
Modified Golomb-Rice Codes for Lossless
Compression of Medical Images

Roman Starosolski (1), Władysław Skarbek (2)
(1) Silesian University of Technology
(2) Warsaw University of Technology

Abstract
Lossless image compression algorithms are used for images that are
documents, when lossy compression is not accepted by users, or when we
have no knowledge whether lossy compression is allowed or not. Lossless
algorithms are especially important for systems transmitting and archiving
medical data, because on the one hand lossy compression of medical images
used for diagnostic purposes is forbidden by law, on the other hand the
number and sizes of medical images stored or transmitted grows rapidly.
Image compression researchers usually focus on results obtained for typical
data, however for real life systems results for non-typical data should also be
considered. For a compression algorithm the worst case image data results in
data expansion. In applications, the results of compressing non-typical data
should be known and the data expansion, unavoidable while processing
incompressible data, should be minimized by the rule: primum non nocere.
In the paper we analyze the Golomb-Rice (GR) family of codes, infinite
family of prefix codes optimal for encoding symbols of exponential
probability distribution. The GR family is used in predictive lossless image
compression algorithms since the probability distribution of symbols encoded
by those algorithms for typical images is close to exponential. The modified
GR family of limited codeword length is used in the JPEG-LS algorithm
recently included in the DICOM standard. In the paper we analyze effects of
using both the GR and the limited codeword length GR codes for encoding
actual images, where the set of encoded symbols is finite and the probability
distribution is not exactly exponential. We also analyze a special case of
encoding incompressible data. As a result we suggest new family of modified
GR codes. We compare the efficiency of code families experimentally. Using
the suggested family in the JPEG-LS algorithm we reduce the expansion of
incompressible data from 0.5 bits per pixel to 0.166 bpp, and in a certain
simpler algorithm (based on the FELICS algorithm) we reduce the expansion
from 0.5 bpp to 0.002 bpp.

Keywords: multimedia systems; legal aspects; standards; medical image
coding; lossless image compression; Golomb-Rice codes; data expansion;
JPEG-LS; real life systems; non-typical data.

1 Introduction and overview
Lossless image compression algorithms are used for images that are

documents, when lossy compression is not accepted by users, or when we
have no knowledge whether lossy compression is allowed or not. Lossless
algorithms are especially important for systems transmitting and archiving

medical data, because on the one hand lossy compression of medical images
used for diagnostic purposes is forbidden by law, on the other hand the
number and sizes of medical images stored or transmitted grows rapidly.

In the paper we research the Golomb-Rice (GR) family of codes which is
the infinite family of prefix codes optimal for encoding symbols of
exponential probability distribution. The GR family is used in predictive
lossless image compression algorithms since the probability distribution of
symbols encoded by those algorithms for typical images is close to
exponential. A modified GR family of limited codeword length is used in the
JPEG-LS, which is a new international standard of lossless image
compression recently included in the DICOM standard.

Image compression researchers usually focus on results obtained for
typical data, however for real life systems results for non-typical data should
also be considered. For a compression algorithm the worst case image data
results in data expansion. In applications, the results of compressing non-
typical data should be known and the data expansion, unavoidable while
processing incompressible data, should be minimized—primum non nocere.

Specific classes of data are incompressible for various algorithms,
however there is a special class of data, that is incompressible for every
compression algorithm. The sequence of symbols generated by the
memoryless source with uniform probability distribution is incompressible by
any compression algorithm. If the alphabet size equals 2 N, then we cannot
encode the sequence more efficiently then using the N -bit natural binary
code. If we encode such an incompressible sequence using GR codes then we
get the data expansion greater or equal to 0.5 bits per symbol, i.e. we get the
average encoded symbol length greater or equal to N + 0.5 bits.

In the paper we analyze effects of using both the GR and the limited
codeword length GR codes for encoding the real life images, where the set of
encoded symbols is finite and the probability distribution is not exactly
exponential. We also analyze a special case of encoding incompressible data.
As a result we suggest new family of modified GR codes. We compare the
families experimentally for the JPEG-LS algorithm and for a simple
predictive image compression algorithm based on the data model of the
FELICS algorithm.

This paper is organized as follows: In section 2, after introducing basic
definitions we describe the GR family and the limited codeword length GR
family. In section 3 we analyze properties of the families described in section
2 used for encoding actual images, where the set of encoded symbols is finite
and the probability distribution is not exactly exponential. In section 4 we
suggest new family of modified GR codes. In section 5 we present
experimental results of compressing images using families described in
sections 2 and 4. In section 6 we shortly summarize the paper.

