Dysk twardy jest zbudowany z:

obudowy, której zadaniem jest ochrona znajdujących się w niej elementów przed uszkodzeniami mechanicznymi a także przed wszelkimi cząsteczkami zanieczyszczeń znajdujących się w powietrzu. Jest to konieczne, gdyż nawet najmniejsza cząstka "kurzu" ma wymiary większe niż odległość pomiędzy głowicą a powierzchnią nośnika, tak więc mogłaby ona zakłócić odczyt danych, a nawet uszkodzić powierzchnię dysku.


 

elementów elektronicznych, których celem jest kontrola ustalenia głowicy nad wybranym miejscem dysku, odczyt i zapis danych oraz ich ewentualna korekcja. Jest to w zasadzie osobny komputer, którego zadaniem jest "jedynie" obsługa dysku.

nośnika magnetycznego, umieszczonego na wielu wirujących "talerzach" wykonanych najczęściej ze stopów aluminium. Zapewnia to ich niewielką masę, a więc niewielką bezwładność co umożliwia zastosowanie silników napędowych mniejszej mocy, a także szybsze rozpędzanie się "talerzy" do prędkości roboczej.

elementów mechanicznych, których to zadaniem jest szybkie przesuwanie głowicy nad wybrane miejsce dysku realizowane za pomocą silnika krokowego. Wskazane jest stosowanie materiałów lekkich o dużej wytrzymałości co dzięki małej ich bezwładności zapewnia szybkie i sprawne wykonywanie postawionych zadań.


 

