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Abstract 
Lossless image compression algorithms are used for images that are 
documents, when lossy compression is not accepted by users, or when we 
have no knowledge whether lossy compression is allowed or not. Lossless 
algorithms are especially important for systems transmitting and archiving 
medical data, because on the one hand lossy compression of medical images 
used for diagnostic purposes is forbidden by law, on the other hand the 
number and sizes of medical images stored or transmitted grows rapidly. 
Image compression researchers usually focus on results obtained for typical 
data, however for real life systems results for non-typical data should also be 
considered. For a compression algorithm the worst case image data results in 
data expansion. In applications, the results of compressing non-typical data 
should be known and the data expansion, unavoidable while processing 
incompressible data, should be minimized by the rule: primum non nocere. 
In the paper we analyze the Golomb-Rice (GR) family of codes, infinite 
family of prefix codes optimal for encoding symbols of exponential 
probability distribution. The GR family is used in predictive lossless image 
compression algorithms since the probability distribution of symbols encoded 
by those algorithms for typical images is close to exponential. The modified 
GR family of limited codeword length is used in the JPEG-LS algorithm 
recently included in the DICOM standard. In the paper we analyze effects of 
using both the GR and the limited codeword length GR codes for encoding 
actual images, where the set of encoded symbols is finite and the probability 
distribution is not exactly exponential. We also analyze a special case of 
encoding incompressible data. As a result we suggest new family of modified 
GR codes. We compare the efficiency of code families experimentally. Using 
the suggested family in the JPEG-LS algorithm we reduce the expansion of 
incompressible data from 0.5 bits per pixel to 0.166 bpp, and in a certain 
simpler algorithm (based on the FELICS algorithm) we reduce the expansion 
from 0.5 bpp to 0.002 bpp. 
 
Keywords: multimedia systems; legal aspects; standards; medical image 
coding; lossless image compression; Golomb-Rice codes; data expansion; 
JPEG-LS; real life systems; non-typical data. 

1 Introduction and overview 
Lossless image compression algorithms are used for images that are 

documents, when lossy compression is not accepted by users, or when we 
have no knowledge whether lossy compression is allowed or not. Lossless 
algorithms are especially important for systems transmitting and archiving 



medical data, because on the one hand lossy compression of medical images 
used for diagnostic purposes is forbidden by law, on the other hand the 
number and sizes of medical images stored or transmitted grows rapidly. 

In the paper we research the Golomb-Rice (GR) family of codes which is 
the infinite family of prefix codes optimal for encoding symbols of 
exponential probability distribution. The GR family is used in predictive 
lossless image compression algorithms since the probability distribution of 
symbols encoded by those algorithms for typical images is close to 
exponential. A modified GR family of limited codeword length is used in the 
JPEG-LS, which is a new international standard of lossless image 
compression recently included in the DICOM standard. 

Image compression researchers usually focus on results obtained for 
typical data, however for real life systems results for non-typical data should 
also be considered. For a compression algorithm the worst case image data 
results in data expansion. In applications, the results of compressing non-
typical data should be known and the data expansion, unavoidable while 
processing incompressible data, should be minimized—primum non nocere. 

Specific classes of data are incompressible for various algorithms, 
however there is a special class of data, that is incompressible for every 
compression algorithm. The sequence of symbols generated by the 
memoryless source with uniform probability distribution is incompressible by 
any compression algorithm. If the alphabet size equals 2 N, then we cannot 
encode the sequence more efficiently then using the N -bit natural binary 
code. If we encode such an incompressible sequence using GR codes then we 
get the data expansion greater or equal to 0.5 bits per symbol, i.e. we get the 
average encoded symbol length greater or equal to  N + 0.5  bits. 

In the paper we analyze effects of using both the GR and the limited 
codeword length GR codes for encoding the real life images, where the set of 
encoded symbols is finite and the probability distribution is not exactly 
exponential. We also analyze a special case of encoding incompressible data. 
As a result we suggest new family of modified GR codes. We compare the 
families experimentally for the JPEG-LS algorithm and for a simple 
predictive image compression algorithm based on the data model of the 
FELICS algorithm. 