2 Definitions

2.1 Coding and compression
The full introduction to the domain of coding, compression and image

compression exceeds the scope of this paper, therefore we describe here basic
definitions and ideas that are referred to in this paper only. An overview of
methods and standards of digital image representation may be found in
monographs [4, 5], the description of the FELICS algorithm in [2, 10] and the
JPEG-LS description in [3, 11, 12].

In a general case we encode messages generated by the information
source. Messages are sequences of symbols from the alphabet called the
source alphabet. A code is a set of codewords assigned to individual symbols
of the source alphabet. Codewords are sequences of symbols from the code
alphabet. For the binary code the code alphabet is {0, 1}.

Let’s assume:
• S = {s0, s1, ... , sn–1} is the source alphabet, si is the symbol from

the source alphabet, ||S|| = n is the size of the source alphabet.
Whenever a numerical value assigned to a symbol si is required,
we assume that it is a nonnegative integer i, i < ||S||.

• P = {p0, p1, ... , pn–1} is the probability distribution of symbols
from the source alphabet. The source generates symbol si with the
probability pi. Depending on the assumed model of the source, the

Ppi ∈ may be constant for the whole message (memoryless
source), or vary depending on the context of symbol si and on the
position of the symbol in the message.

• K = {κ0, κ1, ... , κn–1} is the code, that assigns codewords to
symbols of the source alphabet. The codeword κi is assigned to the
symbol si.

If all the codewords in a code consist of the same number of symbols, then
it is the fixed length code. The fixed length natural binary code b

nK is used for
encoding nonnegative integers less than n. To numbers { }1,,1,0 −∈ ni K ,
i.e. integers in range [0, n – 1], it assigns codewords that are
sequences of bits κi = 011 bbbN K− , where nN 2log= , { }1,0∈jb and

ibbb N
N =+++ −

−
1

1
1

1
0

0 222 K . This code is also called the N -bit natural
binary code.

The lengths of codewords in the variable length code are not equal.
Variable length codes assign codewords to symbols of alphabets of limited or
unlimited sizes. For example the unary code is defined for the set of
nonnegative integers. To the given number i it assigns a codeword consisting
of i ones and single zero.

The code is uniquely decodable if each sequence of codewords may be
decoded unambiguously, i.e. there is only one way of dividing the sequence
into individual codewords. A code is called the prefix code if it does not
contain any codeword that is a prefix of other codeword in this code. Each
prefix code is uniquely decodable. Code K is complete if for each sequence D
of symbols that is a prefix of a codeword in K, the sequence D’ = Dα, where
α is a symbol from the code alphabet, is either a prefix of a codeword in K or
a codeword in K.

The natural binary code is complete when the source alphabet size is an
integer power of 2. Adjusted binary code a

jK is complete for each source. To
integers in range [0, j – 1] it assigns codewords, that are sequences of
log2(j) or log2(j) bits (table 1). Let’s assume N = log2(j) and n = 2 N
(njN ≤<−12). If i < n – j then the codeword of i in adjusted binary code is
identical to the codeword of i in N – 1 -bit natural binary code. In the
opposite case (jni −≥) the codeword of i in adjusted binary code is identical
to the codeword of i + n – j in N -bit natural binary code. Adjusted binary
code becomes the natural binary code when j is an integer power of 2.

Table 1

Adjusted binary codes

Range Integer
[0, 4] [0, 5] [0, 6] [0, 7]

i=0 00 00 00 000
i=1 01 01 010 001
i=2 10 100 011 010
i=3 110 101 100 011
i=4 111 110 101 100
i=5 111 110 101
i=6 111 110
i=7 111

For the probability distribution P the average code K length LK is:

∑
−

=

=
1

0

n

i
iiK pL κ ,

where iκ is the length of the codeword assigned to the symbol si by the
code K. Code K is optimal for the probability distribution P if for this
probability distribution the average length of code K is minimal among all the
codes. Optimal prefix code is complete. For a specific P more than one
optimal code may exist.

