104
4.9 Comparison of the second stage methods for the Silesia corpus 105
4.10 Average compression ratios for various methods of probability esti-

mation . 106
4.11 Compression ratios of the algorithms for the Calgary corpus 111
4.12 Normalised compression ratios of the algorithms for the Calgary cor-

pus . 112
4.13 Compression times of the algorithms for the Calgary corpus 113
4.14 Decompression times of the algorithms for the Calgary corpus 114
4.15 Compression ratios of the algorithms for the Silesia corpus 120
4.16 Normalised compression ratios of the algorithms for the Silesia corpus 121
4.17 Compression times of the algorithms for the Silesia corpus 122
4.18 Decompression times of the algorithms for the Silesia corpus 123

E.1 Compression ratios for parts of dickens file of different sizes 186
E.2 Compression speeds for parts of dickens file of different sizes 186
E.3 Compression ratios for parts of osdb file of different sizes 187
E.4 Compression speeds for parts of osdb file of different sizes 187
E.5 Compression ratios for parts of samba file of different sizes 188
E.6 Compression speeds for parts of samba file of different sizes 188
E.7 Compression ratios for parts of x-ray file of different sizes 189

198

199

E.8 Compression speeds for parts of x-ray file of different sizes 189

Index

0-run, 34, 62
7-zip program, 108, 173

Åberg, Jan, 25, 28
acb 2.00c program, 107, 173
Adair, Gilbert, 12
adaptive compression, 12
Albers, Susanne, 49, 50
alice29.txt test file, 94
alphabet, 8, 10, 16, 19, 33, 50, 64, 87

binary, 26, 28, 70, 77, 80, 81, 83
decomposition, 28
non-binary, 26, 28, 70, 77
reordering, 57, 58
size, 8, 10, 67, 142

analogue data, 7
Apostolico, Alberto, 29
Arimura, Mitsuharu, 28, 45
arithmetic coding, 3–5, 14, 15, 21, 23, 35, 53, 56,

62, 84, 142
binary, 53, 62, 84
Elias algorithm, 14
Fenwick’s tree, 15
finite precision, 15
interval, 14
probability estimation, 62

Arnavut, Ziya, 45, 50, 57, 87, 105, 107
Arnold, Ross, 92
ASCII code, 8, 12, 58, 59
asyoulik.txt test file, 94
Awan, Fauzia Salim, 59

Bachrach, Ran, 47
backup utilities, 97
Balkenhol, Bernhard, 39, 43, 46, 48, 51, 52, 55,

56, 58, 105, 107
Bell, Timothy C., 9, 22, 25, 26, 92
Bentley, Jon Louis, 40
bib test file, 93, 99, 103, 104, 111–114

bible test file, 94
Binder, Edgar, 51
Bloom, Charles, 25
boa 0.58b program, 107, 173
Bolton, Robert, 141
book1 test file, 93, 99, 103, 104, 111–114
book2 test file, 93, 99, 103, 104, 111–114
Brown, Peter F., 29
bucket sort procedure, 41, 169, 170
Bunton, Suzanne, 25, 26, 107, 108
Burrows, Michael, 4, 31, 32, 34, 38, 45, 48, 53,

141
Burrows–Wheeler transform, 4, 6, 31–33, 35, 38,

40, 43–45, 48, 52, 56, 57, 61, 64, 65, 67,
69, 70, 88, 90, 92, 98, 129, 141, 142, 174

computation, 5, 38, 40, 42, 44, 46, 62, 65,
98, 141, 144, 146, 167, 169

Bentley–Sedgewick’s sorting method, 40
Burrows–Wheeler’s sorting method, 38
fallback method, 142
Seward’s sorting method, 41, 141, 142,

168–170
suffix array-based methods, see suffix ar-

ray
suffix tree-based methods, see suffix tree

CT-component, 44–46, 48, 52, 54, 56, 57, 64,
65, 70–74, 77, 81–83, 90

last column, 32
matrix M, 32, 64–66

sorted, 32, 42–44, 64
output, 5
output sequence, 45, 142
reverse, 37
sentinel, 32, 33, 38, 67

