
Introduction to computer vision
In general, computer vision covers very wide area of issues concerning understanding of images
by computers. It may be considered as a part of artificial intelligence and aims at designing
processes of visual analysis which would make it possible to extract relevant information from
images, similarly as it is done by human. This task should be performed fully automatically with
high speed and effectiveness comparable or higher than achieved by people.

Image Color Conversion

CIE Chromaticity Diagram and Color Gamut
Figure 1 presents a diagram of all visible colors. It is called a chromaticity diagram and was
developed as a result of the experimental investigations performed by CIE (International
Commission on Illumination), see http://members.eunet.at/cie/. The diagram presents visible
colors as a function of x (red) and y (green) components called chromaticity coordinates.
Positions of various spectrum colors (from violet to red) are indicated as the points of tongue-
shaped curve called spectrum locus. The straight line connecting the ends of the curve is called
the purple line. The point of equal energy represents the CIE standard for white light. Any point
within the diagram represents some mixture of spectrum colors. The pure or fully saturated colors
lie on the spectrum locus. Straight-line segment joining any two points in the diagram defines all
color variations than can be obtained by additively combining these two colors. A triangle with
vertices at any three points determine the gamut of colors that can be obtained by combining
corresponding three colors. The structure of the human eye that distinguishes three different
stimuli, establishes the three-dimensional nature of color. The color may be described with a set
of three parameters called tristimulus values, or components. These values may, for example, be
dominant wavelength, purity, and luminance, or so-called primary colors: red, green, and blue.
The chromaticity diagram exhibits that the gamut of any three fixed colors can not enclose all
visible colors. For example, Figure 1 shows schematically the gamut of reproducible colors for
the RGB primaries of a typical color CRT monitor, CMYK color printing, and for the NTSC
television.

Color Models
The purpose of a color model is to facilitate the specification of colors in some standard generally
accepted way. In essence, a color model is a specification of a 3-D coordinate system and a
subspace within that system where each color is represented by a single point. Each industry that
uses color employs the most suitable color model. For example, RGB color model is used in
computer graphics, and YUV or YCbCr are used in video systems, PhotoYCC* is used in
PhotoCD* production and so on. Transferring color information from one industry to another
requires transformation from one set of values to another. The Intel IPP provides a wide number
of functions to convert different color spaces to RGB and vice versa.

The RGB Color Model
In the RGB model, each color appears as a combination of red, green, and blue. This model is
called additive, and the colors are called primary colors. The primary colors can be added to
produce the secondary colors of light (see Figure 2) - magenta (red plus blue), cyan (green plus
blue), and yellow (red plus green). The combination of red, green, and blue at full intensities
makes white. The color subspace of interest is a cube shown in Figure 2 (RGB values are
normalized to 0..1), in which RGB values are at three corners; cyan, magenta, and yellow are the
three other corners, black is at their origin; and white is at the corner farthest from the origin.

Figure 1. CIE xyY Chromaticity Diagram and Color Gamut

Figure 2. Primary and Secondary Colors for RGB and CMYK Models

The gray scale extends from black to white along the diagonal joining these two points. The
colors are the points on or inside the cube, defined by vectors extending from the origin. Thus,
images in the RGB color model consist of three independent image planes, one for each primary

color. As a rule, Intel IPP color conversion functions operate with non-linear gamma-corrected
images R’G’B’. The importance of the RGB color model is that it relates very closely to the way
that the human eye perceives color. RGB is a basic color model for computer graphics because
color displays use red, green, and blue to create the desired color. Therefore, the choice of the
RGB color space simplifies the architecture and design of the system. Also, a system that is
designed using the RGB color space can take advantage of a large number of existing software
routines, since this color space has been around for a number of years.

However, RGB is not very efficient when dealing with real-world images. To generate any color
within the RGB color cube, all three RGB components need to be of equal pixel depth and display
resolution. Also, any modification of the image requires modification of all three planes.

The CMYK Color Model
The CMYK color model is a subset of the RGB model and is primarily used in color print
production. CMYK is an acronym for cyan, magenta, and yellow along with black (noted as K).
The CMYK color space is subtractive, meaning that cyan, magenta yellow, and black pigments or
inks are applied to a white surface to subtract some color from white surface to create the final
color. For example (see Figure 2), cyan is white minus red, magenta is white minus green, and
yellow is white minus blue. Subtracting all colors by combining the CMY at full saturation
should, in theory, render black. However, impurities in the existing CMY inks make full and
equal saturation impossible, and some RGB light does filter through, rendering a muddy brown
color. Hence, the addition of black ink to CMY. The CMY cube is shown in Figure 3, in which
CMY values are at three corners; red, green, and blue are the three other corners, white is at the
origin; and black is at the corner farthest from the origin.