The data compression may be defined as coding in order to minimize the
encoded message length. Results of compression are measured using the
compression ratio and expressed in bits per symbol: z/u, where u denotes
length (number of symbols) of the encoded message, u > 0, z—length (in
bits) of the encoded message. For the compression ratio expressed in bits per
symbol, the compression is better if the ratio is smaller. The data expansion
occurs if after encoding symbols from the alphabet of size 2 N we have
uN < z. We express the data expansion in bits per symbol:

N
u
z

− .

Unless indicated otherwise in the remainder of this paper we assume that
the alphabet size is a positive integer power of 2.

If we compress images, then the message being encoded consists of pixels,
therefore we express the compression ratio and the data expansion in bits per
pixel [bpp]. In predictive image compression algorithms we do not encode
actual pixels, instead we predict values of pixels using a prediction function.
Then we encode the sequence of prediction errors, which is called residuum.
The process of generating residuum using the prediction function is called
decorrelation. In statistical compression algorithms we store information of
the probability distribution of symbols being encoded in the data model.

2.2 The Golomb-Rice family (GR family)
The Golomb-Rice (GR) family is an infinite family of prefix codes. It is a

subset of a family described in 1966 by S.W. Golomb (Golomb family),
rediscovered independently by R. F. Rice [1]. GR codes are optimal for
encoding symbols from an infinite alphabet of exponential symbol probability
distribution (for some parameters of the exponential distribution). However
for a finite alphabet GR codes are neither optimal nor complete.

Each code in the GR family is characterized by the nonnegative integer
rank k. In order to encode nonnegative integer i using the GR code of rank k,
we first encode the codeword prefix: i/2 k using unary code, then the suffix:
i mod 2 k using k -bit natural binary code. Sample codewords in table 2
contain a separator between prefix and suffix of the codeword, it is not a part
of the codeword. Generating codewords from GR codes is very simple, since
instead of division i/2 k we just shift i right k bits, instead of modulo
reduction we simply take k least significant bits of i and output them directly.

The probability distribution of sequences of symbols being encoded in
predictive image compression algorithms, e.g. JPEG-LS and FELICS, is close
to exponential. Furthermore the use of the family of codes significantly
simplifies the compression algorithm since for a specific symbol, using
information stored in the data model, we just select a code in the code family
and output a codeword assigned to this symbol in the selected code.

Table 2
Golomb-Rice (GR) codes

Code Integer
k = 0 k = 1 k = 2 k = 3

0 0• 0•0 0•00 0•000
1 10• 0•1 0•01 0•001
2 110• 10•0 0•10 0•010
3 1110• 10•1 0•11 0•011
4 11110• 110•0 10•00 0•100
5 111110• 110•1 10•01 0•101
6 1111110• 1110•0 10•10 0•110
7 11111110• 1110•1 10•11 0•111
8 111111110• 11110•0 110•00 10•000
9 1111111110• 11110•1 110•01 10•001

10 11111111110• 111110•0 110•10 10•010
11 111111111110• 111110•1 110•11 10•011
12 1111111111110• 1111110•0 1110•00 10•100
13 11111111111110• 1111110•1 1110•01 10•101
14 111111111111110• 11111110•0 1110•10 10•110
15 1111111111111110• 11111110•1 1110•11 10•111
16 11111111111111110• 111111110•0 11110•00 110•000
17 111111111111111110• 111111110•1 11110•01 110•001

2.3 The limited codeword length GR codes used in JPEG-LS
In the JPEG-LS algorithm a modified GR family—the limited codeword

length GR family is used. The limiting of the codeword length was introduced
in order to limit the data expansion when we select improper code using the
data model. In the worst case the code of rank k = 0 is used to encode the
symbol s||S|| – 1 , i.e. last symbol from alphabet S. In this case the codeword
length becomes equal to the size of the alphabet. The data expansion for such
symbol is ||S|| – log2 ||S|| bits, that is 248 bits for 256 symbol alphabet and
over 4105.6 ⋅ bits for the alphabet size 216. Limiting the codeword length we
limit the negative effects of imperfect data modeling.

Codewords in the JPEG-LS family are constructed in a following way: we
encode integer i, i is in the range [0, 2 N – 1], the codeword length is limited to
lmax bits, the code rank k is in range [0, N – 1]. If i < () k

max Nl 21 ⋅−− then we
encode symbol i using GR code of rank k. In the opposite case we output a
prefix: lmax – N – 1 using unary code, and a suffix: integer i – 1 using N -bit
natural binary code b

NK2
.

Some codewords in tables 3, 4 and 5 are underlined. For a specific code
the underlined codeword and codewords above the underlined one are
identical to equivalent codewords in the GR code.