This paper is organized as follows: In section 2, after introducing basic 
definitions we describe the GR family and the limited codeword length GR 
family. In section 3 we analyze properties of the families described in section 
2 used for encoding actual images, where the set of encoded symbols is finite 
and the probability distribution is not exactly exponential. In section 4 we 
suggest new family of modified GR codes. In section 5 we present 
experimental results of compressing images using families described in 
sections 2 and 4. In section 6 we shortly summarize the paper.  



2 Definitions 

2.1 Coding and compression 
The full introduction to the domain of coding, compression and image 

compression exceeds the scope of this paper, therefore we describe here basic 
definitions and ideas that are referred to in this paper only. An overview of 
methods and standards of digital image representation may be found in 
monographs [4, 5], the description of the FELICS algorithm in [2, 10] and the 
JPEG-LS description in [3, 11, 12]. 

In a general case we encode messages generated by the information 
source. Messages are sequences of symbols from the alphabet called the 
source alphabet. A code is a set of codewords assigned to individual symbols 
of the source alphabet.  Codewords are sequences of symbols from the code 
alphabet. For the binary code the code alphabet is {0, 1}. 

Let’s assume: 
• S = {s0, s1, ... , sn–1} is the source alphabet, si is the symbol from 

the source alphabet, ||S|| = n  is the size of the source alphabet. 
Whenever a numerical value assigned to a symbol si is required, 
we assume that it is a nonnegative integer i, i < ||S||. 

• P = {p0, p1, ... , pn–1} is the probability distribution of symbols 
from the source alphabet. The source generates symbol si with the 
probability pi. Depending on the assumed model of the source, the 

Ppi ∈   may be constant for the whole message (memoryless 
source), or vary depending on the context of symbol si and on the 
position of the symbol in the message. 

• K = {κ0, κ1, ... , κn–1} is the code, that assigns codewords to 
symbols of the source alphabet. The codeword κi is assigned to the 
symbol si. 

If all the codewords in a code consist of the same number of symbols, then 
it is the fixed length code. The fixed length natural binary code b

nK  is used for 
encoding nonnegative integers less than n. To numbers  { }1,,1,0 −∈ ni K ,  
i.e. integers in range [0, n – 1], it assigns codewords that are  
sequences of bits  κi = 011 bbbN K− , where   nN 2log= , { }1,0∈jb  and  

ibbb N
N =+++ −

−
1

1
1

1
0

0 222 K . This code is also called the N -bit natural 
binary code. 

The lengths of codewords in the variable length code are not equal. 
Variable length codes assign codewords to symbols of alphabets of limited or 
unlimited sizes. For example the unary code is defined for the set of 
nonnegative integers. To the given number i it assigns a codeword consisting 
of i ones and single zero. 



The code is uniquely decodable if each sequence of codewords may be 
decoded unambiguously, i.e. there is only one way of dividing the sequence 
into individual codewords. A code is called the prefix code if it does not 
contain any codeword that is a prefix of other codeword in this code. Each 
prefix code is uniquely decodable. Code K is complete if for each sequence D 
of symbols that is a prefix of a codeword in K, the sequence  D’ = Dα, where 
α is a symbol from the code alphabet, is either a prefix of a codeword in K or 
a codeword in K. 

The natural binary code is complete when the source alphabet size is an 
integer power of 2. Adjusted binary code a

jK  is complete for each source. To 
integers in range [0, j – 1] it assigns codewords, that are sequences of  
log2(j)  or  log2(j)  bits (table 1). Let’s assume  N = log2(j)  and  n = 2 N  
( njN ≤<−12 ). If  i < n – j  then the codeword of i in adjusted binary code is 
identical to the codeword of i in  N – 1 -bit natural binary code. In the 
opposite case ( jni −≥ ) the codeword of i in adjusted binary code is identical 
to the codeword of  i + n – j  in  N -bit natural binary code. Adjusted binary 
code becomes the natural binary code when j is an integer power of 2. 

