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Abstract. Reversible denoising and lifting steps (RDLS) are lifting steps integrated with denoising filters in such
a way that, despite the inherently irreversible nature of denoising, they are perfectly reversible. We investigated
the application of RDLS to reversible color space transforms: RCT, YCoCg-R, RDgDb, and LDgEb. In order to
improve RDLS effects, we propose a heuristic for image-adaptive denoising filter selection, a fast estimator of the
compressed image bitrate, and a special filter that may result in skipping of the steps. We analyzed the properties
of the presented methods, paying special attention to their usefulness from a practical standpoint. For a diverse
image test-set and lossless JPEG-LS, JPEG 2000, and JPEG XR algorithms, RDLS improves the bitrates of
all the examined transforms. The most interesting results were obtained for an estimation-based heuristic filter
selection out of a set of seven filters; the cost of this variant was similar to or lower than the transform cost, and it
improved the average lossless JPEG 2000 bitrates by 2.65% for RDgDb and by over 1% for other transforms;
bitrates of certain images were improved to a significantly greater extent. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JEI.25.4.043025]
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1 Introduction
Most color image compression algorithms independently
compress the image components; since components in the
RGB space are correlated, the compression is performed
after transforming image data to a less correlated color
space. For the lossless compression, reversible color space
transforms are employed, which are built using lifting
steps.1,2 In Ref. 3, it was noticed that such a step might
increase the total amount of noise that had to be encoded
during compression. To remove correlation without increas-
ing noise, lifting steps were replaced with reversible
denoising and lifting steps (RDLS), which are lifting steps
integrated with denoising filters. The step is modified in
such a way that, despite involving the inherently irreversible
denoising, it is perfectly reversible. RDLS was applied to
a simple RDgDb4 transform (also known as A2;1

5) and it
was found that RDLS improved bitrates of images in optical
resolutions of acquisition devices. Experiments were per-
formed for three significantly different standard image
compression algorithms in the lossless mode (JPEG-LS,6

JPEG 2000,7 and JPEG XR8) and for simple linear denoising
filters (“smoothing” filters). The memoryless entropy of
the component prediction error obtained with the MED
predictor9 was a very efficient estimator of image component
transform effects that was found suitable for selecting a filter
for a given image component independently of the image
compression algorithm.

An intermediate stage of the research reported herein was
presented in Ref. 10, where RDLS was applied to more
complex color space transforms LDgEb4 (denoted A4;10 in
Ref. 5) and RCT (among others, used in JPEG 2000).
RDLS effects were evaluated using the same denoising fil-
ters, compression algorithms, and test images, as in Ref. 3.
Entropy estimation employing MED was used for selecting
the denoising filter and deciding whether to exploit denois-
ing. The selection of filters for a given transform step was
based only on the estimated filtering effects on a bitrate
of component modified by this step. As a result, the filtering
might, for RCT and LDgEb, result in worsening of the over-
all image bitrate even if assuming the perfect estimation.

In Ref. 3, it was also observed that, although RDgDb or
its RDLS-modified variant improves bitrates in the average
case, for some color images, the best ratios were obtained
when untransformed components were compressed. In
Ref. 11, RDLS was applied to discrete wavelet transform
(DWT) in lossless JPEG 2000 compression of grayscale
images. The noise filtering was the most effective when
applied only to some steps. Some images were compressed
better when the DWT stage of this algorithm was skipped,
although in the average case, RDLS improved bitrates. Thus,
it was suspected that the optimum might be in-between
skipping and applying the transform, i.e., that better bitrates
may be obtained by skipping only some of the steps of the
transform.

The new contributions of this study are mainly motivated
by conclusions from earlier works and are aimed at proper-
ties of RDLS-modified color space transforms that are worth-
while from a practical standpoint. Since sometimes it is
better to compress an untransformed image, we propose
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employing a special filter, named “null,” which may make
the RDLS-modified color space transform skip all or some
of its steps. We also propose an image-adaptive denoising
filter selection heuristic that, as compared to the heuristic
exploited in Ref. 10, avoids worsening of the image bitrate
and for more complex transforms is faster. As the heuristic
cost (i.e., its computational time complexity) may still be
too high for practical applications, we propose the limited com-
plexity estimator of compression effects H0_pMED(10k:100),
which is based on a fast estimator from Ref. 5. The cost of
the latter, however, significantly increased if RDLS was
employed. The evaluation of the effects of the above contri-
butions is performed using the same transforms, compres-
sion algorithms, and test images, as in Ref. 10. Additionally,
we apply RDLS to the YCoCg-R transform,1 test the heuris-
tic against an exhaustive filter search, and the estimators
against the actual bitrates of lossless image compression
algorithms.

The remainder of this paper is organized as follows. In
Sec. 2, first, the reversible color space transforms and the
RDLS method are briefly described. Next, in Sec. 2.3, we
present the RDLS-modified transforms including the new
RDLS-YCoCg-R and compare their dynamic ranges and
bit-depths to the non-RDLS counterparts. In Sec. 2.4, we
demonstrate the transform reversibility in a step-by-step
example and present sample effects that RDLS may have
on the transformed components of a noisy image. In
Sec. 2.5, we describe the denoising filters used in the
research including the proposed null filter. Then we intro-
duce the filter selection heuristic (Sec. 2.6) along with the
compression effect estimators including the proposed
H0_pMED(10k:100) (Sec. 2.7) and report their complexities
for various transforms. We also describe the compression
algorithms, implementations, and test data (Sec. 2.8). Results
are presented and discussed in Sec. 3. We start from analyz-
ing the effects of contributions that are aimed at the bitrate
improvement (i.e., the new heuristic and the null filter) and
comparing them to the previously known methods. Next
(Sec. 3.2), we reduce the cost of the bitrate improvement
by limiting the number of denoising filters and iterations
of the heuristic and by applying H0_pMED(10k:100). We
also perform certain additional experiments (Sec. 3.3),
among others, to check how far from optimal are our heu-
ristic and estimation method. Finally, the extensive summary
is followed by a brief conclusion.

2 Materials and Methods

2.1 Lifting-Based Reversible Color Space Transforms
Reversible color space transforms investigated in this study
are sequences of lifting steps. Below, we characterize them
briefly and refer the reader to Refs. 1, 4, and 5 for more
detailed descriptions and comparisons among them. In
each lifting step of a transform, a single pixel component
is modified by adding to it a linear combination of other
components of the same pixel; the sum may be negated.
Up to three steps are needed to transform an RGB pixel
to any of the spaces discussed in this section. A transform
realized as a sequence of lifting steps has advantageous prop-
erties: it may be computed in-place, it is reversible when
transformed components are stored using integers (it is inte-
ger-reversible), and it is easily and perfectly invertible. To
obtain an inverse transform, the inverses of lifting steps

should be applied in an order exactly opposite to the order
employed by the forward transform. However, transforms
are usually presented using different symbols for compo-
nents before and after applying lifting steps to them, lifting
equations are simplified, or a lifting sequence is transformed
in order to present an optimized method of transform imple-
mentation. Thus, it may not be obvious which component is
modified in a given step or how to inverse the step. In this
section, we follow the usual way of presentation; for trans-
forms presented as sequences of lifting steps, see Sec. 2.3.

Probably the most frequently used reversible color space
transform is the RCT transform employed in JPEG 2000
for lossless compression, which is an approximation of an
irreversible ICT transform used in JPEG 2000 for lossy com-
pression, that in turn may be seen as an approximation of an
irreversible YCbCr color space transform.7 Equation (1)
presents forward (left-hand side) and inverse RCT:

EQ-TARGET;temp:intralink-;e001;326;565

Yr ¼ bðRþ 2Gþ BÞ∕4c G ¼ Yr − bðUrþ VrÞ∕4c
Ur ¼ R − G ⇔ R ¼ Urþ G
Vr ¼ B − G B ¼ VrþG

;

(1)

where the bi∕2qc is the floor of i∕2q; i.e., the greatest integer
not exceeding i∕2q, that for integer i and positive integer q
may be simply computed as the arithmetic right shift of i by
q bits. RCT transforms RGB primary color components R,
G, and B to component Yr representing pixel luminance
and two chrominance components Ur and Vr. Note that
compared to primary color and luminance components,
the dynamic range of chrominance components and conse-
quently their bit-depths are greater—which is also true for
other transforms presented in this section.

Another standard transform, among others used in JPEG
XR, is YCoCg-R. In Eq. (2), it is presented as it was
originally proposed in Ref. 12, i.e., as a sequence of steps
involving storing an intermediate result in a temporary
variable t; Y represents pixel luminance, whereas Co and
Cg are chrominance components:

EQ-TARGET;temp:intralink-;e002;326;317

Co ¼ R − B t ¼ Y − bCg∕2c
t ¼ Bþ bCo∕2c ⇔ G ¼ Cgþ t
Cg ¼ G − t B ¼ t − bCo∕2c
Y ¼ tþ bCg∕2c R ¼ Bþ Co

: (2)

In Ref. 3, RDLS was applied to the RDgDb transform
[Eq. (3)],4 which is also known as A2;1.