Among other things the implementation issues decided that in the JPEG-
LS algorithm unary coding is realized by outputting a sequence of zeroes and
a single one instead of outputting a sequence of ones and single zero. To make
the presentation of code families consistent the prefixes of codewords in table
3 are sequences of ones and a single zero.

As compared to GR codes only some of the JPEG-LS codes differ. JPEG-
LS codes are not complete. The disadvantage of method of limiting the
codeword length used in the JPEG-LS family is that the codes containing no
codewords longer than lmax are unnecessarily modified. See example in table
3. Some codewords in the code k = 2 are 8 bits long, while equivalent GR
codewords are 6 bits long.

Table 3

The JPEG-LS family
for integers in range [0, 15], codeword length limited to 8 bits

Code Integer
k = 0 k = 1 k = 2 k = 3

0 0•2222 0•0222 0•0022 0•000
1 10•2222 0•1222 0•0122 0•001
2 110•2222 10•0222 0•1022 0•010
3 1110•0010 10•1222 0•1122 0•011
4 1110•0011 110•0222 10•0022 0•100
5 1110•0100 110•1222 10•0122 0•101
6 1110•0101 1110•0101 10•1022 0•110
7 1110•0110 1110•0110 10•1122 0•111
8 1110•0111 1110•0111 110•0022 10•000
9 1110•1000 1110•1000 110•0122 10•001

10 1110•1001 1110•1001 110•1022 10•010
11 1110•1010 1110•1010 110•1122 10•011
12 1110•1011 1110•1011 1110•1011 10•100
13 1110•1100 1110•1100 1110•1100 10•101
14 1110•1101 1110•1101 1110•1101 10•110
15 1110•1110 1110•1110 1110•1110 10•111

3 Properties of Golomb-Rice codes for encoding symbols from
finite alphabets

3.1 Motivation of further modifying the GR codes
As we already mentioned GR codes are not optimal when the set of

encoded symbols is finite and when the probability distribution is not exactly
exponential. For that reason in recent algorithms the modified GR family is
used. An example of such a modification is the limited codeword length GR
family described in subsection 2.3.

It is obvious, that for the finite alphabet we should use only a finite subset
of the infinite family. Considerations concerning the number of codes in the
family are subject of subsection 3.2. In subsection 3.3 we discuss a special
case of the uniform symbol probability distribution.

3.2 Number of codes in the family
In the known JPEG-LS and FELICS implementations for encoding

symbols from 2 N symbol alphabet a GR family of N codes (code ranks: 0, 1,
… , N – 1) is used [13, 14]. If the probability distribution of symbols being
encoded in those algorithms is exponential then the family of N – 1 codes
(code ranks: 0, 1, … , N – 2) should be used instead. It can be shown, that for
encoding symbols of non increasing symbol probability distribution the
average length of GR code of rank k = N – 1 is greater or equal to the
average length of code k = N – 2.

We encode the message of symbols from alphabet of size 2 N , the alphabet
symbols occur with probabilities pi,]12,0[−∈ Ni . By Rk we denote the GR
code of rank k, by Rk(i) we denote the codeword assigned to integer i by the
Rk, |Rk(i)| denotes the codeword Rk(i) length.

Theorem 1

If LK is the average length of code K then

()∑
−

=
⋅+

−

−
−−

−=−
12

0
23

2

2
21

N

NNN
i

iiRR ppLL

Proof:

For codes RN – 1 and RN – 2 we have:
1) for n = 0, … , 2 N – 1 – 1 : |RN – 1(i)| = N;
2) for n = 2 N – 1, … , 2 N – 1 : |RN – 1(i)| = N + 1;
3) for n = 0, … , 2 N – 2 – 1 : |RN – 2(i)| = N – 1;
4) for n = 2 N – 2, … , 2 · 2 N – 2 – 1 : |RN – 2(i)| = N;
5) for n = 2 · 2 N – 2, … , 3 · 2 N – 2 – 1 : |RN – 2(i)| = N + 1;
6) for n = 3 · 2 N – 2, … , 2 N – 1 : |RN – 2(i)| = N + 2;

Let’s now compute the code length differences |RN – 1(i)| – |RN – 2(i)| in
integer subintervals as follows:

() ()

<≤⋅−
⋅<≤

<≤
=−

−

−−

−

−−
NN

NN

N

NN

i
i
i

iRiR
223for1

232for0
20for1

2

22

2

21

Hence

()∑∑∑
−

=
⋅+

−

=
⋅+

−

=

−

−

−

−

−

−−
−=−=−

12

0
23

12

0
23

12

0

2

2

2

2

2

21

N

N

N

N

N

NN
i

ii
i

i
i

iRR ppppLL .