 
Table 1 

Adjusted binary codes 

Range Integer 
[0, 4] [0, 5] [0, 6] [0, 7] 

i=0 00 00 00 000
i=1 01 01 010 001
i=2 10 100 011 010
i=3 110 101 100 011
i=4 111 110 101 100
i=5 111 110 101
i=6 111 110
i=7 111

 
For the probability distribution P the average code K  length LK is: 

∑
−

=

=
1

0

n

i
iiK pL κ , 

where iκ  is the length of the codeword assigned to the symbol si by the 
code K. Code K is optimal for the probability distribution P if for this 
probability distribution the average length of code K is minimal among all the 
codes. Optimal prefix code is complete. For a specific P more than one 
optimal code may exist. 



The data compression may be defined as coding in order to minimize the 
encoded message length. Results of compression are measured using the 
compression ratio and expressed in bits per symbol:  z/u, where u denotes 
length (number of symbols) of the encoded message,  u > 0, z—length (in 
bits) of the encoded message. For the compression ratio expressed in bits per 
symbol, the compression is better if the ratio is smaller. The data expansion 
occurs if after encoding symbols from the alphabet of size  2 N  we have  
uN < z. We express the data expansion in bits per symbol: 

N
u
z

− . 

Unless indicated otherwise in the remainder of this paper we assume that 
the alphabet size is a positive integer power of 2. 

If we compress images, then the message being encoded consists of pixels, 
therefore we express the compression ratio and the data expansion in bits per 
pixel [bpp]. In predictive image compression algorithms we do not encode 
actual pixels, instead we predict values of pixels using a prediction function. 
Then we encode the sequence of prediction errors, which is called residuum. 
The process of generating residuum using the prediction function is called 
decorrelation. In statistical compression algorithms we store information of 
the probability distribution of symbols being encoded in the data model. 

2.2 The Golomb-Rice family (GR family) 
The Golomb-Rice (GR) family is an infinite family of prefix codes. It is a 

subset of a family described in 1966 by S.W. Golomb (Golomb family), 
rediscovered independently by R. F. Rice [1]. GR codes are optimal for 
encoding symbols from an infinite alphabet of exponential symbol probability 
distribution (for some parameters of the exponential distribution). However 
for a finite alphabet GR codes are neither optimal nor complete. 

Each code in the GR family is characterized by the nonnegative integer 
rank k. In order to encode nonnegative integer i using the GR code of rank k, 
we first encode the codeword prefix: i/2 k using unary code, then the suffix:  
i mod 2 k  using k -bit natural binary code. Sample codewords in table 2 
contain a separator between prefix and suffix of the codeword, it is not a part 
of the codeword. Generating codewords from GR codes is very simple, since 
instead of division  i/2 k  we just shift i right k bits, instead of modulo 
reduction we simply take k least significant bits of i and output them directly. 

The probability distribution of sequences of symbols being encoded in 
predictive image compression algorithms, e.g. JPEG-LS and FELICS, is close 
to exponential. Furthermore the use of the family of codes significantly 
simplifies the compression algorithm since for a specific symbol, using 
information stored in the data model, we just select a code in the code family 
and output a codeword assigned to this symbol in the selected code. 

 



Table 2 
Golomb-Rice (GR) codes 

Code Integer 
k = 0 k = 1 k = 2 k = 3 

0 0• 0•0 0•00 0•000 
1 10• 0•1 0•01 0•001 
2 110• 10•0 0•10 0•010 
3 1110• 10•1 0•11 0•011 
4 11110• 110•0 10•00 0•100 
5 111110• 110•1 10•01 0•101 
6 1111110• 1110•0 10•10 0•110 
7 11111110• 1110•1 10•11 0•111 
8 111111110• 11110•0 110•00 10•000 
9 1111111110• 11110•1 110•01 10•001 

10 11111111110• 111110•0 110•10 10•010 
11 111111111110• 111110•1 110•11 10•011 
12 1111111111110• 1111110•0 1110•00 10•100 
13 11111111111110• 1111110•1 1110•01 10•101 
14 111111111111110• 11111110•0 1110•10 10•110 
15 1111111111111110• 11111110•1 1110•11 10•111 
16 11111111111111110• 111111110•0 11110•00 110•000 
17 111111111111111110• 111111110•1 11110•01 110•001 

