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ABSTRACT: The meteorological radar backscatter profile depends on the shape of a falling particle. Because there are
many shapes of snow particles it is difficult to estimate a precipitation rate in the case of snowfall. This study presents
research which aimed to develop an automatic system for snow particle classification into snowflake and graupel. Having the
information about the snowfall type during an analysis of snowfall rate and backscatter values allows improved forecasting
of snowfall by better understanding of these phenomena.

Five novel shape features derived from grey-scale images and designed in order to improve an automatic snow particle
classification into snowflake and graupel are introduced. Their performance is compared to statistical and shape features
well known from literature. For classification purposes, threshold, k-nearest neighbours, and support vector machine are
used. Different classification systems are presented. The most correct classification ratio, of 91%, was achieved for a
classifier built from a pair of roughness and Hu first order features. The suggested min max centre distance feature is in
second place, with 90% efficiency. Copyright  2011 Royal Meteorological Society
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1. Introduction

During the winter monsoon the cold Siberian winds take
part in the creation of snow clouds over the Japan Sea.
Those clouds cause a huge snowfall over the Japan
Sea coast, especially in the Honshu region of Japan.
This is due to the specific topographic characteristic,
where mountains (up to 3000 m) occur near the coast
(Harimaya and Nakai, 1999). Moreover, it is known that
during snowfall precipitation graupel is a predominant
particle (Mizuno, 1992) and also that the snowflake size
distribution varies in this area (Harimaya et al., 2004).

The large amount of snow, which results from an
orographic snowfall, may cause many disasters. There-
fore, accurate forecasting of the precipitation rate should
also permit improvement in preparation of weather alerts.
There are already many applications dealing with similar
problems in different regions of the world. DeGaetano
and Wilks (1999) describe a system which takes under
consideration the information about the snow cover in
order to prevent the roof from collapsing due to too
much snow. Moreover, the authors also notice that this
is mostly caused by a consecutive snowfall events rather
than by one snowfall. On the other hand, precipitation
in low temperatures is responsible for ice creation on
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railways (Shao et al., 2003). In this case, in order to
minimize the loss of income to railway companies due
to service interruptions, the authors developed a system
which uses statistical techniques to predict the probability
of ice creation over the railway. Moreover, this system
tries to forecast the origin of the ice. Boi (2009), on
the contrary, presented a system which is responsible for
global snow cover monitoring. Using visible near infrared
and infrared data based on a simple statistical hypothe-
sis this system tries to reconstruct the snow cover from
satellite images, even when clouds are present.

All the systems mentioned above use forecast informa-
tion about the precipitation rate (R), which is estimated
on the basis of the weather radar reflectivity factor (Z).
Both these parameters are joined by the so-called Z–R
relation, given by the formula (Marshall and Gunn, 1952):

Z = BRβ, (1)

where B and β are coefficients which change depend-
ing on the precipitation type. Moreover, these parameters
are also strongly related to the sizes of the falling par-
ticles (Matrosov, 1992; Loffler-Man and Blahak, 2001).
Therefore, there is a need to find the most accurate coef-
ficients which would allow description of the snowflake
and grauple precipitation events. It is known that the
characteristics are different for snowflake and graupel,
and this has been used previously by El-Magd et al.
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Figure 1. General measuring system setup.

(2000) in research concerning graupel and hail recog-
nition using multiparameter radar. However, before it is
possible to estimate the B and β coefficients the type
of the precipitation must be identified. Hence, the auto-
matic classification of snow particles into snowflake and
graupel (which are the most common snow particle types
in the study region) is needed. It is also believed that
being able to distinguish between those particle types
could improve the understanding of snow particle growth
and snow cloud creation.

The remainder of this paper is structured as follows.
Firstly, the system created for snow particle image
acquisition is presented. Secondly, the snow particle
parameter description is given. Statistical and shape
features are well known from the literature, but five
novel features are introduced. Next, experiments whose
aim is to narrow the number of considered features
are presented, followed by experiments addressing the
efficiency of chosen methods. Finally, the conclusions
are drawn.