5 RDgDb was chosen
because of its simplicity and good performance. It requires
only two simple integer operations (add or subtract) per
pixel, which for the three-component RGB color space is
possible because we do not transform all the components.
There are two transformed chrominance components Dg
and Db, but instead of luminance, the untransformed pri-
mary color R is used:

EQ-TARGET;temp:intralink-;e003;326;147

R ¼ R R ¼ R
Dg ¼ R − G ⇔ G ¼ R −Dg
Db ¼ G − B B ¼ G −Db

: (3)

In this research, we also include the LDgEb transform
[Eq. (4)]4 (denoted A4;10 in Ref. 5). Like typical transforms,
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it results in a luminance (L) and two chrominance (Dg and
Eb) components; interestingly, the component formulas are
based on actual analog transforms from the human visual
system:

EQ-TARGET;temp:intralink-;e004;63;708

Dg ¼ R − G R ¼ Lþ bDg∕2c
L ¼ R − bDg∕2c ⇔ G ¼ R −Dg
Eb ¼ B − L B ¼ Ebþ L

: (4)

2.2 Reversible Denoising and Lifting Step
A lifting step in a reversible color space transform may
propagate the noise to the component it modifies from
other components. In Ref. 3, integrating denoising into lift-
ing steps was proposed in order to avoid noise propagation
while preserving other transform properties (i.e., reversibil-
ity, in-place operation, and removing correlation). The
method was based on the generalized lifting step of a color
space transform:

EQ-TARGET;temp:intralink-;e005;63;539Cx←Cx � fðC1; : : : ; Cx−1; Cxþ1; : : : ; CmÞ; (5)

where Cn is the n’th component of the pixel, Cx is the com-
ponent which is modified by the step, m is the number of
components, f is a deterministic function, and the operation
� is reversible, i.e., an inverse operation � exists, such
that c ¼ a� b ⇔ a ¼ c� b.

By denoising of arguments of function f in the generalized
lifting step [Eq. (5)], a reversible denoising and lifting step
[RDLS, Eq. (6)] was constructed:

EQ-TARGET;temp:intralink-;e006;326;752Cx←Cx � fðCd
1 ; : : : ; C

d
x−1; C

d
xþ1; : : : ; C

d
mÞ; (6)

where Cd
n is the denoised n’th component of the pixel.

Different denoising filters may be employed for different
components and in different steps. For denoising of argu-
ments of function f, any component of any pixel may be
used except the Cx of the pixel to which the RDLS is
being applied. Denoising is not an in-place operation, com-
puting the function f argument Cd

n does not alter Cn. In this
study, for denoising of Cn of a specific pixel, we use Cn of
this pixel and of its neighbors.

Despite the inherently lossy nature of denoising, RDLS
exploiting denoising is perfectly and easily invertible. An
inverse of an RDLS-modified color space transform is
obtained by applying inverses of RDLS:

EQ-TARGET;temp:intralink-;e007;326;586Cx←Cx � fðCd
1 ; : : : ; C

d
x−1; C

d
xþ1; : : : ; C

d
mÞ; (7)

in an order opposite to one employed by the forward
transform—see examples in the following two sections.
Naturally, the same denoising filters must be used for the
same components in inverse RDLS, as they were applied
during forward RDLS.

2.3 Reversible Denoising and Lifting Steps-Modified
Transforms

In Eq. (8), the RCT transform is defined as a sequence of
lifting steps—both the forward RCT transform (left-hand
side) and inverse:

EQ-TARGET;temp:intralink-;e008;63;408

step 1∶ C1←C1 − C2 step 1∶ C2←C2 − bðC1 þ C3Þ∕4c
step 2∶ C3←C3 − C2 ⇔ step 2∶ C3←C3 þ C2

step 3∶ C2←C2 þ bðC1 þ C3Þ∕4c step 3∶ C1←C1 þ C2

: (8)

We use the notation as in Eqs. (5)–(7), where the same
symbol denotes the pixel’s component before and after
modifying it by the lifting step or the RDLS. For all
the transforms presented in this section, C1, C2, and C3

denote the R, G, and B components of the untransformed
image, respectively. For RCT, the C1, C2, and C3 denote

also the Ur, Yr, and Vr components of the transformed
image, respectively. Generally, the steps must be per-
formed in a specified order.

The RDLS-modified RCT [RDLS-RCT, Eq. (9)] is obtained
by simply replacing the RCT [Eq. (8)] lifting steps [Eq. (5)]
with the RDLS [Eq. (6)] constructed based on them:

EQ-TARGET;temp:intralink-;e009;63;269

step 1∶ C1←C1 − Cd
2 step 1∶ C2←C2 − bðCd

1 þ Cd
3Þ∕4c

step 2∶ C3←C3 − Cd
2 ⇔ step 2∶ C3←C3 þ Cd

2

step 3∶ C2←C2 þ bðCd
1 þ Cd

3Þ∕4c step 3∶ C1←C1 þ Cd
2

: (9)

We use the same symbols to denote components of regular
transforms and of their RDLS-modified counterparts;
thus, C1, C2, and C3 denote the Ur, Yr, and Vr compo-
nents of the RDLS-RCT transformed image, respectively.
The regular lifting transform is a special case of the
RDLS-modified transform; the lifting transform may be
obtained by using a denoising filter, for which Cd

n ¼ Cn.
We call such a filter the “none” filter.

The dynamic range of RDLS-RCT components differs
from RCT components’ range in the case of the C2 compo-
nent. We assume that denoising of the pixel component Cn
may result in any integer within the dynamic range of
the image component Cn. Note that the “component” term

may refer to a pixel and to an image; in the latter case,
the image component Cn is an image consisting of Cn com-
ponents of all pixels of a color image. In RDLS-RCT, for the
½0; 2b − 1� range of untransformed RGB components, the
range of C1 and C3 before performing the forward step 3
is ½−2b þ 1; 2b − 1�. Due to denoising, step 3 of RDLS-
RCT adds to C2, a floor of a quarter of a sum of two values,
each of which may be any integer from the ½−2b þ 1; 2b − 1�
range. Thus, the range of the RDLS-RCT transformed C2

is ½−2b−1; 3 · 2b−1 − 2�.
As noted in Ref. 3, a lifting-based color space transform

may be performed for each pixel independently of others.
The RDLS sequence, constructed based on a color space
transform, is a transform of the whole image components.
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It is not a color space transform, since denoising of a specific
pixel’s component Cn requires to access the Cn of (at least)
neighboring pixels. The lifting-based color space transform of
an image may be performed in a pixel-by-pixel regime,
i.e., we apply all transform steps to a pixel, then we proceed
to the next pixel, or step-by-step, i.e., we apply a lifting step to
all pixels, and then we proceed to the next step; these regimes
are equivalent. Also for the RDLS-modified transform, both
regimes may be exploited, but they are not equivalent as
filters depend on the regime. In this study, we employ the

step-by-step regime. In this regime, for each image compo-
nent, except for the component being modified in the current
step, either all pixels are transformed or all are untransformed.
Assuming that each untransformed and each transformed
image component has invariant characteristics, the same filter
may be selected for all image pixels in a given RDLS-
modified transform step for denoising of a given component.

Presented below are the RDLS-modified variants of
YCoCg-R [RDLS-YCoCg-R, Eq. (10)], RDgDb [RDLS-
RDgDb, Eq. (11)], and LDgEb [RDLS-LDgEb, Eq. (12)]:

EQ-TARGET;temp:intralink-;e010;63;630

step 1∶ C1←C1 − Cd
3 step 1∶ C2←C2 þ dCd

3∕2e
step 2∶ C3← − C3 − bCd

1∕2c þ Cd
2 ⇔ step 2∶ C3← − C3 − bCd

1∕2c þ Cd
2

step 3∶ C2←C2 − dCd
3∕2e step 3∶ C1←C1 þ Cd

3

; (10)

EQ-TARGET;temp:intralink-;e011;63;556

step 1∶ C3←−C3 þCd
2 step 1∶ C1←C1

step 2∶ C2←−C2 þCd
1 ⇔ step 2∶ C2←−C2 þCd

1

step 3∶ C1←C1 step 3∶ C3←−C3 þCd
2

;

(11)

EQ-TARGET;temp:intralink-;e012;63;506

step1∶ C2←−C2þCd
1 step1∶ C3←C3þCd

1

step2∶ C1←C1 − bCd
2∕2c ⇔ step2∶ C1←C1þbCd

2∕2c
step3∶ C3←C3 −Cd

1 step3∶ C2←−C2þCd
1

:

(12)

By applying to the RDLS-modified transforms the none
filter, the non-RDLS variants may be obtained in a form
of sequences of lifting steps. Note that in Eq. (10),
the dCd

3∕2e is the smallest integer greater or equal to
Cd
3∕2. Names of the transformed components are, for

each transform, listed in Table 1.
Table 1 also presents dynamic ranges and bit-depths

of components of all transforms investigated in this study.
As opposed to RDLS-RDgDb, some components of RDLS-
RCT (Yr), RDLS-YCoCg-R (Y and Cg), and RDLS-LDgEb

(L and Eb) may require greater bit-depths than their non-
RDLS counterparts. In such cases, the range of the non-
RDLS transformed component is placed approximately in
the center of the corresponding RDLS transformed compo-
nent range. The dynamic range expansion with respect to the
non-RDLS transform is the greatest for the RDLS-YCoCg-R
transform, which needs 2 bits more than YCoCg-R for
encoding the Y component.

2.4 Example of a Reversible Denoising and Lifting
Steps-Modified Color Space Transform

In this section, using the RDLS-RCTas an example, we dem-
onstrate how an RDLS-modified transform processes an
image and how the transform reversibility is maintained
despite involving the inherently irreversible denoising. Next,
we present sample effects that RDLS may have on the trans-
formed components.