Burrows–Wheeler transform-based compression
algorithms, 4–6, 17, 31, 32, 35, 38, 41,
42, 44, 45, 47, 48, 50, 57, 59–61, 81,

200

201

107–110, 119, 121, 128, 129, 136, 139,
141–144

alphabet reordering, 57–59
arithmetic coding, 53, 55–57, 88, 90

binary, 57, 87
counters, 91
decomposition, 84

block size, 139, 167
decompression, 36
direct encoding BWT output, 56, 82
entropy coding, 35, 36, 57, 142
entropy decoding, 36
first stage, 52
Huffman coding, 53, 57
last stage, 47, 48, 52, 53, 57, 84
preliminary filters, 58, 107

binary data, 60
capital conversion, 59
phrase substitution, 59
text data, 60

probability estimation, 36, 87, 143
Balkenhol’s et al. hierarchical coder, 55
Balkenhol–Shtarkov’s hybrid approach,

55, 56
exponential forgetting, 56
Fenwick’s Shannon coder, 53, 54
Fenwick’s structured coder, 54, 55

reversing input sequence, 44, 58
run length encoding, 45
second stage, 47, 48, 56, 62, 81, 82, 87, 104,

107–109, 119, 142
Buyanovsky, George, 107
BWCA, see Burrows–Wheeler transform-based

compression algorithms
BWT, see Burrows–Wheeler transform
BWT-equivalent sequences, 67–70
bzip 0.21 program, 107, 108, 173
bzip program, 128
bzip2 program, 53, 101, 168, 169

C programming language, 93, 94, 129
C++ programming language, 167
Calgary corpus, see corpus
Canterbury corpus, see corpus
Carpinelli, John, 146
Carroll, Lewis, 94
CD-ROM, 1
Chapin, Brenton, 49, 57, 58
character, 8, 10, 16
Chen, Xin, 29
Cheney, James, 165

Ciura, Marcin G., 6, 29, 145, 146
Cleary, John G., 3, 23–25, 42, 93
coding, 11

methods, 11
communication satellites, 1
compress program, 23, 108, 173
compression ratio, 97, 98
compression speed, 6, 97, 98
context, 11

order d, 10
preceding, 44, 58
succeeding, 58
successive, 44

context tree weighting algorithm, 4, 6, 27, 28,
107, 136

arithmetic coding, 28
binary alphabet, 28
context tree source, 28
non-binary alphabet, 28

Cormack, Gordon V., 4, 14, 26, 108
corpus

Calgary, 5, 6, 34, 50, 59, 83, 89, 92, 93, 95,
98, 99, 101–107, 109–118, 120, 128, 136,
143, 144

Canterbury, 5, 6, 92–95, 143
large Canterbury, 5, 6, 93, 94, 143
Silesia, 5, 6, 95, 98, 100, 102, 105–109, 120–

128, 143, 144, 146, 163
cp.html test file, 94
CT-component, see Burrows–Wheeler transform
CTW, see context tree weighting algorithm
Czech, Zbigniew Janusz, 145

Daciuk, Jan, 29
Daly, James, 94
data expansion, 13
data type

application files, 1, 8, 164
audio, 9
binary, 20
databases, 1, 7, 8, 20, 95, 96, 163, 164
English text, 11, 107
HTML, 94–96, 129, 163, 165
medical images, 2, 10, 95, 96, 163, 165

magnetic resonance, 95, 96
movie, 1, 2
multimedia, 1, 8, 95, 97
PDF, 95, 96, 129, 164
picture, 2, 8, 10, 20
Polish text, 11, 13
programming source code, 129

202 INDEX

text, 1, 7, 11, 20, 96, 129, 163
video, 9, 11

frame, 9
XML, 95, 96, 163, 165

dc program, 57
Debudaj–Grabysz, Agnieszka, 146
decompression speed, 6, 97, 98
Deorowicz, Sebastian, 29
dickens test file, 95, 96, 100, 105, 120–123, 128–