Figure 3. RGB and CMY Color Models

The YCbCr Color Model
The YCbCr color space is used for component digital video and was developed as part of the ITU-
R BT.601 Recommendation. RGB colors cube in the YCbCr space is presented in Figure 4. The

Intel IPP functions use the following basic equations to convert between R’G’B’ in the range 0-
255 and Y’C’bC’r (this notation means that all components are derived from gamma-corrected
R’G’B’):
Y’ = 0.257*R' + 0.504*G' + 0.098*B' + 16
Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128
Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128
R' = 1.164*(Y’-16) + 1.596*(Cr'-128)
G' = 1.164*(Y’-16) - 0.813*(Cr'-128) - 0.392*(Cb'-128)
B' = 1.164*(Y’-16) + 2.017*(Cb'-128)

Intel IPP color conversion functions specific for JPEG codec used different equations:
Y = 0.299*R + 0.5587*G + 0.114*B
Cb = -0.116874*R - 0.33126*G + 0.5*B + 128
Cr = 0.5*R - 0.41869*G - 0.08131*B + 128
R = Y + 1.402*Cr - 179,456)
G = Y - 0.34414*Cb - 0.71414*Cr + 135.45984)
B = Y + 1.772*Cb - 226.816

Figure 4. RGB Colors Cube in the YCbCr Space

HSV and HLS Color Models
The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were
developed to be more “intuitive” in manipulating with color and were designed to approximate
the way humans perceive and interpret color.
Hue defines the color itself. The values for the hue axis vary from 0 to 360 beginning and ending
with red and running through green, blue and all intermediary colors.
Saturation indicates the degree to which the hue differs from a neutral gray. The values run from
0, which means no color saturation, to 1, which is the fullest saturation of a given hue at a given
illumination.

Intensity component - lightness (HLS) or value (HSV), indicates the illumination level. Both vary
from 0 (black, no light) to 1 (white, full illumination). The difference between the two is that
maximum saturation of hue is at S=1 and full illumination (V=1) in the HSV color model,
whereas in the HLS color model maximum saturation is at lightness L=0.5. The HSV color space
is essentially a cylinder, but usually it is represented as a cone or hexagonal cone (hexcone) as
shown in the Figure 5, because the hexcone defines the subset of the HSV space with valid RGB
values. The value V is the vertical axis, and the vertex V=0 corresponds to black color. Similarly,
a color solid, or 3D-representation, of the HLS model is a double hexcone with lightness as the
axis, and the vertex of the second hexcone corresponding to white.

Both color models have intensity component decoupled from the color information. The HSV
color space yields a greater dynamic range of saturation.Conversions from RGB to HSV/HLS and
vice-versa in Intel IPP are performed in accordance with the respective pseudocode algorithms,
given in the descriptions of corresponding conversion functions.

Figure 5. HSV Solid

Morphological operations
Generally, the erosion and dilation smooth the boundaries of objects without significantly
changing their area. Both operations use either a symmetric 3x3 mask, a user-defined rectangular
mask, or a structuring element. In a more general sense, morphological operations involve an
image A called the object of interest and a kernel element B called the structuring element. The
image and structuring element could be in any number of dimensions, but the most common use
is with a 2D binary image, or with a 3D gray scale image. The element B is most often a square
or a circle, but it could be any shape. Just like in convolution, B is a kernel or template with an

anchor point. Figure 6 shows dilation and erosion of object A by B. In the figure, B is rectangular
with an anchor point at upper left shown as a dark square.

Figure 6. Dilation and Erosion of A by B

In case of dilation, a pixel under the anchor point of B is marked “on”, if at least one pixel of B is
inside of A. In case of erosion, a pixel under the anchor of B is marked “on”, if B is entirely
within A.

Face detection
Automatic human face recognition can be considered as one of the areas of computer vision. The
first step of face recognition is face detection. An image must be analyzed in order to decide
whether it contains faces or not. In case of a positive answer face or faces must be precisely
located in the input image, so that it is possible to process them further.