IDE (ATA) - interfejs, który zdobył ogromną popularność ze względu na niską cenę zintegrowanego z napędem kontrolera, praktycznie dominujący rynek komputerów domowych. Jego pozycję umocniło się pojawienie się rozszerzonej wersji interfejsu - EIDE. Zwiększono w niej liczbę obsługiwanych urządzeń z 2 do 4, zniesiono barierę pojemności 540 MB, wprowadzono też protokół ATAPI umożliwiający obsługę innych napędów, np. CD-ROM. Maksymalna przepustowość złącza wzrosła z 3,33 MB/s do 16,6 MB/s, znacznie przekraczając możliwości dzisiejszych napędów. Limit ten uległ kolejnemu przesunięciu w momencie pojawienia się specyfikacji Ultra DMA/33, zwiększającej przepustowość do 33,3 MB/s.
SCSI - Interfejs SCSI pozwalający na obsługę początkowo 7, a później 15 urządzeń, znalazł zastosowanie głównie w serwerach. Do jego zalet należy możliwość obsługi różnych urządzeń (nagrywarek, skanerów, napędów MOD, CD-ROM i innych).
Pierwsza wersja SCSI pozwalała na maksymalny transfer 5 MB/s, wkrótce potem wersja FAST SCSI-2 zwiększyła tę wartość do 10 MB/s. Kolejny etap rozwoju standardu SCSI to rozwiązanie Ultra SCSI. Jego zastosowanie podnosi maksymalną prędkość transferu danych do 40 MB/s.
Obecnie spotyka się trzy rodzaje złączy służących do podłączania dysków SCSI. Najlepiej znane jest gniazdo 50-pinowe, przypominające wyglądem złącze IDE, lecz nieco od niego dłuższe i szersze.
Strukturalnie zaś dysk twardy jest podzielony na partycje, czyli rozłączne obszary, którym system operacyjny przypisuje litery napędów. Rozróżniamy przy tym partycje pierwotne (primary) i rozszerzone (extended). Pliki systemowe, uruchamiające system operacyjny muszą znajdować się na jednej z partycji pierwotnych- tych ostatnich może być maksymalnie cztery. Natomiast liczba partycji rozszerzonych jest praktycznie nieograniczona. Dysk podzielony jest też na ścieżki, czyli koncentrycznie położone okręgi na każdym talerzu twardego dysku, które podzielone są z kolei na klastery i sektory. Pierwsze z nich to jednostki alokacji, najmniejsze logiczne jednostki zarządzane przez FAT (tabela alokacji plików) i inne systemy plików. Fizycznie klaster składa się z jednego lub kilku sektorów. Natomiast same sektory to po prostu najmniejsze adresowalne jednostki na twardym dysku. Całkowitą liczbę sektorów otrzymujemy, mnożąc liczbę głowic przez liczbę ścieżek razy liczbę sektorów na ścieżce.
Na komfort pracy z systemem komputerowym duży wpływ ma wydajność dysku twardego. Efektywna prędkość z jaką dysk dostarcza dane do pamięci komputera, zależy od kilku podstawowych czynników. Największy wpływ na wydajność mają elementy mechaniczne, od których nawet najwolniejsza elektronika jest o dwa rzędy wielkości szybsza. Fundamentalne znaczenie ma prędkość ustawiania głowicy nad wybraną ścieżką, ściśle związana ze średnim czasem dostępu. Równie istotnym parametrem jest prędkość obrotowa dysku, rzutująca na opóźnienia w dostępie do wybranego sektora i prędkość przesyłania danych z nośnika do zintegrowanego z dyskiem kontrolera. Dopiero w następnej kolejności liczy się maksymalna prędkość transferu danych do kontrolera czy wielkość dyskowego cache'u.
Ogromne znaczenie ma prędkość obrotowa dysku. Zależność jest prosta: im szybciej obracają się magnetyczne talerze, tym krócej trwa wczytanie sektora przy takiej samej gęstości zapisu. Mniejsze jest także opóźnienie, czyli średni czas oczekiwania, aż pod ustawionym nad właściwym cylindrem głowicą "przejedzie" oczekiwany sektor. W przeciwieństwie do nowoczesnych CD-Rom'ów dyski twarde obracają się ze stałą prędkością, osiągając od 3600 do 7200 rpm (revolutions per minute). Lepszym pod względem prędkości obrotowej okazał się model firmy Seagate, Cheetah ST34501- pierwszy dysk na świecie wirujący z prędkością 10000 obr/min. Pierwsze, zewnętrzne ścieżki są wyraźnie dłuższe od położonych w osi dysku. W nowoczesnych napędach są one pogrupowane w kilka do kilkunastu stref, przy czym ścieżki w strefach zewnętrznych zawierają więcej sektorów. Ponieważ dysk wczytuje całą ścieżkę podczas jednego obrotu, prędkość transferu danych na początkowych obszarach dysku jest największa. W związku z tym informacje podawane przez prostsze programy testujące transfer dysku są często zbyt optymistyczne w stosunku do rzeczywistej średniej wydajności napędu. Media transfer rate- prędkość przesyłania danych z nośnika do elektroniki dysku zależy od opóźnień mechanicznych oraz gęstości zapisu. Gęstość tę równolegle do promienia dysku mierzy się liczbą ścieżek na cal (TPI), zaś prostopadle (wzdłuż ścieżki) obrazuje ją liczba bitów na cal (BPI).
Wydajność dysku w dużej mierze zależy także od rozwiązań zastosowanych w samym komputerze i kontrolującym go systemie operacyjnym. Znaczenie ma prędkość procesora, wielkość pamięci operacyjnej i cache'u, prędkość transferu danych o pamięci czy narzut czasowy wprowadzany przez BIOS. Zastosowany system plików do "czystego" czasu transferu zbiorów dokłada swoje narzuty związane z administracją zajętym i wolnym miejscem na dysku. Źle dobrany, lub zbyt mały lub za duży rozmiar programowego bufora dyskowego również może wyraźnie wydłużyć czas reakcji dysku.


Encyklopedia Wiedzy Komputerowej-Budowa Komputera
Strona startowa
Plyta główna
Procesor
Pamięć
Dysk twardy
Urządzenia we/wy
Karty rozszerzeń
Napędy