The diagram in Fig. 1 presents operations performed by
consecutive steps of forward and inverse RDLS-RCT. Effects
of these operations on components of a sample noisy image
are presented in Fig. 2; letters surrounded by dashed lines in
Fig. 1 denote the panels in Fig. 2 that contain the current

Table 1 Names, dynamic ranges and bit-depths of components of lifting transforms and their RDLS counterparts; b, bit-depth of the untransformed
RGB components, b > 1.

Transform

C1 C2 C3

Name range depth name range depth name range depth

RGB R ½0; 2b − 1� b G ½0; 2b − 1� b B ½0;2b − 1� b

RCT Ur ½−2b þ 1; 2b − 1� b þ 1 Yr ½0; 2b − 1� b Vr ½−2b þ 1;2b − 1� b þ 1

RDLS-RCT Ur ½−2b þ 1; 2b − 1� b þ 1 Yr ½−2b−1;3 · 2b−1 − 2� b þ 1 Vr ½−2b þ 1;2b − 1� b þ 1

YCoCg-R Co ½−2b þ 1; 2b − 1� b þ 1 Y ½0; 2b − 1� b Cg ½−2b þ 1;2b − 1� b þ 1

RDLS-YCoCg-R Co ½−2b þ 1; 2b − 1� b þ 1 Y ½−3 · 2b−2; 7 · 2b−2 − 2� b þ 2 Cg ½−3 · 2b−1 þ 2;3 · 2b−1 − 1� b þ 2

RDgDb R ½0; 2b − 1� b Dg ½−2b þ 1; 2b − 1� b þ 1 Db ½−2b þ 1;2b − 1� b þ 1

RDLS-RDgDb R ½0; 2b − 1� b Dg ½−2b þ 1; 2b − 1� b þ 1 Db ½−2b þ 1;2b − 1� b þ 1

LDgEb L ½0; 2b − 1� b Dg ½−2b þ 1; 2b − 1� b þ 1 Eb ½−2b þ 1;2b − 1� b þ 1

RDLS-LDgEb L ½−2b−1 þ 1;3 · 2b−1 − 1� b þ 1 Dg ½−2b þ 1; 2b − 1� b þ 1 Eb ½−3 · 2b−1 þ 1;3 · 2b−1 − 2� b þ 2
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appearance of the component. In this example, we use the
same denoising filter in all transform steps for all compo-
nents requiring denoising and employ the step-by-step
regime.

Step 1 of forward RDLS-RCT applied to all image pixels
transforms C1, C2, and C3 components of the untransformed
image (i.e., R, G, and B primary color components, respec-
tively) by modifying only the C1 component. The latter is
modified by subtracting from it the temporarily created com-
ponent obtained by denoising of theC2 component. In step 2,
we modify in an analogical way the C3 component. Step 3
(C2←C2 þ bðCd

1 þ Cd
3Þ∕4c) is more complicated. For brev-

ity in Fig. 1, we ignore computing of the floor. In this step,
we add to the C2 component the quarter of the sum of the
temporary denoised components C1 and C3, which are
obtained based on the components already transformed in
earlier steps. To C2 of each pixel, we add the quarter of
the sum of the temporary denoised components C1 and
C3 of the same pixel. After step 3, we have the RDLS-
RCT transformed C1, C2, and C3 components, i.e., Ur,
Yr, and Vr, respectively.

Inverse transform simply applies inverses of the forward
transform steps in a reversed order. Step 1 of the inverse
transform (C2←C2 − bðC1 þ C3Þ∕4c) is an inverse of the
forward step 3. These two steps modify the C2 component
only. Other components are not changed by them but are
used in a read-only manner to obtain temporary denoised
components. Thus, components C1 and C3 before inverse

transform step 1 are exactly the same as before forward
step 3. Inverse transform step 1 subtracts from C2 the quarter
of the sum of the denoised components C1 and C3—sub-
tracts from C2 of each pixel exactly the same value that
was added to it in forward step 3. The reversibility is main-
tained because, based on the same C1 and C3 as in forward
step 3, we obtained the same temporary denoised compo-
nents. Therefore, the denoising filter must be deterministic
but does not have to be reversible, or invertible; we perform
“forward” denoising in both the forward and the inverse
RDLS-modified color space transform. In this example,
we use the same denoising filter for all the components.
However, in a general case, for denoising of a given compo-
nent in the inverse of a certain forward step, we must use the
same denoising filter that was used for this component in
the forward step. As a result of inverse step 1, we obtain
the untransformed C2, i.e., the G primary color component,
that is then used in inverse transform steps 2 and 3 to obtain
the temporary denoised untransformed C2. The latter was in
forward transform subtracted from the untransformed C1 and
C3; in inverse transform, we add it to the transformed C3 and
C1, reconstructing the untransformed C3 and C1—the pri-
mary color components B and R.

In Fig. 2, we compare effects of RCT and RDLS-RCT for
a noisy image. Components of an original untransformed
image [Figs. 2(a)–2(c)] are contaminated with impulse
noise (10% of white pixels were replaced by black ones).
Impulse noise is not a typical distortion found in real-life
images; we use it because it is easy to observe and, in
most cases, may be efficiently removed by using a simple
median denoising filter. Hence, in this example, for denois-
ing, within all RDLS steps of RDLS-RCT we employ the
median denoising filter with 3 × 3 pixels window. This filter
may fail to remove noise from components of our image, or
introduce distortions, only at the edges between areas of
different brightness [in Fig. 2, compare panels (d), (e), and
(f) with (g), (b), and (i), respectively]. Figure 2 also reports
the component bit-depths and bitrates of a lossless image
compression algorithm (estimated using the H0_pMED
estimator, which is described in Sec. 2.7).

Looking at the effects of RCT [Figs. 2(j)–2(l)], we see that
the transformed components contain noise from all the com-
ponents used to calculate them. When we compress these
components independently, then we encode the information
on noise from the untransformed components twice (noise
from the C1 and C3 components) or three times (noise from
C2). The most pronounced effect of RDLS [Figs. 2(g)–2(i)]
is that the transformed components contain noise only from
their untransformed counterparts.

A more subtle difference between RDLS-based and lift-
ing-based transform effects may be noticed for components
that, during transform, are modified based on themselves.
For example, the component C2 in step 3 is modified
based on components C1 and C3 that have already been
modified based on C2 in earlier steps 1 and 2, respectively.
Basically, step 3 of the lifting-based RCT transform makes
C2 contain a weighted arithmetic mean of the untransformed
C1, C2, and C3 components. Therefore, it decreases in C2 the
amplitude of the signal originally present in this component,
that is, of both the ideal noise-free image and noise contami-
nating it. On the other hand, assuming the perfect denoising,
the RDLS modifies a component based only on the ideal
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Fig. 1 Example of forward and inverse RDLS-RCT.
P

, weighted sum
of components; d , denoising of a component; dashed lines surround
labels of Fig. 2 panels with the transformed component of a sample
image.

Journal of Electronic Imaging 043025-5 Jul∕Aug 2016 • Vol. 25(4)

Starosolski: Application of reversible denoising and lifting steps with step skipping to color space transforms. . .



Fig. 2 Effects of RCT and RDLS-RCT on components of a noisy image. (a–c) Untransformed compo-
nents of the original image, (d–f) temporary denoised components created while computing RDLS-RCT,
(g–i) RDLS-RCT transformed components, and (j–l) RCT transformed components; image sizes are
74 × 71 pixels, transformed components are presented normalized to the dynamic range of original
ones, for denoising the median filter with 3 × 3 pixels window was used; H0_pMED, estimated bitrate
of the component (see Sec. 2.7).
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noise-free images contained in other components. Thus, the
ideal noise-free image is transformed differently than noise.
The former is transformed as in a regular lifting-based trans-
form, while the latter does not get propagated to other com-
ponents and cannot be “weighted” using its copy from other
components. The RDLS-RCT transformed C2 contains a
weighted arithmetic mean of ideal noise-free images from
the C1, C2, and C3 components and unmodified noise origi-
nally present in C2. Therefore, the amplitude of noise from
unmodified C2 in transformed C2 is greater after RDLS-RCT
than after RCT. The above effect may be hard to notice on
Fig. 2. The pixels affected by noise from untransformed
C2 appear similarly dark in C2 transformed by RCT
[Fig. 2(k)] and RDLS-RCT [Fig. 2(h)] because all compo-
nents in Fig. 2 are presented normalized to the dynamic
range of untransformed primary colors, so the actual
dynamic range of C2 in the case of RDLS-RCTwas reduced
twice, whereas for RCT, it was not changed.

It is worth noting that the actual denoising is not perfect,
which may affect bitrates of RDLS-modified color space
transforms. For our example image, the effects of the imper-
fect denoising we applied are rough edges between areas of
different brightness (noticeable in all RDLS-RCT trans-
formed components) and additional noisy pixels in trans-
formed C2 (of intensity different to pixels that were noisy
in untransformed C2).

The estimated bitrates of RDLS-RCT components are sig-
nificantly lower than bitrates of RCT components. Interest-
ingly, bitrates of untransformed components are even better,
which suggests that for some images, the untransformed
components should be compressed. In the next section,
we propose a special case of a denoising filter for RDLS,
which may result in skipping of the RDLS-modified color
space transform.

2.5 Denoising Filters
For denoising, we employed simple low-pass linear averag-
ing filters (smoothing filters) with 3 × 3 pixels windows;
these filters were previously found effective for RDLS-
RDgDb, RDLS-LDgEb, and RDLS-RCT.3,10 The filtered
pixel component Cd

n was calculated as a weighted arithmetic
mean of the Cn components of pixels from the window. The
weight of the window center point varied for different filters,
while its neighbors’ weights were fixed to 1. We tested 11
smoothing filters with window center point weights from
1 to 1024 (integer powers of 2 only).