131, 163, 186
Dickens, Charles, 95, 96, 163
DICOM, 163
dictionary compression methods, 20
digital data, 7
discrete data, 7
distance coder, 51, 52, 56, 57, 87, 105, 109

basic version, 51
improved version, 51

DMC, see dynamic Markov coder
dominated solution, 98
DVD, 97

player, 97
dynamic Markov coder, 3, 4, 6, 26–28, 57, 108,

136
binary alphabet, 26
cloning, 26, 27
FSM, 26
generalised, 26
Lazy DMC, 26, 108
non-binary alphabet, 26
states, 26
transitions, 26

e.coli test file, 93, 94
Effros, Michelle, 45
Ekstrand, Nicklas, 28
El-Yaniv, Ran, 47
Elias γ code, 57, 87
Elias, Peter, 51
EMACS editor, 93
entropy coding, 3–5, 12, 36, 46, 47, 50–52, 56, 62,

84, 87
EOL character, 59
Esxherichia coli genome, 94
expected code length, 13

fallback method, 142, 168, 169
Faller, Newton, 14
Farach, Martin, 39
Fenwick, Peter, 15, 34, 35, 45, 48, 53, 54, 56, 57,

88, 108
Fiala, Edward R., 22

fileds.c test file, 94
finite-precision numbers, 14, 15
finite-state machine, 16, 17, 19
Fraenkel, Aviezri S., 57
Fraenkel–Klein Fibonacci codes, 57
frequencies of symbol occurrences, 23
frequency count transform, see list update prob-

lem
frequency table, 12, 13

Gailly, Jean-loup, 9
Geigerich, Robert, 39
geo test file, 83, 89, 93, 99, 103, 104, 107, 111–

114, 119
Goethe, Johann Wolfgang von, 145
Grabowski, Szymon, 58, 59, 145, 146
grammar.lsp test file, 94
Greene, Daniel H., 22
Guazzo, Mauro, 15
Gutmann, Peter C., 22
gzip program, 108, 174

Hardy, Thomas, 93
Herklotz, Uwe, 146
Hoang, Dzung T., 23
Horspool, R. Nigel, 4, 14, 22, 26, 108
Howard, Paul Glor, 15, 25
HTML, see data type
Huffman coding, 3–5, 13, 14, 21, 35, 53

code, 13, 14
tree, 13, 14

leaf, 13, 14
rebuilding, 14
root, 13

Huffman, David Albert, 13

Inglis, Stuart J., 29
insertion sort procedure, 83, 169
interval encoding, 51
inversion frequencies transform, 50, 51, 56, 57,

62, 84, 87, 104, 105, 107
forward, 50
reverse, 50

Irani, Sandra S., 47
Itoh, Hideo, 41, 101
Itoh–Tanaka’s method, see suffix array

Jelinek, Frederick, 14
Jupiter, 2

Kadach, Andriej Viktorovich, 50
Karp, Richard Manning, 47

203

kennedy.xls test file, 92, 94
Kipling, Rudyard, 7
Klein, Shmuel Tomi, 57
Knuth, Donald Ervin, 14, 169
Krichevsky, Raphail E., 28
Krichevsky–Trofimov estimator, 28, 74, 88
Kulp, David, 22
Kurtz, Stefan, 39, 43, 46