2.3 The limited codeword length GR codes used in JPEG-LS 
In the JPEG-LS algorithm a modified GR family—the limited codeword 

length GR family is used. The limiting of the codeword length was introduced 
in order to limit the data expansion when we select improper code using the 
data model. In the worst case the code of rank  k = 0  is used to encode the 
symbol  s||S|| – 1 , i.e. last symbol from alphabet S. In this case the codeword 
length becomes equal to the size of the alphabet. The data expansion for such 
symbol is  ||S|| – log2 ||S||  bits, that is 248 bits for 256 symbol alphabet and 
over 4105.6 ⋅  bits for the alphabet size 216. Limiting the codeword length we 
limit the negative effects of imperfect data modeling. 

Codewords in the JPEG-LS family are constructed in a following way: we 
encode integer i, i is in the range [0, 2 N – 1], the codeword length is limited to 
lmax bits, the code rank k is in range [0, N – 1]. If  i < ( ) k

max Nl 21 ⋅−−  then we 
encode symbol i using GR code of rank k. In the opposite case we output a 
prefix:  lmax – N – 1  using unary code, and a suffix: integer i – 1  using N -bit 
natural binary code b

NK2
.  



Some codewords in tables 3, 4 and 5 are underlined. For a specific code 
the underlined codeword and codewords above the underlined one are 
identical to equivalent codewords in the GR code. 

Among other things the implementation issues decided that in the JPEG-
LS algorithm unary coding is realized by outputting a sequence of zeroes and 
a single one instead of outputting a sequence of ones and single zero. To make 
the presentation of code families consistent the prefixes of codewords in table 
3 are sequences of ones and a single zero. 

As compared to GR codes only some of the JPEG-LS codes differ. JPEG-
LS codes are not complete. The disadvantage of method of limiting the 
codeword length used in the JPEG-LS family is that the codes containing no 
codewords longer than lmax are unnecessarily modified. See example in table 
3. Some codewords in the code  k = 2  are 8 bits long, while equivalent GR 
codewords are 6 bits long. 

 
Table 3 

The JPEG-LS family 
for integers in range [0, 15], codeword length limited to 8 bits 

Code Integer 
k = 0 k = 1 k = 2 k = 3 

0 0•2222 0•0222 0•0022 0•000 
1 10•2222 0•1222 0•0122 0•001 
2 110•2222 10•0222 0•1022 0•010 
3 1110•0010 10•1222 0•1122 0•011 
4 1110•0011 110•0222 10•0022 0•100 
5 1110•0100 110•1222 10•0122 0•101 
6 1110•0101 1110•0101 10•1022 0•110 
7 1110•0110 1110•0110 10•1122 0•111 
8 1110•0111 1110•0111 110•0022 10•000 
9 1110•1000 1110•1000 110•0122 10•001 

10 1110•1001 1110•1001 110•1022 10•010 
11 1110•1010 1110•1010 110•1122 10•011 
12 1110•1011 1110•1011 1110•1011 10•100 
13 1110•1100 1110•1100 1110•1100 10•101 
14 1110•1101 1110•1101 1110•1101 10•110 
15 1110•1110 1110•1110 1110•1110 10•111 



3 Properties of Golomb-Rice codes for encoding symbols from 
finite alphabets 

3.1 Motivation of further modifying the GR codes 
As we already mentioned GR codes are not optimal when the set of 

encoded symbols is finite and when the probability distribution is not exactly 
exponential. For that reason in recent algorithms the modified GR family is 
used. An example of such a modification is the limited codeword length GR 
family described in subsection 2.3. 

It is obvious, that for the finite alphabet we should use only a finite subset 
of the infinite family. Considerations concerning the number of codes in the 
family are subject of subsection 3.2. In subsection 3.3 we discuss a special 
case of the uniform symbol probability distribution. 