2. System overview

The weather monitoring system which is used in research
consists of many elements, e.g. micro-rain radar, pre-
cipitation occurrence sensor system, electronic balances,
multiple imaging systems. All this equipment is located
in a small area. This permits the assumption that the
recorded data describe the same precipitation event. How-
ever, in the research addressed in this paper only one
imaging system was used. This imaging system collects
grey-scale images of falling snow particles. It uses a cam-
era with shutter speed of 1/10 000 s and resolution of
1280 × 960 pixels. The camera is connected to an inter-
nal PC by an IEEE 1394b cable. The camera is placed
2 m from a measuring volume in a special vertical tunnel,
which protects it from the influence of wind and sunlight.
Additionally, wind breaks are installed around the mea-
sured area to improve the protection. The system setup
is depicted in Figure 1. The imaging space is illuminated
by four halogen lamps, two on each side of the measur-
ing space (Figure 2). The volume of the measuring space
is W128 × H96 × D250 mm.

Figure 2. Measuring volume.

Having images from the camera, some image pre-
processing is necessary in order to store only images
of snow particles, not all the recorded data. Therefore,
firstly the binary representation of an image is calculated
in order to distinguish particles from background. Each of
the particles is then given a label to distinguish between
them. Finally, the image of each particle, with a 30 pixel
margin around it, is cropped from the image and stored in
the database. Examples of achieved images are presented
in Figure 3(a).

3. Object description

The methods designed for image processing aim to teach
the computer to distinguish between images. They try
to describe in a mathematical way the processes which
take place when a human brain recognizes images, which
is not a trivial task. As there are many applications of
image processing, many techniques for understanding
images have been suggested. However, most of them are
designed to deal with general problems and prove to be
insufficient for a specialized case.

3.1. Statistical image features

From one point of view, an image represents a discrete
two dimensional function I (x, y), where grey level
intensities correspond to the values of this function. In
the domain of this function many statistical parameters
might be derived. One of the most common statistical
features is the weighted average of the function values,
called moments (Jahne, 2002). For a grey-scale image I

the moment M is defined as follows:

Mij =
∑

x

∑
y

xiyj I (x, y), (2)

where x, y are pixel coefficients in the image and (i + j)

define moment order, where i, j = 0, 1, 2, . . .. Generally,
depending on how the weights (i and j ) are chosen,
different spatial moments are achieved (usually for the
pair ij the following moment values are considered:
00, 01, 10, 11, 20, 02, 21, 12, 30, 03). Moreover, the
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(a) (b) (c)

Figure 3. Examples of snow particles gathered by the system. (a) Original data (b) Extracted graupel and snowflake particles (c) Enlarged image
with two particles.

moment can be additionally normalized according to
an object centroid in order to remove the influence of
object transition in the image on the parameter value.
The central moment, µ, for known object centroid (x,y)
is formulated as follows:

µij =
∑

x

∑
y

(x − x)i(y − y)j I (x, y). (3)

Furthermore, to diminish the influence of object scaling
the normalized central moment η was introduced:

ηij = µij

µ
(1+ i + j

2
)

00

. (4)

However, only Hu moments (Hu, 1962) achieve such
a parameter which returns the same value regardless of
the object’s translation, rotation and scaling within the
image. There are seven Hu invariant moments, which
base their definitions on the normalized central moments.
They describe the image in such a way that by knowing
all of them it is possible to reconstruct the image. The
formulae for Hu moments are:

Hu1 = η20 + η02

Hu2 = (η20 − η02)
2 + (2η11)

2

Hu3 = (η30 − 3η12)
2 + (3η21 − η02)

2

Hu4 = (η30 + η12)
2 + (η21| + η03)

2

Hu5 =
(η30 − 3η12)(η30 + η12)[(η30

+η12)
2 − 3(η21 + η03)

2]
+(3η21 − η03)(η21 + η03)[3(η30

+η12)
2 − (η21 + η03)

2]

Hu6 =
(η20 − η02)[(η30 + η12)

2

−(η21 + η03)
2] + 4η1(η03

+η12)(η21 + η03)

Hu7 =
(3η21 − η03)(η30 + η12)[(η30

+η12)
2 − 3(η21 + η03)

2]
−(η30 − 3η12)(η21 + η03)[3(η30

+η12)
2 − (η21 + η03)

2]

. (5)

In preliminary research (the experiment described in
Section 4.3) the classification efficiency of most of
the features did not overcome the threshold of 80%
for correct classification. From those which present
better results (some normalized central moments and Hu

moments) the best performing one is the Hu moment of
the first order (Hu1), and only this one has been chosen
to represent this group.