The filter set contains the none filter for which Cd
n ¼ Cn.

The none filter turns RDLS into a regular lifting step if it is
applied to all arguments of function f [see Eqs. (5) and (6)].
The heuristic we employ for an image-adaptive filter selec-
tion (see the next section) requires this filter to be present in
the filter set.

We also used the null special filter case, for which
Cd
n ¼ 0. For the examined RDLS-modified color space trans-

forms, the null filter may result in step skipping. If it is
applied to all arguments of function f, then RDLS becomes
Cx←Cx or Cx← − Cx and negating the image component
does not change its entropy and has virtually no effect on
its compression ratio.

It is noteworthy that the none and null filters may turn the
RDLS-modified transform into a lifting transform or cause
skipping it as a whole or partially—because different filters

may be selected for different steps by the filter selection
heuristic we employ. On the other hand, the specific RDLS
may be only partially affected if its function f has more
than one argument.

2.6 Filter Selection Heuristic
We used a simple and greedy denoising filter selection heu-
ristic based on one applied in Ref. 11 for the RDLS-modified
DWT transform. It consists of the below described steps:
A and B.

A. Transform the image using the none filter in all steps for
all arguments of function f. Store the estimated bitrates
of the transformed components and, for each component
in each step, assign the none filter.

B. In each transform step s (starting from step 1) for each
function f argument Cn (analyzed in the C1; : : : ; C3

order), try to find a better denoising filter by checking
for each filter (except for the one already selected),
the overall estimated bitrate obtained by using in step
s this filter for denoising of component Cn for all
image pixels, while the filters selected so far are used
for other components and in other steps.

Step B of the heuristic may be repeated for a given num-
ber of iterations. This step of the heuristic in each RDLS-
modified forward transform step for each component requir-
ing denoising greedily selects the denoising filter to be
applied to all image pixels. For example, in step 3 of forward
RDLS-RCT [Eq. (9)], first, a filter for C1 is selected for
denoising of all the image pixels and then a filter for C3

is also selected for all pixels.
To obtain the estimated overall image bitrate after chang-

ing a filter, it may be sufficient to estimate bitrates of some
components only—depending on the transform and the
step, the changing of a denoising filter may not affect
all components. Table 2 presents computational time com-
plexities of the filter selection heuristic that take into
account the above-mentioned property. Complexities are,
for the investigated RDLS-modified transforms, expressed
using the cost of operations on a single image component.
For comparison, the complexities of compression using
these transforms with the already selected filters and com-
pression with the non-RDLS transforms are also reported.
We assumed that all image pixels are used in bitrate estima-
tion. Using for this purpose only some of the pixels allows
lowering the complexity, which is discussed in the next
section.

These estimations are rough, among others because the
complexity of denoising may differ significantly for different
filters and because different lifting steps are not equally com-
plex (we took into account that step 3 of forward RDgDb is
done at no cost and that no actual denoising is applied in step
A of the heuristic). However, they allow making certain gen-
eral observations. The complexity of the heuristic depends
linearly on the number of iterations of step B, the number
of filters, and on complexities of bitrate estimation, lifting,
and denoising. It also depends on the RDLS-modified
transform it selects filters for; it is the smallest for RDLS-
RDgDb, whereas for others, it is about three (for RDLS-
RCT and RDLS-LDgEb) or four (RDLS-YCoCg-R) times
greater.

Journal of Electronic Imaging 043025-7 Jul∕Aug 2016 • Vol. 25(4)

Starosolski: Application of reversible denoising and lifting steps with step skipping to color space transforms. . .



Assuming the perfect bitrate estimation, the step-by-step
regime, and that for denoising of Cn of a specific pixel only
Cn of this and of other pixels are used, the results obtained
after a single iteration of step B of the heuristic are optimal in
the case of the RDLS-RDgDb transform. In this transform, a
component modified in a given step is modified based on
only one other component and is not used in the next steps.
Therefore, the filter selected for this step affects the bitrate of
the component modified by it only.

The selected filters have to be passed to the decoder
along with the compressed data. In this research, we initially
used up to 13 filters (described in Sec. 2.5) and from two
to four filters must be selected for an image depending on
the applied transform. The cost of encoding the filter selec-
tion using a fixed-length binary code is at most 20 bits per
image—it is negligible.

2.7 Estimation of Component Compression Effects
As the primary estimator of the image component compres-
sion effects, denoted H0_pMED, we used the memoryless
entropy of the component residual image, i.e., of a single-
component image consisting of prediction errors calculated
as differences between actual and predicted component pix-
els. The bitrate of the three-component image was estimated
as a sum of the estimated bitrates of its three components.
The memoryless entropy of a single-component image
(a residual image in this case) is H0 ¼ −

PN−1
i¼0 pi log2 pi,

where N is the alphabet size and pi is the probability of
occurrence of pixel value i in the image. For prediction,
we used the nonlinear edge-detecting predictor MED
[Eq. (13)],9 which originates from the median adaptive pre-
diction coding of video data:13,14

EQ-TARGET;temp:intralink-;e013;63;395MEDðC½a;b�
n Þ ¼

8><
>:

minðC½a−1;b�
n ; C½a;b−1�

n Þ if C½a−1;b−1�
n ≥ maxðC½a−1;b�

n ; C½a;b−1�
n Þ

maxðC½a−1;b�
n ; C½a;b−1�

n Þ if C½a−1;b−1�
n ≤ minðC½a−1;b�

n ; C½a;b−1�
n Þ

C½a−1;b�
n þ C½a;b−1�

n − C½a−1;b−1�
n otherwise

; (13)

where C½a;b�
n is the component Cn of the image pixel in

column a and row b and MED ðC½a;b�
n Þ is its predicted

value. For the top image row, we used Ca−1;b
n as a predic-

tor; for the leftmost column, we used Ca;b−1
n ; and 0 was

a predictor for the top left image pixel.
We also examined limited-complexity estimation meth-

ods, where for each transformed image component, instead
of entropy of prediction errors of all the pixels, we used:

• the memoryless entropy of 10,000 pseudorandomly
selected pixels’ component prediction errors, this esti-
mator is denoted H0_pMED(10k:1), and

• the memoryless entropy of 10,000 component pre-
diction errors from 100 pseudorandomly selected
nonoverlapping 10 × 10 pixels rectangles, denoted
H0_pMED(10k:100).

For the selection of pixels in H0_pMED(10k:1) and H0_
pMED(10k:100), we reinitialized the pseudorandom number
generator each time the image component bitrate was
estimated. Thus, from all components of an image, in all
steps and iterations of the heuristic, the same pixels were
used for estimation.

H0_pMED(10k:1) was found by Strutz to be a sufficient
estimator for a close to the optimum color space transform
selection.5 For typical image sizes, compared to using for all
image pixels, a simpler predictor or to computing the entropy
of the image component instead of the component prediction
error, it allows a greater reduction of the computational time
complexity of the compression effects estimation for the lift-
ing-based transforms.15 Computing H0_pMED(10k:1) for
the three-component image transformed with non-RDLS
transform is of low complexity; in order to obtain 30,000
component prediction errors (10,000 in each component),
we have to transform 40,000 pixels and compute the
MED predictor 30,000 times, whereas the smallest image
used in this study contained 262,144 pixels. In the case of
the RDLS-modified transform, however, there appears the
large extra cost of denoising operations necessary to obtain
the prediction errors of individual pixels; denoising opera-
tions are the most important factor of the complexity of
the heuristic employing H0_pMED(10k:1).

For example, 72 pixel components must be denoised
in order to obtain the prediction errors of the single pixel
components computed by RDLS-YCoCg-R, which was
calculated as follows. We assumed that neighborhoods of

Table 2 Complexities of the heuristic and the compression exploiting transforms.

Transform Heuristic Compression (RDLS transform) Compression (non-RDLS transform)

RDLS-RCT 6hðf − 1Þðce þ cl þ cd Þ þ 3ce þ 3cl 3cc þ 3cl þ 4cd 3cc þ 3cl

RDLS-YCoCg-R 8hðf − 1Þðce þ cl þ cd Þ þ 3ce þ 3cl 3cc þ 3cl þ 4cd 3cc þ 3cl

RDLS-RDgDb 2hðf − 1Þðce þ cl þ cd Þ þ 3ce þ 2cl 3cc þ 2cl þ 2cd 3cc þ 2cl

RDLS-LDgEb 6hðf − 1Þðce þ cl þ cd Þ þ 3ce þ 3cl 3cc þ 3cl þ 3cd 3cc þ 3cl

Note: cd , cost of denoising of an image component; cl , cost of modifying an image component by applying a lifting step to all image pixels; ce , cost
of estimating the bitrate for the component; cc , cost of actual compression of a component; f , number of denoising filters; h, number of iterations of
step B of the heuristic.
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individual pixels whose prediction errors are selected for
bitrate estimation are not overlapping or an accidental over-
lapping is not exploited to reduce the estimation cost and
that we use denoising filters with 3 × 3 pixels windows. To
obtain the MED prediction error of a transformed C2 com-
ponent of a pixel, which is computed in step 3 of RDLS-
YCoCg-R [Eq. (10)], we need C2 of this pixel and of its
neighbors (upper, left-hand, and upper-left)—a 2 × 2 pixels
rectangle area; these pixels are computed in step 3 based on
a 2 × 2 pixels rectangle of Cd

3 components (requiring four
denoising operations). To obtain a 2 × 2 pixels rectangle
of Cd

3 components, we use a 4 × 4 pixels rectangle of trans-
formed C3 components that are computed in step 2. In step 2,
to obtain a 4 × 4 pixels rectangle of C3, we use 4 × 4 pixels
rectangles of Cd

1 and C
d
2 (32 denoisings); C2 in this step is an

untransformed G primary color component, but C1 is com-
puted in step 1. To obtain a 4 × 4 pixels rectangle of Cd

1 , we
need a 6 × 6 pixels rectangle of transformed C1, that, in step
1, is computed using a 6 × 6 pixels rectangle of Cd

3 (36
denoisings). While computing the C2 prediction error, we
obtained data sufficient for computing prediction errors of
the remaining components. All in all, we have to perform
the pixel’s component denoising 72 times per pixel and
720,000 times to get the H0_pMED(10k:1) estimation of
the image compression ratio.