Lang, Andrew, 1
Langdon, Glen G., Jr., 15
large Canterbury corpus, see corpus
Larsson, N. Jesper, 40, 101, 146, 169
LATEX, 164
LATEX Editor, 146
lcet10.txt test file, 94
Lempel, Abraham, 3, 20, 22
length index preserving transform, 59
lexical permutation sorting transform, 45
lexicographic order, 4, 32, 38, 41, 42, 63, 64

forward, 62
reverse, 62, 170

lgha program, 108, 174
Lisp programming language, 93, 94
list update problem, 46–50

c-competitiveness, 47
algorithm

Best x of 2x − 1, 49
deterministic, 46–48
frequency count, 81, 142
move-to-front, see move-to-front trans-

form
optimal off-line, 47
randomised, 46, 47
sort-by-time, 82, 142
time-stamp, 49
time-stamp(0), 49, 50, 104, 105, 168, 170
weighted frequency count, see weighted

frequency count transform
free transpositions, 46
frequency count, 82
paid transpositions, 46–48
randomised algorithms, 47
requests, 46

access, 46
deletion, 46
insertion, 46

Loewenstern, David, 29
Lonardi, Stefano, 29
lossless compression algorithms, 2, 9–11
lossy compression algorithms, 2, 9–11

LUP, see list update problem
Lyapko, George, 108
LZ algorithms, see Ziv–Lempel algorithms
LZ77, see Ziv–Lempel algorithms
LZ78, see Ziv–Lempel algorithms
LZFG, see Ziv–Lempel algorithms
LZMA, see Ziv–Lempel algorithms
LZSS, see Ziv–Lempel algorithms
LZW, see Ziv–Lempel algorithms
Łazarczyk, Aleksandra, 146

Magliveras, Spyros S., 45, 50, 87
Mäkinen, Sami J., 146
Manber, Udi, 40, 101
Manzini, Giovanni, 45
Markov chain, 56, 88, 89
Markov, Andrei Andreevich, 17, 20, 26
McCreight, Edward Meyers, 38
Miller, Victor S., 23
Milton, John, 94
mirror server, 1
Mitzenmacher, Michael, 50
modelling, 11–13
modelling and coding, 5, 11
modelling methods, 11, 16
Moffat, Alistair, 9, 15, 25, 26, 56, 105, 109, 146,

170
Morgenstern, Oskar, 98
move-to-front transform, 4, 5, 33, 35, 36, 48–52,

56, 81–83, 104, 105, 108, 142, 168, 170,
171

MTF-1, 48, 49, 104, 105, 168
MTF-2, 48, 49, 52, 104, 105, 119, 168
reverse, 36

Mozilla project, 95
mozilla test file, 95, 96, 100, 102, 105, 120–123,

163, 174
mr test file, 95, 96, 100, 102, 105, 120–123, 128,

163
MTF, see move-to-front transform
MTF-1, see move-to-front transform
MTF-2, see move-to-front transform
Mukherjee, Amar, 59
multi criteria optimisation, 6, 97, 143
multimedia, see data type
Munro, Hector Hugh, 31
Myers, Gene, 40, 101
MySQL

database, 95, 164
server, 164

nci test file, 95, 96, 100, 102, 105, 120–123, 163

204 INDEX

Neal, Radford M., 93, 146
Nelson, Mark, 9
Nevill–Manning, Craig G., 29
news test file, 93, 99, 103, 104, 111–114
non-dominated optimal solution, 97

obj1 test file, 93, 99, 101, 103, 104, 111–114
obj2 test file, 89, 93, 99, 103, 104, 111–114
ooffice test file, 95, 96, 100, 105, 120–123, 164
Open Office.org project, 95
Open Source Database Benchmark, 95
Optical Character Recognition, 29
osdb test file, 95, 96, 100, 105, 120–123, 128, 129,

132, 133, 164, 187

paper1 test file, 93, 99, 103, 104, 111–114
paper2 test file, 93, 99, 103, 104, 111–114
paper3 test file, 92
paper6 test file, 92
Pareto, Vilfredo Frederico Damaso, 97
Pareto-optimal solution, 98, 121
Pascal programming language, 93
Pasco, Richard C., 15
Pavlov, Igor, 108, 109
PDF, see data type
Perec, Georges, 12
Perl programming language, 129
pic test file, 93, 99, 101, 103, 104, 107, 111–114,