□

If we now assume, that the probability distribution is non increasing, i.e.
ji < implies ji pp ≥ , then the theorem 1 implies:

21 −−
≥

NN RR LL .
Using the RN – 2 instead of the RN – 1 for encoding symbols of non

increasing probability distribution will not increase the average code length.
Using the GR family of N – 1 codes, i.e. removing from the family of N
codes the code RN – 1, we may simplify the data structures of the compression
algorithm and the compression algorithm itself without worsening the
compression ratio.

A special case of non increasing symbol probability distribution is the
uniform distribution, for the uniform symbol probability distribution we have

21 −−
=

NN RR LL . If non increasing distribution is not uniform, then

21 −−
>

NN RR LL . If the alphabet size y is not a power of 2 (2 N – 1 < y < 2 N), then
we may treat the message as a message of symbols from alphabet S = {s0, s1,
... , sy – 1, sy, ... , sn – 1}, where n = 2 N and if yi ≥ then 0≡ip . In this case,
if the probability distribution is non increasing, then from the theorem 1 we
have

21 −−
>

NN RR LL .
Assuming the non increasing probability distribution is sufficient to show

that
21 −−

≥
NN RR LL , however it is not a necessary condition. From theorem 1

we have the following sufficient and necessary condition for
21 −−

≥
NN RR LL :

∑∑
−

=
⋅+

−

=

−

−

−

≥
12

0
23

12

0

2

2

2 N

N

N

i
i

i
i pp .

Removing the RN – 1 from the code family used by a compression algorithm
for encoding symbols of non increasing probability distribution may improve
the compression ratio. However the ratio may also be not affected, since the
compression algorithm does not have to use all the codes from the family.

3.3 Case of the uniform probability distribution
The probability distribution of symbols encoded by predictive lossless

image compression algorithms for typical images is close to exponential. For
typical images we successfully use the GR codes. In the case of uniform
probability distribution the use of GR codes results in the data expansion
greater or equal to 0.5 bits per pixel. As mentioned before, in real life systems,
including medical systems, the data expansion should be minimized.

The most straightforward method, that allows encoding the incompressible
data without the data expansion is a method of inserting a code optimal for
uniform symbol probability distribution to the code family. A natural binary
code is optimal for uniform probability distribution. With the natural binary
code we may replace the GR code of rank RN – 1. For typical images such a
new family is as suitable as the unmodified GR family (see subsection 3.2). In
the case of incompressible data, when use of the GR codes results in the data
expansion, the natural binary code may be selected by the data model. Using
this code we avoid the data expansion. Regardless of the probability
distribution, which may be uniform, increasing or any other, the symbols
being encoded may be simply copied to the output without the data expansion.

4 Suggested code family
Arguments mentioned earlier imply, that the code family designed for

robust encoding of symbols from alphabet of size 2 N
 , based on the GR

family, should consist of N – 1 limited codeword length GR codes and the
N -bit natural binary code. Below we suggest such a family.

Codewords in the suggested family are constructed in a way similar to
JPEG-LS family. For each code in the family we define the threshold πk. We
encode integer i, i is in the range [0, 2 N – 1], the codeword length is limited to
lmax bits, the code rank k is in range [0, N – 1]. If i < πk then we encode
integer i using GR code of rank k. In the opposite case we output the prefix:
πk / 2 k ones, and the suffix: i – πk encoded using natural binary code

b

k
NK

π−2
(table 4). The threshold πk is the smaller value selected from two

following: the () k
max Nl 2⋅− and the 2 N – 2 k.

All the codes in the suggested family differ from the codes in the GR
family and the code k = N – 1 becomes the N -bit natural binary code.
Lengths of all the codewords are either equal or shorter than equivalent
codewords in the JPEG-LS family.

Some codes are complete (for example, codes k = 1 … 3 from table 4).
Remaining codes may be made complete using method described in [6], i.e.
for i ≥ πk we encode the codeword suffix using the adjusted binary code
instead of natural binary code. The example of the complete variant of the
suggested family (suggested-c family) is presented in table 5.