For RDLS-YCoCg-R and the smallest images used in
this research, the number of denoising operations required
by H0_pMED(10k:1) is not much smaller compared to
H0_pMED, which requires four denoising operations per
image pixel. To reduce the estimation cost, we proposed
the H0_pMED(10k:100) estimator that requires 68,400
denoising operations to obtain the bitrate estimation of
an RDLS-YCoCg-R transformed image (assuming the
3 × 3 pixels window of denoising filter and that the neigh-
borhoods of the 10 × 10 pixels rectangles selected for bitrate
estimation are not overlapping or that an accidental overlap-
ping is not exploited to reduce the estimation cost).

As already noted, the heuristic does not require perform-
ing all of the transform steps after each filter change and not
all components’ bitrates must be estimated each time an
overall image bitrate is estimated, which allows certain opti-
mizations. Taking them into account, we present in Table 3
the cost of the heuristic for various RDLS-modified trans-
forms, expressed as a number of denoisings of a component
of a single pixel. The cost is calculated assuming that in step
A of the heuristic, no actual denoising is used, but each time

we estimate the bitrate in step B, we do it as if all filters used
a 3 × 3 pixels window. In the cases when the heuristic cost
for H0_pMED(10k:1) is the highest (i.e., for RDLS-YCoCg-
R and RDLS-LDgEb), employing H0_pMED(10k:100)
decreases it over eight times.

We also note that the filtering operation may be opti-
mized. For example, computing the smoothing filter with
a 3 × 3 pixels window and center point weight 1 for an indi-
vidual pixel [which is needed for the H0_pMED(10k:1)
estimator] requires nine arithmetic operations; for pixels
inside a contiguous rectangular area [for H0_pMED and
H0_pMED(10k:100)], the cost of this filter drops to five
arithmetic operations. Having computed the smoothing filter
with a certain center point weight, computing it for some
other weight requires just three arithmetic operations.

2.8 Test Data, Implementations, and Procedure
The evaluation was performed for the sets of 8-bit RGB test
images listed below.

• Waterloo—a set of eight color images from the
University of Waterloo, image sizes range from 512 ×
512 to 1118 × 1105 pixels;16

• Kodak—a set of 23 images released by the Kodak cor-
poration, all images are of size 768 × 512 pixels;17

• EPFL—a set of 10 images used at the École polytech-
nique fédérale de Lausanne for subjective JPEG XR
quality evaluation,18 images sizes: 1280 × 1506 to
1280 × 1600 pixels;19

• A1—a set of three large images scanned from a 36-mm
high quality diapositive film, image sizes range from
7376 × 4832 to 7424 × 4864 pixels;20

• A2—a set of 17 images acquired from 36 mm
negatives, image sizes are from 1620 × 1128 to
1740 × 1164 pixels;20

• A3—a set of 116 images acquired using a camera
equipped with a Bayer-pattern RGGB color filter
array, all images are of size 1992 × 1493 pixels;20

• A1-red.3, A2-red.3, and A3-red.3—sets of reduced
size (3×) images from sets A1, A2, and A3,
respectively.

The sets A1, A2, and A3 contain unprocessed photo-
graphic images in optical resolutions of acquisition devices,
or (A3) as close to such resolution as possible without

Table 3 The cost of the heuristic for various bitrate estimation methods and the cost of the actual RDLS transforms, expressed in number of
denoising operations of a pixel’s component. The heuristic complexity is reported for denoising filters using up to 3 × 3 pixels windows.

Transform

Heuristic cost

Transform costH0_pMED H0_pMED(10k:1) H0_pMED(10k:100)

RDLS-RCT 6tðf − 1Þh 480000ðf − 1Þh 82200ðf − 1Þh 4 t

RDLS-YCoCg-R 8tðf − 1Þh 1000000ðf − 1Þh 121600ðf − 1Þh 4 t

RDLS-RDgDb 2tðf − 1Þh 80000ðf − 1Þh 24200ðf − 1Þh 2 t

RDLS-LDgEb 6tðf − 1Þh 800000ðf − 1Þh 92600ðf − 1Þh 3 t

Note: t , number of pixels in the image; f , number of denoising filters; h, number of iterations of step B of the heuristic.

Journal of Electronic Imaging 043025-9 Jul∕Aug 2016 • Vol. 25(4)

Starosolski: Application of reversible denoising and lifting steps with step skipping to color space transforms. . .



interpolation of all components. Except for Waterloo, all
images may be characterized as continuous-tone photo-
graphic. The most widely known Waterloo set contains
both photographic and artificial images; some of them are
dithered, sharpened, computer-generated, composed of
others, or have globally or locally highly sparse histograms
of intensity levels.21,22 The same image sets were used for
experiments in Ref. 3, where their more detailed character-
istics may be found.

RDLS effects on bitrates were analyzed for three signifi-
cantly different standard image compression algorithms in
the lossless mode: the predictive JPEG-LS,6,9 the DWT-
based JPEG 2000,7,23 and the JPEG XR employing the dis-
crete cosine transform.8,24,25 We used the Signal Processing
and Multimedia Group, Univ. of British Columbia JPEG-LS
implementation, version 2.2,26 the JasPer implementation of
JPEG 2000 by M. Adams, version 1.900,27,28 and the JPEG
XR reference software.29

All algorithms were used to compress individual trans-
formed components, one component at a time. Due to
requirements of employed file formats and implementations,
all components were stored using non-negative integers.
Components transformed with the lifting transforms were
stored using the nominal component bit-depths. See
Table 1 for nominal depths of components of all the exam-
ined, lifting-based and RDLS-modified transforms. Since in
initial tests, the greater nominal depth of the RDLS-modified
transform was rarely needed, for these transforms, we used
the bit-depth of the lifting counterpart or, only if pixels of an
actual transformed image component exceeded this depth,
we increased the component bit-depth up to the nominal
depth of the RDLS-modified transform component. The
implementation used for applying transforms and the heuris-
tic is freely available.30 The compression ratio or bitrate r,
expressed in bits per pixel (bpp), is calculated based on
the total size in bytes of the individually and independently
compressed three components of the transformed image,
including compressed file format headers; smaller r denotes
better compression.

3 Results and Discussion

3.1 Reversible Denoising and Lifting Steps Effects
on Color Space Transforms

In Fig. 3, we present the RDLS effects on the bitrates of
individual RDLS-RCT transformed components and on
the overall image bitrates of each of the examined trans-
forms. Bitrates for non-RDLS and RDLS-modified trans-
forms, obtained using denoising filters selected based on
H0_pMED estimator in three iterations of step B of the heu-
ristic, were averaged for each set. For easier comparison of
RDLS effects, in figures we show the bitrate changes due to
RDLS expressed as the percentages of the bitrates obtained
with a non-RDLS transform, whereas the absolute bitrates of
selected variants of transforms are presented in tables. We
also report an average for all sets, however, calculated
using average of set-averages, not the direct average of all
images. The A3 and A3-red.3x sets contain many more
images (116 in each) than all other sets (81 images); there-
fore, a simple average would be biased toward the A3 and
A3-red.3x.

Figures 3(a)–3(c) show that for RDLS-RCT, the overall
bitrate improvement due to RDLS is, in many cases, a result

of improved bitrates of chrominance components and
worsened bitrates of luminance. The above is also true for
RDLS-YCoCg-R and RDLS-LDgEb (not shown in Fig. 3).
The overall three-component improvements for the RDLS-
RCT transform [Fig. 3(d)] result from both employing the
actual denoising filters [Fig. 3(e)] and the step skipping
by applying the null filter to RDLS [Fig. 3(f)]. Looking at
the RDLS effects for other transforms [Fig. 3(g)–3(i)], we
see that the greatest bitrate improvements of over 2% on
average for all sets were obtained for RDLS-RDgDb. For
this transform, the improvements for chrominance compo-
nents are not accompanied by a worsened bitrate of the
third component (i.e., the unmodified primary color R).
Generally, the bitrate improvements due to application of
RDLS to a color space transform may significantly differ
for different sets and for different transforms in the case
of a specific set, but are similar for different compression
algorithms. Similarity among compression algorithms is
stronger when we do not use the null filter. RDLS effects
are less pronounced for the JPEG XR algorithm, especially
in the case of Waterloo images.