3.2. Shape features

On the other hand, it is possible to derive from an
image information about object perimeter, area, horizon-
tal or vertical length, which allows description of the
shape in a straightforward manner. These features find
specific relations between the chosen object descriptors
to describe by only one value the object shape char-
acteristics (Russ, 1998; Jahne, 2002). For instance, the
Feret and Malinowska features describe object elonga-
tion. On the contrary, shapeless, roughness and circular
features depict object roundness. There are also others,
such as the Danielsson, Haralick and Blair-Bliss fea-
tures, which aim to concentrate also on the complexity
of shape.

For further consideration only the roughness (Rough)
and Danielsson (Dan) parameters were chosen, as the
rest of the named shape features gave a very low correct
classification ratio (below 80%). Roughness shape feature
is given with the following formula:

Roughness = 2

√
S

π
, (6)

where S is the object’s area. This parameter calculates the
diameter of a circle whose perimeter has the same length
as the object’s one (Figure 4). Therefore, the more the
shape resembles the circular shape the closer the value
becomes to unity. On the other hand, the Danielsson
parameter relates an object’s area, S, with the minimal

Figure 4. The idea of the roughness feature.
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Figure 5. The idea of the Danielsson feature.

distance between each object pixel and contour one li :

Danielsson = S2

(∑
i
li

)2 . (7)

Generally, this relation characterizes elongated objects
with big values, whereas for round objects the param-
eter values are small. Contrary to the other parameters
describing the object elongation, this parameter is calcu-
lated locally (for each pixel). Therefore its value does not
depend on whether the object is straight or not (Figure 5).

3.3. Novel shape features

This section introduces novel features which have been
developed in order to improve the classification between
snowflake and graupel. Distinguishing between those
two particle types in images is a very demanding task,
especially given that the images not always are sharp (see
Figure 3 for examples).

3.3.1. Flake number (FN)

While the snow is falling the snowflake may split into
smaller flakes, some may aggregate and others may just
fall together. It was also noticed that sometimes in one
snowflake image there are visible parts of other snow
particles (Figure 3(c)). This is the result of the particle
image cropping algorithm used in the system (see Section
2 for details), although this situation is very rare in
the case of graupel. Hence, it is assumed that when
other snow particles are visible in the image that it is
a snowflake.

(a) (b)

Figure 6. The idea of the corner number feature. Dashed line represents
contour, the ellipses mark the place of a counted corner, but in case
of snowflake only some representatives were marked. (a) graupel (b)

snowflake.

3.3.2. Corner number (CorN)

The shape of a graupel particle resembles a circle,
whereas the snowflake may take different shapes. Gen-
erally, it can be said that the snowflake contour line is
more complex due to its angular outline. Therefore, some
features which exploit this characteristic are suggested.
First of all, an object contour can be described by a
two dimensional discrete function f (x, y). The object
contour usually is frayed, therefore in order to remove
minor contour line shape changes, which do not contain
any important information, the function is smoothed by
applying a discrete mean filter:

fS(x, y) = 1

2k + 1

i=x+k,j=y+k∑
i=x−k,j=y−k

f (i, j), (8)

where k = 2. Each angle of the contour then corresponds
to change of signs of consecutive values in the first
derivative of the function (dfS

/
dx, dfS

/
dy) calculated

separately for x and y. Because the contour is a closed
line, the sign of the derivative in x and y changes at
least twice. The sum of all bends is stored in the corner
number feature value (Figure 6).

3.3.3. Concave number (ConN)

Keeping in mind the differences in the shapes of grau-
pel and snowflakes mentioned in previous subsection, the
problem of snow particle description is approached differ-
ently. Here the convex hull for an object is calculated. In
the case of a convex object the convex hull overlaps the
contour, otherwise, when the object is concave, there are
places where the contour line and convex hull line split.
Every time this occurs it means that a cavity has been
found. The concave number parameter finds the number
of such cavities, which are marked with different shades
in Figure 7. In comparison with CorN this parameter is
more general, as it concentrates on the biggest changes
in contour line shape (compare the results presented for
the examples given in Figures 6 and 7).

3.3.4. Max min distance (MMD)

The max min distance is a different feature, which
describes the relation between the longest and shortest

(a) (b)

Figure 7. The idea of the concave number feature. Dashed line
represents contour; solid line the convex hull; different shades mark

the concave parts. (a) graupel (b) snowflake.
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length of line connecting the contour of an object. The
line is defined between two points belonging to a contour.
The longest line is for that pair of points with the biggest
Euclidean distance. On the contrary, many short lines
are found. Therefore, the selection is narrowed to those
which start in places where the contour bends. Choosing
the place where the contour is convex (bends) assures
that the chosen lines are the shortest. Next, the median
value of all lengths becomes a representative length (see
Figure 8 as an example).