Table 4

The suggested family
for integers in range [0, 15], codeword length limited to 8 bits

Code Integer
k = 0 k = 1 k = 2 k = 3

0 0•2222 0•022 0•00 0•000
1 10•2222 0•122 0•01 0•001
2 110•2222 10•022 0•10 0•010
3 1110•2222 10•122 0•11 0•011
4 1111•0000 110•122 10•00 0•100
5 1111•0001 110•122 10•01 0•101
6 1111•0010 1110•022 10•10 0•110
7 1111•0011 1110•122 10•11 0•111
8 1111•0100 1111•000 110•00 1•000
9 1111•0101 1111•001 110•01 1•001

10 1111•0110 1111•010 110•10 1•010
11 1111•0111 1111•011 110•11 1•011
12 1111•1000 1111•100 111•00 1•100
13 1111•1001 1111•101 111•01 1•101
14 1111•1010 1111•110 111•10 1•110
15 1111•1011 1111•111 111•11 1•111

Method of selecting the πk and coding of i for i ≥ πk results in limiting the

length of codewords for some codes to less than lmax. For example the code
k = 1 from table 4 (and table 5 as well) contains codewords not longer than 7
bits in spite of the lmax = 8 limit.

Coding images we deal with alphabets of sizes up to 216. For coding
symbols from those alphabets we use families of modified or unmodified GR
codes containing no more than 16 codes. Knowing the alphabet size and the
codeword length limit we may calculate thresholds πk for all the codes in the
family once (before the coding starts) and not calculate the πk threshold each
time the code of rank k is used. Using the described modifications of GR
family during compression of typical images almost all pixels are encoded
using codewords identical to equivalent codewords in the unmodified GR
family. Therefore for typical images we do not expect to get a significant
improvement in the average code length by using the JPEG-LS family or the
suggested family instead of the unmodified GR family.

Table 5
The suggested-c family

for integers in range [0, 15], codeword length limited to 8 bits

Code Integer
k = 0 k = 1 k = 2 k = 3

0 0•2222 0•022 0•00 0•000
1 10•2222 0•122 0•01 0•001
2 110•2222 10•022 0•10 0•010
3 1110•2222 10•122 0•11 0•011
4 1111•0002 110•122 10•00 0•100
5 1111•0012 110•122 10•01 0•101
6 1111•0102 1110•022 10•10 0•110
7 1111•0112 1110•122 10•11 0•111
8 1111•1000 1111•000 110•00 1•000
9 1111•1001 1111•001 110•01 1•001

10 1111•1010 1111•010 110•10 1•010
11 1111•1011 1111•011 110•11 1•011
12 1111•1100 1111•100 111•00 1•100
13 1111•1101 1111•101 111•01 1•101
14 1111•1110 1111•110 111•10 1•110
15 1111•1111 1111•111 111•11 1•111

5 Experimental comparison of the GR families

5.1 Procedure
A test image set described in the subsection 5.2 was used to perform

experiments with all the families described in this paper: GR, JPEG-LS,
suggested and suggested-c. For all the families, but the GR family, the
codeword length was limited to 32 bits (the alphabet size was 256). The
experiments were performed for two following algorithms: JPEG-LS
algorithm and the simpler algorithm based on the data model known from the
FELICS algorithm. The FELICS data model was used to adaptively select, in
the code family, the code for encoding residuum symbols of images
decorrelated using the default prediction function of the Lossless JPEG
algorithm. The decorrelation procedure is described in a more detailed manner
in [9]. In the research an implementation of JPEG-LS by I. R. Ismaeil and
F. Kossintini [14] was used. Compression algorithm based on the FELICS
data model was implemented in the C language, the decorrelation procedure
was implemented earlier [8]. The parameters of the FELICS data model were
the same as in the mg system [10, 13].

5.2 Test image set
The large set of test images was used, the set is described more thoroughly

in [7, 9]. The set consists of some disjoint groups of images and some images.
All the images are 8 bit grayscale images. The set contains groups of images
of significantly different sizes and resolutions, noisy images and image
containing nothing but the noise. The set contains:
funet —group of 9 well known images (“lena”, “bridge”, “boats” etc.)

often used in the image compression research, size: 64–405 kB.
corel —8 images from Corel Professional Photos library, size: 384 kB.
i_300 —5 images which include 3 photographs scanned at 300 dpi,

size: 1994 kB, and 2 images composed using all corel images,
size: 3072 kB.

i_150 —above scaled 50%, size: 486–768 kB.
i_75 —above scaled 50%, size: 121–192 kB.
i_37 —above scaled 50%, size: 30–48 kB.
i_18 —above scaled 50%, size: 7–12 kB.
noise —8 noisy images created using two images from i_150

group (“big_150” and “ph2_150”) by adding the Gaussian noise
(mean 0 and variances 1, 4, 16 and 64).