3.2 Number of codes in the family 
In the known JPEG-LS and FELICS implementations for encoding 

symbols from  2 N  symbol alphabet a GR family of N codes (code ranks: 0, 1, 
… , N – 1) is used [13, 14]. If the probability distribution of symbols being 
encoded in those algorithms is exponential then the family of  N – 1  codes 
(code ranks: 0, 1, … , N – 2) should be used instead. It can be shown, that for 
encoding symbols of non increasing symbol probability distribution the 
average length of GR code of rank  k = N – 1  is greater or equal to the 
average length of code  k = N – 2.  

We encode the message of symbols from alphabet of size  2 N , the alphabet 
symbols occur with probabilities  pi, ]12,0[ −∈ Ni . By  Rk  we denote the GR 
code of rank k, by Rk(i) we denote the codeword assigned to integer i by the 
Rk, |Rk(i)| denotes the codeword Rk(i) length.  

Theorem 1 

If LK is the average length of code K  then 
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Proof: 

For codes  RN – 1  and  RN – 2  we have: 
1) for  n = 0, … , 2 N – 1 – 1 : |RN – 1(i)| = N; 
2) for  n = 2 N – 1, … , 2 N – 1 : |RN – 1(i)| = N + 1; 
3) for  n = 0, … , 2 N – 2 – 1 : |RN – 2(i)| = N – 1; 
4) for  n = 2 N – 2, … , 2 · 2 N – 2 – 1 : |RN – 2(i)| = N; 
5) for  n = 2 · 2 N – 2, … , 3 · 2 N – 2 – 1 : |RN – 2(i)| = N + 1; 
6) for  n = 3 · 2 N – 2, … , 2 N  – 1 : |RN – 2(i)| = N + 2; 



Let’s now compute the code length differences  |RN – 1(i)| – |RN – 2(i)|  in 
integer subintervals as follows: 
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□ 
 
If we now assume, that the probability distribution is non increasing, i.e. 
ji <  implies ji pp ≥ , then the theorem 1 implies: 

21 −−
≥

NN RR LL . 
Using the  RN – 2  instead of the  RN – 1  for encoding symbols of non 

increasing probability distribution will not increase the average code length. 
Using the GR family of  N – 1  codes, i.e. removing from the family of N 
codes the code  RN – 1, we may simplify the data structures of the compression 
algorithm and the compression algorithm itself without worsening the 
compression ratio. 

A special case of non increasing symbol probability distribution is the 
uniform distribution, for the uniform symbol probability distribution we have 

21 −−
=

NN RR LL . If non increasing distribution is not uniform, then 

21 −−
>

NN RR LL . If the alphabet size y is not a power of 2 (2 N – 1 < y < 2 N ), then 
we may treat the message as a message of symbols from alphabet  S = {s0, s1, 
... , sy – 1, sy, ... , sn – 1}, where  n = 2 N  and if  yi ≥   then  0≡ip . In this case, 
if the probability distribution is non increasing, then from the theorem 1 we 
have 

21 −−
>

NN RR LL . 
Assuming the non increasing probability distribution is sufficient to show 

that 
21 −−

≥
NN RR LL , however it is not a necessary condition. From theorem 1 

we have the following sufficient and necessary condition for 
21 −−

≥
NN RR LL : 
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Removing the RN – 1 from the code family used by a compression algorithm 
for encoding symbols of non increasing probability distribution may improve 
the compression ratio. However the ratio may also be not affected, since the 
compression algorithm does not have to use all the codes from the family. 



3.3 Case of the uniform probability distribution 
The probability distribution of symbols encoded by predictive lossless 

image compression algorithms for typical images is close to exponential. For 
typical images we successfully use the GR codes. In the case of uniform 
probability distribution the use of GR codes results in the data expansion 
greater or equal to 0.5 bits per pixel. As mentioned before, in real life systems, 
including medical systems, the data expansion should be minimized. 