3.3.5. Max min centre distance (MMCD)

The max min centre distance feature defines the relation-
ship between the points belonging to a contour which is
the longest distance from an object’s centre of mass and
that which is the nearest. Figure 9 depicts an example of
this idea.

4. Results and discussion

4.1. Snow particle database description

The snow particle database contains 8480 images. The
database has been divided into training and testing

(a) (b)

Figure 8. The idea of the max min diameter feature. The longest line
is marked as the solid line, the examples of the short with a dashed

line. (a) Graupel, (b) snowflake.

(a) (b)

Figure 9. The idea of the max min centre distance feature. The dot
represents the mass centre. The longest distance is marked with the
solid line, the shortest with a dashed line. (a) graupel (b) snowflake.

datasets. The training dataset (TD1) consisted of 460
snowflake images and 461 graupel images. The testing
dataset is bigger and contains 3924 snowflake and 3635
graupel images. However, in case of SVM (support vector
machine) classification the training dataset consisted of
85 images, which is representative of 1% of snowflakes
and graupel with similar proportions as in TD1, whereas
the rest of the images (8395) were in the testing dataset.

4.2. Classification methods

In this research three different classification methods have
been applied. All of them are supervised classification
methods: this means that they need a labelled training
dataset. The preparation of the labelled dataset was
based on the visual inspection of chosen images. When
classified data were described by only one value the
threshold classifier was used: in other cases both the kNN
(k-nearest neighbour) and SVM (support vector machine)
classifiers were used.

The aim of this research is to evaluate the descriptive
properties of the presented features for snow particle
classification into snowflake and graupel. This is a
two-class classification problem. The easiest solution,
especially when each class is described only by one
feature, is to find the threshold. If the feature value is
then below that threshold it indicates that the particle
belongs to one class, otherwise it belongs to the other
(see Figure 10(a)). The drawback of this method is the
fixed threshold value, which should be determined on
the basis of the training dataset. Choosing a proper
threshold value is a difficult task, especially for new data
whose characteristics are not familiar to the researcher.
Therefore, sometimes it is useful to apply the kNN or
SVM classifier in this case, because those methods decide
the threshold automatically.

The kNN and SVM classifiers do not assume any
data distribution pattern, however they deal with the
classification problem differently. In the case of kNN,
for each testing object a virtual hyper-sphere is created
which encloses k training objects only (in a hyper-sphere
each feature describing the object corresponds to one
dimension of this sphere; e.g. for two features it is a
circle, for three a sphere). The testing object is classified
to this class which is represented by the majority of
training objects enclosed in the hyper-sphere. Therefore,
it is important to choose the k parameter to be an odd
number in the case of a two-class problem, otherwise

(a) (b) (c)

Figure 10. Classification methods idea presentation. (a) threshold classification (b) kNN classifiation (c) SVM classification.
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there might be the same number of neighbours belonging
to each from two classes: this makes the classification
impossible. An example of kNN classification (for k = 3)
in a two-dimensional case is presented in Figure 10(b).

In contrast, SVM aims to find a hyper-surface which
divides the data into two separate classes. Moreover, this
hyper-surface is chosen in such a way that the margin
separating the classes from this surface is as big as
possible (see Figure 10(c)) (Burges, 1998). The hyper-
surface can divide the data linearly: thus it forces the
input data to be linear, which is impossible to assure.
Therefore, in general cases a feature space, defined by the
data, of finite-dimensions (corresponding to the length of
feature vector describing each object) is mapped by some
unlinear function to another higher-dimensional space,
where the data should be separated linearly. The function
used for mapping is called a kernel. There are many
kernels suggested, such as polynomial or RBF (Gaussian
radial basis function), whose name corresponds to the
function type used for the value transformation.

4.3. Initial experiment

The aim of the initial experiment was to evaluate the
classification performance of each from the presented
statistical and shape features known from the literature. In
total, 39 features (10 spatial moment features, 10 central
moment features, 10 normalized central moment features,
7 Hu moments features, and 2 shape features) have been
considered. The results were then compared with the
classification performance of the five novel features. The
threshold classifier was applied in all cases.