We examined the RDLS effects on color space transforms
using several compression algorithms and test image sets.
For brevity, we focus on results of the most popular JPEG
2000 algorithm, averaged for all sets. In Table 4, for various
transform variants, we report both the bitrates obtained by
the RDLS-modified transforms and the bitrate improvements
with respect to the non-RDLS transform. To provide a single
measure allowing comparisons of variants, we also report the
RDLS bitrate change averaged for all the transforms (column
labeled “All”). Employing only the transform step skipping,
implemented as a special case of the RDLS [i.e., using
a null filter and not using smoothing filters, row “RDLS
(no smoothing)”], allows bitrate improvements comparable
to those obtained by RDLS with the typical denoising and
without the step skipping [row “RDLS (no null)”]—better
for RCT and YCoCg-R, worse for RDgDb and LDgEb.
Step skipping results are better than results obtained by sim-
ply deciding, based on the estimated bitrate, whether to per-
form unmodified transform or to skip it [row “min(RGB,
non-RDLS)”], although for YCoCg-R, the simpler method
is better. Finally, employing both the step skipping and typ-
ical denoising filters allows significantly larger RDLS bitrate
improvements, than those obtained when using only the typ-
ical denoising filters (compare the two last rows in Table 4).
Compared to the filter selection heuristic from Ref. 10 (row
“RDLS (Ref. 10, no null)”), for the same filter set, the heu-
ristic we propose in this study results in greater bitrate
improvements [row “RDLS (no null)”] and it is of signifi-
cantly lower complexity in the case of RCT and YCoCg-R.

The average level of improvement of over 1% that we
obtained for RCT, YCoCg-R, and LDgEb by using all the
denoising filters described in Sec. 2.5 selected based on
the H0_pMED estimator in three iterations of the heuristic
step B is not negligible as for lossless image compression.
However, the heuristic cost may be too high for practical
applications. Significantly larger improvements were
obtained for specific sets and in the case of RDgDb. In
the next section, we reduce the heuristic cost without sacri-
ficing most of the bitrate improvements.

For the above variant, we checked the actual bit-depth
expansion of the transformed components. For each
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Table 4 Comparison of the RDLS and non-RDLS transform variants. Unless indicated otherwise, denoising filters were selected in three iterations
of heuristic step B from all filters described in Sec. 2.5; H0_pMED was employed for the RDLS filter selection and in min(RGB, non-RDLS)
non-RDLS variant for choosing between performing unmodified transform or skipping it; RDLS (Ref. 10, no null), filters selected as in Ref. 10.

Transform variant

RCT YCoCg-R RDgDb LDgEb All

r Δr r Δr r Δr r Δr r Δr

non-RDLS transform 11.4374 0.00% 11.4977 0.00% 11.6173 0.00% 11.5039 0.00% 11.5141 0.00%

min(RGB, non-RDLS) 11.3890 −0.42% 11.3921 −0.92% 11.4460 −1.47% 11.4637 −0.35% 11.4227 −0.79%

RDLS (no smoothing) 11.3452 −0.81% 11.4174 −0.70% 11.4067 −1.81% 11.4113 −0.81% 11.3951 −1.03%

RDLS (Ref. 10, no null) 11.3704 −0.59% 11.5184 0.18% 11.3333 −2.44% 11.4640 −0.35% 11.4215 −0.80%

RDLS (no null) 11.3568 −0.71% 11.4345 −0.55% 11.3333 −2.44% 11.4000 −0.90% 11.3812 −1.15%

RDLS 11.3004 −1.20% 11.3635 −1.17% 11.2995 −2.74% 11.3531 −1.31% 11.3291 −1.61%

Note: r—JPEG 2000 bitrate, average for all sets (bpp); Δr—bitrate change with respect to the non-RDLS transform.

Fig. 3 (a–c) Average JPEG 2000 bitrate changes due to RDLS, for the individual RDLS-RCT compo-
nents, and (d–i) the overall for examined transforms, obtained using denoising filters described in
Sec. 2.5 (all, unless indicated otherwise) selected in three iterations of step B of the heuristic based
on bitrates estimated with H0_pMED.
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transform that may result in a component bit depth greater
than the non-RDLS counterpart (RDLS-RCT, RDLS-
YCoCg-R, and RDLS-LDgEb), such expansion happened
for about two thirds of the images in the case of the lumi-
nance component, which each time was expanded by 1 bit.

3.2 Reducing the Complexity of the Filter Selection
As shown in Sec. 2.6, the heuristic complexity is proportional
to the number of iterations of its step B and to the number of
denoising filters. Therefore, we investigated decreasing the
iterations number and smaller filter sets. For RDLS-RDgDb,
a single iteration of heuristic step B results in the optimal
filter selection; bitrate improvements due to RDLS obtained
for other transforms in 1, 2, and 3 iterations are presented in
Fig. 4. In practice, two iterations seem sufficient; the average
bitrates for all sets, obtained in two and three iterations, do
not differ noticeably and for individual sets only in three
cases the bitrate differs by more than 0.1 percentage points
(for the A1.red.3 set in the case of RDLS-RCT and RDLS-
YCoCg-R and for A1 in the case of the former transform).
On the other hand, by using only one iteration, as compared
to two iterations, average bitrates for all sets get over 0.1
percentage point worse for RDLS-YCoCg-R and RDLS-
LDgEb, whereas for individual sets, one iteration may be
worse by over 1 percentage point. Thus, remembering that
in the case of RDLS-RDgDb, the single iteration is optimal,

we use two iterations as a starting point for testing other
options of the complexity reduction.

In Table 5, we report the JPEG 2000 bitrate changes for
a couple of reduced complexity filter selection variants. As
previously, we also report the RDLS bitrate change averaged
for all the transforms in the column labeled “All.” Among
others, we examined reducing the number of denoising
filters by rejecting of some of the smoothing filters. By using
filters with center point weights being even powers of 2 in
range from 1 to 256 (row labeled “2 iterations, 7 filters,
H0_pMED”), instead of integer powers in range from 1 to
1024, we decrease the complexity of the heuristic about
two times (as the filter number drops from 13 to 7) at the
acceptable cost of a smaller compression ratio improvement
by below 0.05 percentage points on average for all trans-
forms. Further reducing the set by using only three smooth-
ing filters (row “2 iterations, 5 filters, H0_pMED”) results in
a smaller complexity decrease and a greater cost. Therefore,
for the former variant, we applied the simplified compression
effect estimation methods.

The differences between effects of H0_pMED and
H0_pMED(10k:1) estimators are negligible. On average
for all transforms, they are below 0.005 percentage points.
Interestingly, the case of the RDLS-LDgEb transform the
H0_pMED(10k:1) estimator results in a better average
bitrate for all sets than H0_pMED (better by 0.02 percentage
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Fig. 4 Average JPEG 2000 bitrate changes due to RDLS obtained using denoising filters selected in 1, 2,
and 3 iterations of the heuristic step B out of all filters described in Sec. 2.5. (a) RDLS-RCT, (b) RDLS-
YCoCg-R, and (c) RDLS-LDgEb.

Table 5 Reduced complexity RDLS filter selection variants. The JPEG 2000 bitrate changes with respect to non-RDLS transforms are reported.
Denoising filters were selected from all or some of the filters described in Sec. 2.5 (13—all; 7—none, null, and smoothing with center point weights
1, 4, 16, 64, and 256; 5—none, null, and smoothing with center point weights 1, 16, and 256).

Filter selection variant RDLS-RCT RDLS-YCoCg-R RDLS-RDgDb RDLS-LDgEb All

3 iterations, 13 filters, H0_pMED −1.20% −1.17% −2.74% −1.31% −1.61%

2 iterations, 13 filters, H0_pMED −1.17% −1.13% −2.74% −1.30% −1.59%

2 iterations, 7 filters, H0_pMED −1.13% −1.11% −2.68% −1.27% −1.55%

2 iterations, 5 filters, H0_pMED −1.08% −0.98% −2.57% −1.19% −1.46%

2 iterations, 7 filters, H0_pMED(10k:1) −1.13% −1.10% −2.68% −1.29% −1.55%

2 iterations, 7 filters, H0_pMED(10k:100) −1.02% −1.09% −2.65% −1.26% −1.51%
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points). Our results show that the close to the optimum per-
formance of H0_pMED(10k:1), first observed by Strutz for
lifting color space transforms, is a more general property of
this estimator. Note that by the optimum performance, we
mean estimation effects obtained using H0_pMED; in the
next section, we check, among others, how good H0_pMED
estimation is compared to the actual bitrate of the actual
compression algorithm.

The H0_pMED(10k:100) estimator we proposed in order
to lower the bitrate estimation cost results in bitrates little
worse than H0_pMED(10k:1); on average, for all trans-
forms, it is by 0.04 percentage points worse, for the
RDLS-RCT (the worst case) by 0.11 percentage points.
The H0_pMED(10k:100) appears to be the most interesting
general purpose estimator from a practical standpoint—it
allows fast heuristic filter selection that results in bitrates
that are close to the bitrates obtained using the most complex
variant examined so far (using H0_pMED, three iterations,
and all filters described in Sec. 2.5). Compared to the latter,
we get bitrates worse by 0.1 percentage points on average for
all transforms and sets in the case of the JPEG 2000 coding.