119
Piętka, Ewa, 146
plrabn12.txt test file, 94
PPM, see prediction by partial matching algo-

rithms
PPMd var. H program, 108, 174
ppmd+ program, 108
ppmnb1+ program, 108, 174
PPMonstr var. H program, 108, 174
PPMonstr var. I program, 108, 174
prediction by partial matching algorithms, 3, 4,

6, 23–28, 42, 44, 45, 57, 82, 83, 107, 109,
110, 115–121, 124–129, 136, 144

applying exclusions, 24
binary, 109, 175
context, 3
cPPMII, 108, 136
escape code, 23, 24
frequencies of symbol occurrence, 23
frequency table, 24
limited context length, 23
local order estimation, 25
order, 23, 174
PPM*, 23, 25, 42

PPMA, 24
PPMB, 24
PPMC, 24, 25
PPMD, 25
PPMD+, 108
PPMdH, 119, 121, 128, 129, 144
PPME, 25
PPMII, 108
PPMN, 108
PPMP, 25
PPMX, 25
PPMXC, 25
secondary escape estimation, 25
space complexity, 26
space requirements, 23
statistics of symbol occurrences, 3
time complexity, 26
unbounded context length, 23
zero frequency problem, 82

probability estimation, 74
progc test file, 93, 99, 103, 104, 111–114
progl test file, 93, 99, 103, 104, 111–114
progp test file, 93, 99, 103, 104, 111–114
Project Gutenberg, 95, 96, 163, 165
proxy server, 1
ptt5 test file, 94

quick sort procedure, 169, 170
median of three, 169
pseudo-median of nine, 169
stack, 41

Raghavan, Prabhakar, 47
Raita, Timo, 26
rar 2.90 program, 108, 174
redundancy, 1, 11, 73, 74
Reingold, Nick, 47
reymont test file, 95, 96, 100, 105, 120–123, 164
Reymont, Władysław, 95, 96, 164
RGB code, 8, 12
Rissanen, Jorma, 15
RLE, see run length encoding
RLE-0, see zero run length encoding
Rubin, Frank, 15
run, 10, 62, 64
run length encoding, 45, 46

Sadakane, Kunihiko, 28, 40, 101, 146, 169
Salamonsen, Wayne, 146
Samba project, 95
samba test file, 95, 96, 100, 105, 120–123, 128,

129, 134, 135, 164, 188

205

SAO star catalogue, 95, 164
sao test file, 95, 96, 100, 105, 120–123, 128, 164
Sayood, Khaild, 9
Schindler, Michael, 48, 108
Schulz, Frank, 82
sdc program, 167, 171
Sedgewick, Robert, 40, 169
sentinel, 69, 70
sequence, 10

component, 10
cyclic component, 66
decreasing, 41, 62, 63
increasing, 41, 62, 63
input, 11
length, 10
prefix, 10
reverse, 10, 44, 58
size, 8, 10
suffix, 10

Seward, Julian, 41, 53, 101, 107, 142, 146
Shakespeare, William, 94
Shannon, Cluade Elwood, 29
Shell sort procedure, 169

increments, 169
Shell, Donald Lewis, 169
Shkarin, Dmitry, 25, 108, 136, 144
Shtarkov, Yuri M., 28, 48, 51, 52, 55, 56, 58, 105,

107
Silesia corpus, see corpus
Skarbek, Władysław, 9
Skórczyński, Adam, 146
Smirnov, Maxim, 108, 146
sort by time transform, see list update problem
source

classes, 2, 3, 16, 20, 25, 32, 38
context tree, 4, 19–21, 25, 27–29, 43–45, 62,

64, 65, 70, 83, 89, 90, 142
complete contexts set, 19
order, 19
proper context, 19

finite memory CT-source, 19
finite-order FSM, 20
finite-state machine

loop-transition, 16
FSM, 17, 21, 25, 26

finite order, 17, 18
FSMX, 18–21, 25, 45
Markov, 4, 17, 18, 20, 26

states, 17
transitions, 17

memoryless, 16, 17, 28, 65, 70–72, 74, 77

parameters, 16, 17
nonstationary, 17
piecewise stationary memoryless, 5, 6, 17,

70, 81, 142, 144
parameters, 17

stationary, 17, 65
spacecraft, 2

Galileo, 2
SPARC executable, 94
specialised compression algorithms, 2, 6, 29

DNA compression, 29
lexicon compression, 29
scanned text compression, 29
text compression, 29