The most straightforward method, that allows encoding the incompressible 
data without the data expansion is a method of inserting a code optimal for 
uniform symbol probability distribution to the code family. A natural binary 
code is optimal for uniform probability distribution. With the natural binary 
code we may replace the GR code of rank RN – 1. For typical images such a 
new family is as suitable as the unmodified GR family (see subsection 3.2). In 
the case of incompressible data, when use of the GR codes results in the data 
expansion, the natural binary code may be selected by the data model. Using 
this code we avoid the data expansion. Regardless of the probability 
distribution, which may be uniform, increasing or any other, the symbols 
being encoded may be simply copied to the output without the data expansion. 

4 Suggested code family 
Arguments mentioned earlier imply, that the code family designed for 

robust encoding of symbols from alphabet of size 2 N
 , based on the GR 

family, should consist of  N – 1  limited codeword length GR codes and the  
N -bit natural binary code. Below we suggest such a family. 

Codewords in the suggested family are constructed in a way similar to 
JPEG-LS family. For each code in the family we define the threshold πk. We 
encode integer i, i is in the range [0, 2 N – 1], the codeword length is limited to 
lmax bits, the code rank k is in range [0, N – 1]. If  i < πk  then we encode 
integer i using GR code of rank k. In the opposite case we output the prefix:  
πk / 2 k  ones, and the suffix:  i – πk  encoded using natural binary code 

b

k
NK

π−2
(table 4). The threshold πk is the smaller value selected from two 

following: the ( ) k
max Nl 2⋅−  and the  2 N – 2 k. 

All the codes in the suggested family differ from the codes in the GR 
family and the code  k = N – 1  becomes the N -bit natural binary code. 
Lengths of all the codewords are either equal or shorter than equivalent 
codewords in the JPEG-LS family.  

Some codes are complete (for example, codes k = 1 … 3 from table 4). 
Remaining codes may be made complete using method described in [6], i.e. 
for  i ≥ πk  we encode the codeword suffix using the adjusted binary code 
instead of natural binary code. The example of the complete variant of the 
suggested family (suggested-c family) is presented in table 5. 



 
Table 4 

The suggested family 
for integers in range [0, 15], codeword length limited to 8 bits 

Code Integer 
k = 0 k = 1 k = 2 k = 3 

0 0•2222 0•022 0•00 0•000 
1 10•2222 0•122 0•01 0•001 
2 110•2222 10•022 0•10 0•010 
3 1110•2222 10•122 0•11 0•011 
4 1111•0000 110•122 10•00 0•100 
5 1111•0001 110•122 10•01 0•101 
6 1111•0010 1110•022 10•10 0•110 
7 1111•0011 1110•122 10•11 0•111 
8 1111•0100 1111•000 110•00 1•000 
9 1111•0101 1111•001 110•01 1•001 

10 1111•0110 1111•010 110•10 1•010 
11 1111•0111 1111•011 110•11 1•011 
12 1111•1000 1111•100 111•00 1•100 
13 1111•1001 1111•101 111•01 1•101 
14 1111•1010 1111•110 111•10 1•110 
15 1111•1011 1111•111 111•11 1•111 
 
Method of selecting the πk and coding of i for  i ≥ πk  results in limiting the 

length of codewords for some codes to less than lmax. For example the code  
k = 1  from table 4 (and table 5 as well) contains codewords not longer than 7 
bits in spite of the  lmax = 8  limit.  

Coding images we deal with alphabets of sizes up to 216. For coding 
symbols from those alphabets we use families of modified or unmodified GR 
codes containing no more than 16 codes. Knowing the alphabet size and the 
codeword length limit we may calculate thresholds πk  for all the codes in the 
family once (before the coding starts) and not calculate the πk threshold each 
time the code of rank k is used. Using the described modifications of GR 
family during compression of typical images almost all pixels are encoded 
using codewords identical to equivalent codewords in the unmodified GR 
family. Therefore for typical images we do not expect to get a significant 
improvement in the average code length by using the JPEG-LS family or the 
suggested family instead of the unmodified GR family. 