We do not report the actual filter search time of the heu-
ristic or the time of transforming the image with RDLS-
modified transforms because our research implementation
was not optimized; among others, we did not exploit the
possibility of partial estimation of the image bitrate after
changing a single filter by the heuristic and each time
before outputting a transformed image, the transform revers-
ibility was verified by performing an inverse transform.
However, knowing the parameters of the heuristic, its cost
may be compared to the cost of the transform it selects filter

for. For the smallest images we used (containing 262,144 pix-
els), with respect to the number of denoising operations (that
is to the most expensive part of the heuristic). In Table 6, we
report the transform cost and the heuristic cost. The heuristic
cost is reported for the H0_pMED(10k:100)-based selection
of filters done in two iterations of step B from the set of
seven filters using up to 3 × 3 pixels windows. The heuristic
cost is generally close to the transform cost. It is by 6%
lower in the case of RDLS-RCT, for RDLS-YCoCg-R
and RDLS-LDgEb, it is by about 40% higher, and for
RDLS-RDgDb, it is two times lower. Note that for the latter
transform, we may use only one iteration as it will not affect
the filter selection and further decrease the cost two times.
For this transform also, the H0_pMED(10k:1) estimator is
practically acceptable, as for one iteration of step B, it requires
480,000 denoisings, i.e., 92% of the number of denoisings
required by the RDLS-RDgDb transform. For larger images,
the cost of the heuristic exploiting H0_pMED(10k:100) or
H0_pMED(10k:1) remains constant, whereas the transform
cost grows in direct proportion to the number of pixels in
the image.

To verify how the modifications we selected based on the
RDLS effects on JPEG 2000 coding affect other algorithms,
in Table 7, we report bitrates and bitrate changes obtained
for different compression algorithms. Simplifying the estima-
tionmethodand reducing the sizeof the filter set and thenumber
of iterations did not change the general way RDLS affects
bitrates in the case of different algorithms and color space
transforms. RDLS effects for JPEG-LS and JPEG 2000 are
close to each other, whereas for the JPEG XR algorithm, the
improvements are smaller. The bitrate improvement due to
RDLS is the greatest in the case of RDgDb (2.15% for JPEG
XR, 2.65% or more for JPEG-LS and JPEG 2000), whereas
the bitrates of more complex transforms were improved by
over 1% in the case of JPEG-LS and JPEG 2000, and by
over 0.5% for JPEG XR. In Fig. 5, the bitrate changes for indi-
vidual sets are presented and compared to a variant employing
H0_pMED estimation, three iterations and a larger set of
denoising filters. The greatest differences in effects for these
variants may be noticed for RDLS-RCT and RDLS-YCoCg-
R in the case of some sets only. In a single case of the former
transform forWaterloo images and the JPEGXRalgorithm, the
simplified filter selection results in about 1.2% worse bitrates
than the non-RDLS transform; for this algorithm, images, and
transform, the more complex filter selection variant resulted in
bitrate worsening (by below 0.1%). For RDLS-RDgDb and
RDLS-LDgEb, the results of the simplified filter selection

Table 6 The cost of the heuristic for the H0_pMED(10k:100) estima-
tor and the cost of the actual RDLS transforms, calculated for the
smallest images (262144 pixels) and expressed in number of pixel
component denoisings. Denoising filters were selected in 2 iterations
of the heuristic step B out of the set of 7 filters using up to 3 × 3 pixels
windows.

Transform Heuristic cost Transform cost

RDLS-RCT 986,400 1,048,576

RDLS-YCoCg-R 1,459,200 1,048,576

RDLS-RDgDb 288,240 524,288

RDLS-LDgEb 1,111,200 786,432

Table 7 Effects of the H0_pMED(10k:100)-based filter selection variant on JPEG-LS, JPEG 2000, and JPEG XR bitrates. Reported are: the
bitrates for the RDLS-modified transforms (r ) and the bitrate changes with respect to the non-RDLS transform (Δr ), average for all sets and
all sets and transforms (All). The denoising filters were selected in two iterations of the heuristic step B out of: none, null, and smoothing filters
with center point weights 1, 4, 16, 64, and 256.

Algorithm

RDLS-RCT RDLS-YCoCg-R RDLS-RDgDb RDLS-LDgEb All

r Δr r Δr r Δr r Δr r Δr

JPEG-LS 10.8840 −1.13% 10.9616 −1.10% 10.8621 −2.82% 10.9075 −1.35% 10.9038 −1.60%

JPEG 2000 11.3208 −1.02% 11.3726 −1.09% 11.3089 −2.65% 11.3594 −1.26% 11.3404 −1.51%

JPEG XR 12.4776 −0.51% 12.5078 −0.66% 12.4494 −2.15% 12.5056 −0.83% 12.4851 −1.04%
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for individual sets are similarly close to effects of the more
complex variant as on average for all sets.

Looking at the absolute bitrates (Table 7), we notice that
differences between compression algorithms for a specific
transform are much larger than differences between trans-
forms for a given algorithm. JPEG-LS is consistently the
best, JPEG XR the worst. RDLS-RDgDb obtains the best
average bitrates for each algorithm which is an effect of
the greatest bitrate improvement due to RDLS. In the case
of unmodified transforms (recall Table 4), on average for
all sets we used in this research, RCT was the best. The
bitrate improvements that we attained at a reduced cost
appear worthwhile from a practical standpoint. For example,
for the lossless JPEG 2000, the bitrates were improved
on average for all sets and all transforms by about 1.5%.
This improvement is not small if we consider that the best
unmodified transform we evaluated (RCT) obtained an
average bitrate better than the worst one (RDgDb) by about
1.2% only.

3.3 Additional Experiments
We started experiments using the H0_pMED estimator that
was found effective for a non-RDLS color space transform
selection5,15 as well as for the selection of denoising filters
for some of the RDLS-modified color space transforms
investigated in this study.3,10 We found that by using
H0_pMED(10k:100), the estimation complexity may be sig-
nificantly reduced without sacrificing the RDLS bitrate
improvement. But how far from perfect is the H0_pMED
or H0_pMED(10k:100) estimation in the case of the inves-
tigated RDLS-modified transforms? To check it, we com-
pared the estimation effects to using in the filter selection
heuristic the actual image compression algorithm instead
of estimating its results (see top three rows in Table 8).
The estimation effects are very good from a practical stand-
point. Using the actual compressor results in bitrate improve-
ments better than estimation-based by less than 0.1 percentage
point on average for all transforms; the greatest difference
is for RDLS-RCT, where the H0_pMED(10k:100)-based
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Fig. 5 Average JPEG-LS, JPEG 2000, and JPEG XR bitrate changes due to RDLS with respect to the
non-RDLS transform. The denoising filters were selected using the H0_pMED(10k:100) estimator in two
iterations of the heuristic step B out of: none, null, and smoothing filters with center point weights 1, 4, 16,
64, and 256, or using H0_pMED in three iterations of the heuristic step B out of all filters described in
Sec. 2.5. (a) RDLS-RCT, (b) RDLS-YCoCg-R, (c) RDLS-RDgDb, and (d) RDLS-LDgEb.
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bitrate is by 0.2 percentage point worse. Interestingly, for
RDLS-YCoCg-R, the use of actual compressor results in
bitrates that are worse than estimation-based. Results of
the heuristic may not be optimal even when we use the per-
fect estimation.

The heuristic finds optimal filters for the RDLS-RDgDb
transform and for this transform, we obtained the greatest
bitrate improvement with respect to the non-RDLS trans-
form. Should the RDLS effects on RDgDb be attributed
to the imperfect heuristic filter selection in the case of
more complex transforms, or is RDLS the most effective
for the simplest transform also when for all transforms we
employ optimal filters? We performed the exhaustive filter
search and selected for each image and transform the optimal
filters out of the set of seven denoising filters. For seven
filters, such a search is impractical but realizable, as for
the most complex transforms, RDLS-RCT and RDLS-
YCoCg-R, it involves testing 2401 filter combinations per
image. In Table 8 (row labeled “exhaustive,. . .”) we report
the effects of the RDLS-modified transforms for the optimal
filter selection based on the actual JPEG 2000 compression
bitrate. Let us compare the effects of the heuristic when
employing two iterations of step B and actual compression
instead of bitrate estimation, to optimal filter selection. The
effects of the heuristic significantly vary for different trans-
forms. Indeed, for RDLS-RDgDb, the heuristic filter selec-
tion is optimal. For the RDLS-RCT and RDLS-LDgEb, the
heuristic is by 0.1 and 0.04 percentage points, respectively,
worse than the optimum. However, for RDLS-YCoCg-R, the
heuristic result is worse by about 1/4 than the bitrate
improvement obtainable for this transform with optimal filter
selection. A heuristic based on a different filter search strat-
egy might be better in the case of RDLS-YCoCg-R. Also in
the case of the optimal filter selection for all transforms, the
largest improvement due to RDLS is for RDgDb—also for
the optimal filter selection, RDLS is the most effective
for RDgDb.

RDLS recently was found effective for a transform that is
much more complex then a color space transform and
involves more interdependent steps, i.e., for the multilevel
2-D DWT transform in lossless JPEG 2000 compression.11

The bitrate improvements exceeding 13% were observed for
grayscale images of nonphotographic content when the non-
linear denoising filters were applied. We checked if those
filters could be used to further improve the effects of the
RDLS-modified color space transforms. We tested all the
additional filters from Ref. 11 that were not already used
in this study:

• Smoothing filters, with 5 × 5 pixels windows, employ-
ing the same weights of the window center point, as
before (11 filters).

• Median—two median filters (3 × 3 and 5 × 5 pixels
windows), the median 5 × 5 pixels filter was the
strongest (the most harsh) filter used in Ref. 11 and
it was found the most effective in the bitrate
improvement.

• RCRS-1—two filters (3 × 3 and 5 × 5 pixels win-
dows), which belong to a general family of rank-
conditioned rank selection (RCRS) filters.31 RCRS-1
filters replace a sample with the window median if
the sample is greater than or smaller than all other sam-
ples in the window.