“random” —random pixel intensities (incompressible), one image,
size 4247 kB.

The set is large to permit analyzing average results for groups of images
instead of, arguable, results for individual images. From all the set an
additional group of typical images was selected: normal. The group normal
consists of all the images from: funet, corel, i_300, i_150 and i_75.

5.3 Results
Results for the JPEG-LS algorithm are presented in table 6, for the other

algorithm in table 7. Tables 6 and 7 contain average compression ratios for
disjoint image groups, for the “random” image and for the normal group.

For all the groups but the noise group, groups of smallest images and the
“random” image, average code lengths for all the families do not differ
significantly. Relative effects of using individual families are similar for both
algorithms, however greater differences may be noticed for the algorithm
based on the FELICS data model.

For typical images replacing the GR family by the limited codeword length
family improves the average (group normal) compression ratio by about 8‰
for the FELICS data model, for the JPEG-LS algorithm we gain about 0.4‰
only. Improvement in the average codeword length is greater for smaller
images. Relatively simple limiting of the codeword length, used in the JPEG-
LS family, improves a little average code length for typical images. Further
improvement using the suggested families is smaller.

Table 6
Compression results for the JPEG-LS algorithm [bpp]

Code family Group
(image) GR JPEG-LS Suggested Suggested-c

funet 4.578 4.576 4.576 4.576
corel 3.025 3.025 3.024 3.024
i_18 5.084 5.068 5.066 5.064
i_37 4.491 4.484 4.483 4.482
i_75 3.894 3.891 3.891 3.890

i_150 3.169 3.168 3.168 3.168
i_300 2.717 2.717 2.716 2.716
noise 5.804 5.803 5.770 5.770

“random” 8.505 8.505 8.166 8.166

normal 3.572 3.571 3.570 3.570

Table 7

Compression results for the FELICS data model [bpp]

Code family Group
(image) GR JPEG-LS Suggested Suggested-c

funet 5.002 4.945 4.945 4.943
corel 3.532 3.513 3.512 3.512
i_18 6.324 5.814 5.811 5.805
i_37 5.210 5.068 5.067 5.064
i_75 4.483 4.441 4.440 4.438

i_150 3.800 3.779 3.779 3.777
i_300 3.300 3.291 3.291 3.291
noise 6.001 5.984 5.947 5.946

“random” 8.508 8.501 8.002 8.002

normal 4.100 4.068 4.067 4.066

The difference in results obtained for the non complete and complete

variant of the suggested family is practically negligible for tested images.
In the case of noisy images noise and the incompressible “random” image

results for the GR family and the JPEG-LS family are similar. For those
images better results are obtained using the suggested families, significantly
better for the incompressible data. Better average code lengths are obtained
for the suggested families thanks to the natural binary code present in those
families (the code k = N – 1). For the suggested families greater expansion of

the incompressible data is observed for the JPEG-LS algorithm (0.166 bpp vs.
0.002 bpp for the FELICS model) that for normal images significantly
outperforms the FELICS model. The reason is that in the JPEG-LS the
unmodified GR family is modeled regardless of the family actually used, as
opposed to modeling the actual family in the FELICS data model.

Based on the results we conclude that limiting the GR codeword length
allows a little improvement of compression results for typical images. It also
bounds the local data expansion what may be important in practical
applications. Further modifications of GR family that result in inserting the
natural binary code to the family improve significantly the compression
results for the incompressible data and for noisy images. The expansion of the
incompressible data was about 0.5 bpp for the families GR and JPEG-LS used
in both the compression algorithms. Using the suggested family in the JPEG-
LS algorithm we reduce the expansion of incompressible data 3 times, and in
a compression algorithm based on the FELICS data model we reduce the
expansion over 200 times.