 



Table 5 
The suggested-c family 

for integers in range [0, 15], codeword length limited to 8 bits 

Code Integer 
k = 0 k = 1 k = 2 k = 3 

0 0•2222 0•022 0•00 0•000 
1 10•2222 0•122 0•01 0•001 
2 110•2222 10•022 0•10 0•010 
3 1110•2222 10•122 0•11 0•011 
4 1111•0002 110•122 10•00 0•100 
5 1111•0012 110•122 10•01 0•101 
6 1111•0102 1110•022 10•10 0•110 
7 1111•0112 1110•122 10•11 0•111 
8 1111•1000 1111•000 110•00 1•000 
9 1111•1001 1111•001 110•01 1•001 

10 1111•1010 1111•010 110•10 1•010 
11 1111•1011 1111•011 110•11 1•011 
12 1111•1100 1111•100 111•00 1•100 
13 1111•1101 1111•101 111•01 1•101 
14 1111•1110 1111•110 111•10 1•110 
15 1111•1111 1111•111 111•11 1•111 

 

5 Experimental comparison of the GR families 

5.1 Procedure 
A test image set described in the subsection 5.2 was used to perform 

experiments with all the families described in this paper: GR, JPEG-LS, 
suggested and suggested-c. For all the families, but the GR family, the 
codeword length was limited to 32 bits (the alphabet size was 256). The 
experiments were performed for two following algorithms: JPEG-LS 
algorithm and the simpler algorithm based on the data model known from the 
FELICS algorithm. The FELICS data model was used to adaptively select, in 
the code family, the code for encoding residuum symbols of images 
decorrelated using the default prediction function of the Lossless JPEG 
algorithm. The decorrelation procedure is described in a more detailed manner 
in [9]. In the research an implementation of JPEG-LS by I. R. Ismaeil and 
F. Kossintini [14] was used. Compression algorithm based on the FELICS 
data model was implemented in the C language, the decorrelation procedure 
was implemented earlier [8]. The parameters of the FELICS data model were 
the same as in the mg system [10, 13]. 



5.2 Test image set 
The large set of test images was used, the set is described more thoroughly 

in [7, 9]. The set consists of some disjoint groups of images and some images. 
All the images are 8 bit grayscale images. The set contains groups of images 
of significantly different sizes and resolutions, noisy images and image 
containing nothing but the noise. The set contains: 
funet —group of 9 well known images (“lena”, “bridge”, “boats” etc.) 

often used in the image compression research, size: 64–405 kB. 
corel —8 images from Corel Professional Photos library, size: 384 kB. 
i_300 —5 images which include 3 photographs scanned at 300 dpi, 

size: 1994 kB, and 2 images composed using all corel images, 
size: 3072 kB. 

i_150 —above scaled 50%, size: 486–768 kB. 
i_75 —above scaled 50%, size: 121–192 kB. 
i_37 —above scaled 50%, size: 30–48 kB. 
i_18 —above scaled 50%, size: 7–12 kB.  
noise —8 noisy images created using two images from i_150  

group (“big_150” and “ph2_150”) by adding the Gaussian noise  
(mean 0 and variances 1, 4, 16 and 64). 

“random” —random pixel intensities (incompressible), one image,  
size 4247 kB. 

The set is large to permit analyzing average results for groups of images 
instead of, arguable, results for individual images. From all the set an 
additional group of typical images was selected: normal. The group normal 
consists of all the images from: funet, corel, i_300, i_150 and i_75. 

5.3 Results 
Results for the JPEG-LS algorithm are presented in table 6, for the other 

algorithm in table 7. Tables 6 and 7 contain average compression ratios for 
disjoint image groups, for the “random” image and for the normal group. 

For all the groups but the noise group, groups of smallest images and the 
“random” image, average code lengths for all the families do not differ 
significantly. Relative effects of using individual families are similar for both 
algorithms, however greater differences may be noticed for the algorithm 
based on the FELICS data model. 

For typical images replacing the GR family by the limited codeword length 
family improves the average (group normal) compression ratio by about 8‰ 
for the FELICS data model, for the JPEG-LS algorithm we gain about 0.4‰ 
only. Improvement in the average codeword length is greater for smaller 
images. Relatively simple limiting of the codeword length, used in the JPEG-
LS family, improves a little average code length for typical images. Further 
improvement using the suggested families is smaller.  