Starosolski, Roman, 145, 146
static compression, 12
Storer, James Andrew, 21
Stuiver, Lang, 146
suffix array, 40, 62, 101

construction, 40, 42, 46, 102
improved Itoh–Tanaka’s construction method,

142, 168, 170
order 1, 62, 101, 141, 168, 170
order 2, 62, 101, 141, 168, 170
suffixes of type D, 63, 170
suffixes of type E, 63, 170
suffixes of type I, 63, 170

Itoh–Tanaka’s construction method, 5, 41,
62, 63, 101, 102, 141

memory complexity, 41, 42
order 1, 42, 43, 62
order 2, 42, 62
sorting procedure, 42
suffixes of type A, 41, 42, 62
suffixes of type B, 41, 42, 62
time complexity, 41, 42

Larsson–Sadakane’s construction method,
40, 101, 102, 142, 167, 169

Manber–Myers’s construction method, 40,
101, 102, 142, 167–169

Sadakane’s construction method, 40
Seward’s construction method, 101

suffix sorting, 38
suffix tree, 38–41

construction, 38, 39, 42, 46
Farach’s construction method, 39
McCreight’s construction method, 38, 39
Ukkonen’s construction method, 39
Weiner’s construction method, 38

sum test file, 94
Sutton, Ian, 107

206 INDEX

Suzuki, Joe, 28
switching compression method, 28, 109
symbol, 8, 10
Syrus, Publius, 61
szip program, 108, 174
Szmal, Przemysław, 146
Szymanski, Thomas G., 22

Tanaka, Hozumi, 41, 101
Tate, Stephen R., 57, 58
Teahan, William John, 25, 29, 59, 108
Teuhola, Jukka, 26
time-stamp transform, see list update problem
Tjalkens, Tjalling J., 28
trans test file, 93, 99, 103, 104, 111–114
Travelling Salesman Problem, 58
Trofimov, Victor K., 28
Tsai–Hsing, Kao, 63
Turpin, Andrew, 9, 146

ufa 0.04 Beta 1 program, 109, 175
Ukkonen, Esko, 39
Unicode, 8, 12
universal compression algorithms, 3, 6, 16, 20,

62, 141
Unix operating system, 93

Tru64, 95, 96, 163

Visweswariah, Karthik, 70
Vitter, Jeffrey Scott, 14, 15
Volf, Paul A. J., 28, 109
von Neumann, John, 98

webster test file, 95, 96, 100, 105, 120–123, 165
Wegman, Mark N., 23
weight function, 72–81, 83, 84, 142
weighted frequency count transform, 5, 61, 81–

84, 104, 105, 108, 119, 142, 168, 170
efficient implementation, 83
time complexity, 83, 142
weight function, 5, 81, 83–86, 102–104, 144,

168, 171
quantised, 83, 104

weighted probability estimation, 5, 89, 106, 142,
144, 170

Weiner, Peter, 38
Welch, Terry, 23
Westbrook, Jeffery, 47
WFC, see weighted frequency count transform
Wheeler, David John, 4, 31, 32, 34, 38, 45, 48, 53,

141
Wieczorek, Bożena, 146

Wieczorek, Mirosław, 146
Willems, Frans M. J., 4, 19, 27, 28, 107, 109
Williams, Ross N., 22
Wirth, Anthony Ian, 56, 105, 109
Witten, Ian H., 3, 9, 15, 22–25, 29, 93, 146
world192.txt test file, 94

x-ray test file, 95, 96, 100, 105, 120–123, 128, 129,
137, 138, 165, 189

xargs.1 test file, 94
XML, see data type
xml test file, 95, 96, 100, 105, 120–123, 165