• RCRS-2—two filters (3 × 3 and 5 × 5 pixelswindows)
that replace a sample with the second greatest window
sample value if the sample is greater than the median
and the greatest; or, if it is smaller than the median and
the smallest, they replace a sample with the second
smallest window sample value.

Since only the Waterloo set contains nonphotographic
images, in Table 9, we report the effects of extending the
filter set for RDLS-modified color space transforms with
the above filters for both the Waterloo set and average for
all the sets. Unfortunately, such a naive approach did not
result in practically useful bitrate improvements, especially
if we consider the increased complexity of selecting the
filters from the set of 30 denoising filters containing filters
with larger windows.

RDLS improvements differ for various sets, thus it could
be expected that by finding filters better matching the actual
image characteristics, greater bitrate improvements due to
RDLS could be obtained. Instead of basing on an estimated
component bitrate, the noise parameters might be estimated
and the denoising filters might be selected based directly on
the analysis of the component to be denoised. For a specific
acquisition device, the device model may be constructed that
allows determining the denoising filters based directly on the
acquisition process parameters (e.g., see Refs. 32 and 33).
The former approach has an additional advantage. The com-
ponent that is available as the function f argument for filters
selection in RDLS in forward transform [Eq. (6)], is also
available for inverse RDLS in inverse transform [Eq. (7)].
Signaling the filter selection (or parameters of a more sophis-
ticated filter) to the decoder might be avoided at the cost of
increased decoder complexity, as the same filters, or filter

Table 8 RDLS effects for additional filter selection variants. Reported are the average JPEG 2000 bitrate improvements with respect to the non-
RDLS transform. The filter set contained the following seven filters: none, null, and smoothing with center point weights 1, 4, 16, 64, and 256.
exhaustive, using exhaustive filter search instead of the heuristic; r JPEG 2000, using for filter selection the actual JPEG 2000 bitrate instead of
the estimated one.

Filter selection variant RDLS-RCT RDLS-YCoCg-R RDLS-RDgDb RDLS-LDgEb All

2 iterations, 7 filters, H0_pMED(10k:100) −1.02% −1.09% −2.65% −1.26% −1.51%

2 iterations, 7 filters, H0_pMED −1.13% −1.11% −2.68% −1.27% −1.55%

2 iterations, 7 filters, r JPEG 2000 −1.22% −1.06% −2.72% −1.35% −1.59%

exhaustive, 7 filters, r JPEG 2000 −1.32% −1.48% −2.72% −1.39% −1.73%
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parameters, can be found by the decoder based on analysis of
the same data. On the other hand, in Ref. 10, we used a heu-
ristic that performed an exhaustive search of filters in a given
step based on the estimated bitrate of the component modi-
fied by this step only and in the case of RDLS-RCT and
RDLS-LDgEb, it resulted in significant worsening of bitrates
of some images. Therefore, it may be expected that selecting
a filter for the data to be denoised based on this data may be
effective for the simplest RDLS-RDgDb transform and not
necessarily for others, which is an interesting topic that we
leave for future research.

4 Summary
In this study, we examined the application of RDLS to the
RCT, YCoCg-R, RDgDb, and LDgEb color space trans-
forms; the RDLS-modified transforms are named RDLS-
RCT, RDLS-YCoCg-R, RDLS-RDgDb, and RDLS-LDgEb,
respectively. For the image-adaptive denoising filter selec-
tion, we proposed a simple and greedy heuristic consisting
of steps A and B, where step B may be performed for a given
number of iterations. In the heuristic, we used compression
algorithm independent estimators of the filter selection
effects on the transformed image bitrate. Initially, we used
an estimator based on the memoryless entropy of the trans-
formed image MED prediction errors of all pixels of each
component (H0_pMED). We also employed a simplified,
limited computational time complexity estimator that uses
10,000 pseudorandomly selected pixels [H0_pMED(10k:1)].
To further decrease the complexity of bitrate estimation, we
proposed the H0_pMED(10k:100) estimator that also uses
10,000 pixels, but due to grouping them, in the case of
the most complex RDLS-modified color space transforms,
its complexity is over eight times lower compared to the
H0_pMED(10k:1). Beside typical denoising filters (11 linear
smoothing filters with 3 × 3 pixels windows) and the none
filter, that may turn RDLS into the regular lifting step, we
proposed the special filter case named the null filter. For
the null filter, the denoised sample equals 0, which may
result in the step skipping. In the experiments, we used sev-
eral test image sets and significantly different standard image
compression algorithms in the lossless mode: JPEG-LS,
JPEG 2000, and JPEG XR.

We found that generally, the RDLS effects significantly
differ for different image sets and for different transforms
in the case of a specific set. They are similar for different
compression algorithms, but they are less pronounced in
the case of the JPEG XR algorithm. The largest average
bitrate improvements were obtained for the simplest trans-
form RDLS-RDgDb and improvements for others were

roughly two times smaller. The overall bitrate improvements
due to RDLS result from employing of both the actual
denoising filters and the null filter. Although a certain
level of bitrate improvement might be obtained by simply
checking the estimated effects of skipping the entire color
space transform, greater improvements were obtained by
employing the null filter that may result in a partial transform
skipping. The initial number of smoothing filters could be
reduced without sacrificing the bitrate improvements.
Assuming the perfect bitrate estimation, due to properties
of RDLS-RDgDb, the proposed heuristic in one iteration of
step B finds optimal filters for this transform. For other trans-
forms, performing two iterations of step B is justified as using
more iterations does not improve RDLS effects noticeably.

The most expensive element of the computational time
complexity of the heuristic is the denoising of pixel compo-
nents. This cost may be limited and reduced by employing
simplified compression effect estimators. When using the
H0_pMED(10k:100) estimator, the heuristic cost (for two
iterations of its step B and seven denoising filters) gets
close to the transform cost for RDLS-RCT, RDLS-YCoCg-
R, and RDLS-LDgEb transforms. The heuristic cost for
RDLS-RDgDb is four times lower than the transform cost
(here, one iteration suffices) and for this transform, the
cost of the more expensive H0_pMED(10k:1) estimator is
still lower than the transform cost. For larger images, the
cost of the heuristic exploiting H0_pMED(10k:100) or
H0_pMED(10k:1) remains constant, whereas the transform
cost (and the cost of the heuristic exploiting H0_pMED)
grows in direct proportion to the number of pixels in the
image. The H0_pMED(10k:100)-based heuristic filter selec-
tion results in at least about three fourths of the bitrate improve-
ment obtainable with RDLS for the optimal filter selection
based on the actual bitrate of the compression algorithm.

All in all, the most interesting results from a practical
standpoint were obtained for an image-adaptive heuristic
filter selection from the set of seven filters (none, null,
and smoothing with center point weights 1, 4, 16, 64, and
256) using the simplified estimator of compression effects
H0_pMED(10k:100), which is independent of the actually
employed compression algorithm. On average, the bitrate
improvement due to RDLS is the greatest in the case of
RDLS-RDgDb (2.65% or more for JPEG-LS and JPEG
2000, 2.15% for JPEG XR), while the bitrates of more com-
plex transforms were improved by over 1% in the case of
JPEG-LS and JPEG 2000, and by over 0.5% for JPEG
XR. For some sets, the improvements due to RDLS-RDgDb
exceed 5%. Also, with respect to the absolute bitrate, this
transform was the best for all the image compression

Table 9 RDLS effects for a larger set of denoising filters. The JPEG 2000 bitrate improvements with respect to the non-RDLS transform are
reported, average for all sets and for the Waterloo set. All the filters described in Sec. 2.5 (13) or these filters and the additional filters described
in Sec. 3.3 (total 30) were selected using H0_pMED in three iterations of the heuristic step B.

Filters Sets RDLS-RCT RDLS-YCoCg-R RDLS-RDgDb RDLS-LDgEb All

13 All sets −1.20% −1.17% −2.74% −1.31% −1.61%

30 All sets −1.22% −1.23% −2.78% −1.34% −1.65%

13 Waterloo only −1.07% −1.04% −0.81% −1.33% −1.06%

30 Waterloo only −1.08% −1.03% −0.83% −1.34% −1.07%
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algorithms investigated in this study. In addition to the better
average bitrates and bitrate improvements as well as the
lower filter selection cost, another advantage of this trans-
form is that its dynamic range is not increased compared
to the non-RDLS counterpart.

We suppose that by finding filters better matching the
actual image characteristics greater bitrate improvements
due to RDLS could be obtained. For a given acquisition
device, the denoising filters may probably be selected
based on the acquisition process parameters rather than by
using the heuristic employing estimated compression ratio
of the denoised component. For RDLS-RDgDb, they may
be selected or constructed directly based on the component
being denoised, thus avoiding the need to signal to the
decoder the filter selection.

5 Conclusion
RDLS applied to color space transforms allows the improve-
ment of the bitrates of lossless image compression algo-
rithms, however, RDLS effects depend on selecting proper
denoising filters for the image being compressed. By exploit-
ing the new contributions of this study, i.e., the filter-selec-
tion heuristic and the special filter case (the null filter),
we attained bitrate improvements that on average are about
two times higher than those obtained using the previously
reported methods. Another new contribution, the H0_
pMED(10k:100) compression effect estimator, reduced the
cost of the filter selection process without sacrificing the
majority of the bitrate improvement. The filter selection cost
gets this way close to or lower than the transform cost, while
on average for all the investigated transforms and images, the
lossless JPEG 2000 bitrates are improved by about 1.5%;
bitrates of certain images are improved to a significantly
greater extent. All in all, the RDLS-modified color space
transforms appear worthwhile from a practical standpoint.
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