 



Table 6 
Compression results for the JPEG-LS algorithm [bpp] 

Code family Group 
(image) GR JPEG-LS Suggested Suggested-c 

funet 4.578 4.576 4.576 4.576 
corel 3.025 3.025 3.024 3.024 
i_18 5.084 5.068 5.066 5.064 
i_37 4.491 4.484 4.483 4.482 
i_75 3.894 3.891 3.891 3.890 

i_150 3.169 3.168 3.168 3.168 
i_300 2.717 2.717 2.716 2.716 
noise 5.804 5.803 5.770 5.770 

“random” 8.505 8.505 8.166 8.166 

normal 3.572 3.571 3.570 3.570 

 
Table 7 

Compression results for the FELICS data model [bpp] 

Code family Group 
(image) GR JPEG-LS Suggested Suggested-c 

funet 5.002 4.945 4.945 4.943 
corel 3.532 3.513 3.512 3.512 
i_18 6.324 5.814 5.811 5.805 
i_37 5.210 5.068 5.067 5.064 
i_75 4.483 4.441 4.440 4.438 

i_150 3.800 3.779 3.779 3.777 
i_300 3.300 3.291 3.291 3.291 
noise 6.001 5.984 5.947 5.946 

“random” 8.508 8.501 8.002 8.002 

normal 4.100 4.068 4.067 4.066 

 
The difference in results obtained for the non complete and complete 

variant of the suggested family is practically negligible for tested images. 
In the case of noisy images noise and the incompressible “random” image 

results for the GR family and the JPEG-LS family are similar. For those 
images better results are obtained using the suggested families, significantly 
better for the incompressible data. Better average code lengths are obtained 
for the suggested families thanks to the natural binary code present in those 
families (the code  k = N – 1). For the suggested families greater expansion of 



the incompressible data is observed for the JPEG-LS algorithm (0.166 bpp vs. 
0.002 bpp for the FELICS model) that for normal images significantly 
outperforms the FELICS model. The reason is that in the JPEG-LS the 
unmodified GR family is modeled regardless of the family actually used, as 
opposed to modeling the actual family in the FELICS data model. 

Based on the results we conclude that limiting the GR codeword length 
allows a little improvement of compression results for typical images. It also 
bounds the local data expansion what may be important in practical 
applications. Further modifications of GR family that result in inserting the 
natural binary code to the family improve significantly the compression 
results for the incompressible data and for noisy images. The expansion of the 
incompressible data was about 0.5 bpp for the families GR and JPEG-LS used 
in both the compression algorithms. Using the suggested family in the JPEG-
LS algorithm we reduce the expansion of incompressible data 3 times, and in 
a compression algorithm based on the FELICS data model we reduce the 
expansion over 200 times. 

Generating codewords from the introduced code families is, as generating 
codewords from the JPEG-LS family, a little more complicated than 
generating codewords from unmodified GR family. Generating codewords 
from the complete variant of the suggested family is a little more complicated 
than for a not complete variant of the suggested family. Since differences in 
the results for those two variants are practically negligible, the not complete 
suggested family may be a better choice for practical applications. As 
compared to the GR family for both examined algorithms the suggested 
family improves average code length for both typical and non-typical data. 

6 Conclusions 
In the paper we analyze effects of using both the GR and the limited 

codeword length GR codes for encoding actual images, where the set of 
encoded symbols is finite and the probability distribution is not exactly 
exponential. We also analyze a special case of encoding incompressible data. 
As a result we suggest new family of modified GR codes that contains natural 
binary code.  

We compare the families experimentally for the JPEG-LS algorithm and 
for the algorithm based on the data model known from the FELICS algorithm. 
The most significant improvement in compression results is observed for the 
incompressible data. Using the suggested family in the JPEG-LS algorithm 
we reduce the expansion of incompressible data from 0.5 bits per pixel to 
0.166 bpp, and in the algorithm based on the FELICS data model we reduce 
the expansion from 0.5 bpp to 0.002 bpp. In real life systems that use the data 
compression the suggested family may significantly improve results of 
processing non-typical data.  
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