Yamamoto, Hirosuke, 45
ybs program, 105, 109, 175
Yianilos, Peter N., 29
Yoockin, Vadim, 109, 146
Yu, Tong Lai, 26

zero run length encoding, 34, 35, 46, 47, 54, 62,
170, 171

reverse, 36
Ziv, Jacob, 3, 20, 22
Ziv–Lempel algorithms, 3, 4, 6, 11, 20, 21, 109,

110, 119, 121, 128, 129, 136
dictionary, 20
LZ77, 3, 21, 22, 28, 57, 108

buffer, 21, 22
dictionary, 21

LZ78, 3, 21–23, 57
dictionary, 3, 22
purging dictionary, 23
sequence index, 22

LZFG, 22
LZMA, 108, 119, 121, 129, 136, 173
LZRW, 22
LZSS, 21
LZW, 23, 108, 119

	Contents
	1 Preface
	2 Introduction to data compression
	2.1 Preliminaries
	2.2 What is data compression?
	2.3 Lossy and lossless compression
	2.3.1 Lossy compression
	2.3.2 Lossless compression

	2.4 Definitions
	2.5 Modelling and coding
	2.5.1 Modern paradigm of data compression
	2.5.2 Modelling
	2.5.3 Entropy coding

	2.6 Classes of sources
	2.6.1 Types of data
	2.6.2 Memoryless source
	2.6.3 Piecewise stationary memoryless source
	2.6.4 Finite-state machine sources
	2.6.5 Context tree sources

	2.7 Families of universal algorithms for lossless data compression
	2.7.1 Universal compression
	2.7.2 Ziv--Lempel algorithms
	2.7.3 Prediction by partial matching algorithms
	2.7.4 Dynamic Markov coding algorithm
	2.7.5 Context tree weighting algorithm
	2.7.6 Switching method

	2.8 Specialised compression algorithms

	3 Algorithms based on the Burrows--Wheeler transform
	3.1 Description of the algorithm
	3.1.1 Compression algorithm
	3.1.2 Decompression algorithm

	3.2 Discussion of the algorithm stages
	3.2.1 Original algorithm
	3.2.2 Burrows--Wheeler transform
	3.2.3 Run length encoding
	3.2.4 Second stage transforms
	3.2.5 Entropy coding
	3.2.6 Preprocessing the input sequence

	4 Improved compression algorithm based on the Burrows--Wheeler transform
	4.1 Modifications of the basic version of the compression algorithm
	4.1.1 General structure of the algorithm
	4.1.2 Computing the Burrows--Wheeler transform
	4.1.3 Analysis of the output sequence of the Burrows--Wheeler transform
	4.1.4 Probability estimation for the piecewise stationary memoryless source
	4.1.5 Weighted frequency count as the algorithm's second stage
	4.1.6 Efficient probability estimation in the last stage

	4.2 How to compare data compression algorithms?
	4.2.1 Data sets
	4.2.2 Multi criteria optimisation in compression

	4.3 Experiments with the algorithm stages
	4.3.1 Burrows--Wheeler transform computation
	4.3.2 Weight functions in the weighted frequency count transform
	4.3.3 Approaches to the second stage
	4.3.4 Probability estimation

	4.4 Experimental comparison of the improved algorithm and the other algorithms
	4.4.1 Choosing the algorithms for comparison
	4.4.2 Examined algorithms
	4.4.3 Comparison procedure
	4.4.4 Experiments on the Calgary corpus
	4.4.5 Experiments on the Silesia corpus
	4.4.6 Experiments on files of different sizes and similar contents
	4.4.7 Summary of comparison results

	5 Conclusions
	Acknowledgements
	Bibliography
	Appendices
	A Silesia corpus
	B Implementation details
	C Detailed options of examined compression programs
	D Illustration of the properties of the weight functions
	E Detailed compression results for files of different sizes and similar contents
	List of Symbols and Abbreviations
	List of Figures
	List of Tables
	Index