Generating codewords from the introduced code families is, as generating
codewords from the JPEG-LS family, a little more complicated than
generating codewords from unmodified GR family. Generating codewords
from the complete variant of the suggested family is a little more complicated
than for a not complete variant of the suggested family. Since differences in
the results for those two variants are practically negligible, the not complete
suggested family may be a better choice for practical applications. As
compared to the GR family for both examined algorithms the suggested
family improves average code length for both typical and non-typical data.

6 Conclusions
In the paper we analyze effects of using both the GR and the limited

codeword length GR codes for encoding actual images, where the set of
encoded symbols is finite and the probability distribution is not exactly
exponential. We also analyze a special case of encoding incompressible data.
As a result we suggest new family of modified GR codes that contains natural
binary code.

We compare the families experimentally for the JPEG-LS algorithm and
for the algorithm based on the data model known from the FELICS algorithm.
The most significant improvement in compression results is observed for the
incompressible data. Using the suggested family in the JPEG-LS algorithm
we reduce the expansion of incompressible data from 0.5 bits per pixel to
0.166 bpp, and in the algorithm based on the FELICS data model we reduce
the expansion from 0.5 bpp to 0.002 bpp. In real life systems that use the data
compression the suggested family may significantly improve results of
processing non-typical data.

Acknowledgment: The research supported by grant BK-279/Rau-2/2002 was carried out at
the Institute of Computer Science, Silesian University of Technology.

References

1. Golomb, S.W.: Run-Length Encodings. IEEE Transactions on Information Theory, IT-12,
pp.: 399-401, July 1966.

2. Howard, P.G.; Vitter, J.S.: Fast and efficient lossless image compression. Proceedings DCC
‘93. Data Compression Conference, IEEE Comput. Soc. Press Los Alamitos, CA, USA, pp.
351-60.

3. ISO/IEC JTC1/SC29 WG1 FCD 14495, public draft: Lossless and near-lossless compres-
sion of continuous-tone still images (JPEG-LS). ISO Working Document ISO/IEC
JTC1/SC29/WG1 N522, July 1997.

4. Skarbek, W.: Metody reprezentacji obrazów cyfrowych. Akademicka Oficyna Wydawnicza
PLJ, Warsaw 1993.

5. Skarbek, W. red.: Multimedia algorytmy i standardy kompresji. Akademicka Oficyna
Wydawnicza PLJ, Warsaw 1998.

6. Starosolski, R.: Fast, robust and adaptive lossless image compression. Machine Graphics
and Vision, Warsaw 1999, Vol. 8(1) pp. 95-116.

7. Starosolski, R.: Fast and adaptive lossless grayscale image compression using the LZW
algorithm. Archiwum Informatyki Teoretycznej i Stosowanej, Tom 11 (1999), z.2,
Katowice 1999, pp. 171-93.

8. Starosolski, R.: Szybkie, bezstratne oraz adaptacyjne metody kompresji obrazów
w odcieniach szarości. Zeszyty Naukowe Politechniki Śląskiej, Informatyka z.37, Gliwice
1999, pp. 121-45.

9. Starosolski, R.: Bezstratne algorytmy kompresji obrazów. PhD dissertation, Institute of
Computer Science, Silesian University of Technology, Gliwice 2001.

10. Witten, I.H.; Moffat, A.; Bell, T.C.: Managing Gigabytes. Van Nostrand Reinhold, second
edition, USA 1999.

11. Weinberger, M.J.; Seroussi, G.; Sapiro, G.: LOCO-I: A low complexity, context-based,
lossless image compression algorithm. Proceedings DCC ‘96. Data Compression Confer-
ence, IEEE Comput. Soc. Press Los Alamitos, CA, USA 1996, pp. 140-9.

12. Weinberger, M.J.; Seroussi, G.; Sapiro, G.: The LOCO-I lossless image compression
algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Processing,
August 2000, Vol 9(8), pp. 1309-24.

13. Bell, T.C.; Moffat, A.; Witten, I.; Zobel, J; Inglis, S.; Nevill-Manning, C.; Sharman, N.;
Shimmin, T.: The MG Information Retrieval System (version 1.2) and documentation.
Dept. of Computer Science & Software Engineering, University of Melbourne, 1995,
ftp://munnari.oz.au/pub/mg.

14. Ismaeil, I.R.: Kossintini, F.: JPEG-LS Lossless Image Compression Standard (C version
1.0) program and documentation. Dept. of Electrical and Computer Engineering, University
of British Columbia, 1997, http://spmg.ece.ubc.ca/research/jpeg/jpeg_ls/jpegls.html.