One of the face detection methods is based on color images in the YCbCr color space. It may be
noticed that eyes are characterized by high blue and low red values, as well as by many dark and
bright pixels (Figure 7). These facts may be utilized for designing the eye map (see Equation 1 –
3). EMC is a chrominance eye map, EML is a luminance eye map and EM is the final eye map
created by multiplying the EMC and EML maps. Cb, Cr and Y are color channels in the YCbCr color
space, rC is negation of the Cr channel (255 - Cr), Ydil and Yer are Y channels dilated and eroded,
respectively. The calculated maps are after that eroded, dilated and normalized in order to
eliminate false noise information, which is usually weaker than the response of eye and mouth
regions. Examples of face images in various channels and corresponding eye maps are presented
in Figure 7.

)(
3
1 22

r

b
rbC C

CCCEM ++= (1)

1),(
),(
+

=
qpY

qpYEM
er

dil
L (2)

)()(LC EMEMEM ⋅= (3)

Figure 7. Examples of face images in various channels and maps which have
been obtained (from the left: original image, Y channel, Cb channel, Cr channel,
two images of eye maps and two images of mouth maps). The maps are
presented in two modes: achieved directly from equations.1 – 5 (left) as well as
eroded and dilated versions (right). Erosion and dilation eliminates noise, which
is present especially in the case of the mouth maps and extracts relevant
information concerning the features location.

A similar approach can be applied to generate a mouth map. Mouth pixels contain higher Cr
values and lower Cb values comparing to other face regions. Basing on this observation, a mouth
map has been constructed, which may be calculated as defined in Equation 4, where MM is a
mouth map, η is a ratio of the average Cr

2 value (avg(Cr)) to the average Cr/Cb value
(avg(Cr/Cb)). An example of a mouth map is shown in Figure 7.

222)(

b

r
rr C

CCCMM ⋅−⋅= η (4)

)(/)(95.0 2

b

r
r C

CavgCavg⋅=η (5)

By analyzing the eye and mouth maps, an exact location of feature points may be calculated,
which means that using color information only, it is possible to detect faces and facial feature
points in images.

Exercise
The aim of this exercise is to implement face detection in color images.

The exercise is based on Vision programming platform. The platform consists of an executable
program (vision.exe) which utilizes lib.dll library file. This file is generated by compiling a

VS 7.0 C++ project (Detection). The functions of this project will be modified during this
exercise.

When vision.exe is launched, a dialog box will be displayed, in which output folders should be
selected. The results (face images maps and text files containing features coordinates) will be
stored to these folders. By default, the paths are set to a folder, in which vision.exe is placed.
After setting the paths a user should press Process Files and select files to be processed.

Functions which must be modified during the exercise are: MouthMap, EyeMap, Detect in
Detection component.

MouthMap and EyeMap functions are called with following arguments:

• pC_b – a pointer to Cb channel of input image.
• pC_r – a pointer to Cr channel of input image.
• nW, nH – input image width and height.
• pDst – a pointer to output image (its size should be equal to the input image size;

memory is allocated).
The functions are called for every image in the selected set of images. The results are saved in
output folders and also passed to Detect function.

Detect function is called with following arguments:

• pEyeMap – eye map generated by EyeMap function (data written to pDst).
• pMouthMap – mouth map generated by MouthMap function (data written to pDst).
• nW, nH – image width and height.
• nLE_X, nLE_Y – left eye coordinates (to be calculated).
• nRE_X, nRE_Y – right eye coordinates (to be calculated).
• nM_X, nM_Y – mouth coordinates (to be calculated).

The function is called for each image after maps generation (when MouthMap and EyeMap return
results).

There are two functions already implemented (Dilate and Erode) which can be used to perform
image dilation and erosion respectively. These operations are useful for maps generation.

Images which should be processed during the exercise can be found in img folder. The images
size is constant (64x75 pixels) and eyes are placed in fixed positions (15, 24) and (49, 24). It is
therefore possible to asses eyes detection precision basing on this information.

Tasks to be accomplished:

• Fill MouthMap function, so that it generates mouth maps described in this instruction.
• Fill EyeMap function, so that it generates eye maps described in this instruction.
• Modify Detect function, so that it calculates eyes and mouth coordinates basing on maps

generated by MouthMap and EyeMap functions.