The training set TD1 was used to determine the
threshold value. In the case of each feature for both
graupel and snowflake classes the minimal, maximal and
average feature value was calculated. The threshold was
then decided. In cases where the maximal value of one
class was smaller than the average of the other, this value
was set as a threshold (e.g. FN, CorN). Otherwise, in the
cases of ConN and MMD it has been chosen empirically
from values between the average class value. For MMCD,
applying the first rule resulted in the wrong classification,
therefore the second rule was used. In the second case
of threshold decision only the threshold which returned
the best classification result is presented in Table I. The
normalized histogram distribution of training data for
snowflake and graupel classes for the chosen features
with marked threshold value are depicted in Figure 11.
In the case of statistical features, only the feature with
highest classification ratio is presented due to lack of
space.

Once the threshold value for each of the features was
calculated the classification performance was investigated
for the training dataset. A correct classification ratio, not
only for whole dataset but also for each of the classes,
was calculated. The results are presented in Table II. It is
worth noticing that all of the mentioned statistical features
whose classification performance is not described in this
table were below 80%.

Table I. Values achieved for training dataset.

Methoda Class Minimum Average Maximum Threshold

FN G 1 1 1 <1
S 1 1.22 5 ≥1

CorN G 2 3.35 10 ≤10
S 2 12.27 216 >10

ConN G 4 13.51 28 ≥10
S 3 8.15 17 <10

MMD G 1.16 6.65 128.22 ≤13
S 1.36 15.86 180.80 >13

MMCD G 1.45 2.23 7.75 ≤3
S 1.73 32.52 1421 >3

Hu1 G 1.8 E-03 2.2 E-03 3.0 E-03 ≤3E-03
S 2.7 E-03 3.4 E-03 4.4 E-03 >3E-03

Dan G 17.55 34.97 44.69 ≤45
S 2.23 54.07 157.86 >45

Rough G 1.00 1.08 1.19 ≤1.19
S 1.00 1.33 2.31 >1.19

a ConN, concave number; CorN, corner number; Dan, Daniels-
son parameter; FN, flake number; Hu1, Hu moment of the first
order; MMCD, Max min centre distance; MMD, Max min distance;
Rough, roughness.

This experiment shows that the MMCD feature is the
best snow particle classifier, with correct classification
ratio equal 88.07%. It overcomes the classical shape
parameters of about 4–8%. On the other hand, it is worth
pointing out that in some cases (CorN, FN) the correct
classification ratio for graupel was very high, whereas the
performance for snowflake was very low. This fact could
be used to create a snowflake discriminator classifier,
which allows correct classification of snow particles,
whilst assuring simultaneously that the graupel particles
are not misclassified.

4.4. Classifier application

The threshold classifier works well when it is possible
to define the threshold between two classes easily,
although in cases when two classes overlap each other
it is difficult to decide the correct threshold value.
Moreover, sometimes it is more convenient to leave
this problem to be decided by the classifier. Therefore,
the next experimental goal was to check the system
performance with more sophisticated classifiers. Because
the distribution of the snow particle features is unknown,
classifiers which do not need this information were
used, such as kNN and SVM. In this experiment, for
the kNN classifier the k parameter was set to values
in a range from 5 to 95, with a step 10. In the
case of SVM the following kernels were applied: linear
(L), quadratic (Q), polynomial (P ) and radial basis
function (RBF ). Actually, linear and quadratic kernels
represent the polynomial kernel of first or second order,
respectively.

Table III gathers the classification efficiency results for
the kNN and SVM classifiers. Regarding all possible
classifier parameters, in this table only the best results
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Figure 11. Data distribution for features considered in first experiment. , Snowflake; , Graupel; , Threshold; , Zoom.

Table II. The results obtained for the thresholding.

Methoda Graupel Snowflake Total (%)

MMCD 87.70 88.40 88.07
Rough 99.06 70.29 84.48
Hu1 76.15 85.47 80.99
Dan 99.17 63.53 80.67
CorN 99.75 33.82 65.01
FN 99.72 17.30 56.94
ConN 46.63 66.28 56.83
MMD 69.71 19.11 43.44

a ConN, concave number; CorN, corner number; Dan, Daniels-
son parameter; FN, flake number; Hu1, Hu moment of the first
order; MMCD, Max min centre distance; MMD, Max min distance;
Rough, roughness.

are presented. The subscript in the case of the kNN
classifier describes the k parameter value. The subscript
in the case of the SVM classifier describes the kernel
type (L, Q, P , RBF ) with the value describing the order
in the case of a polynomial kernel and the parameter
α in the case of RBF. When there is no subscript
given it means that the same result was achieved for all
parameters.

It is not surprising that in many cases the classification
performance is higher (bold font), as the classifiers
describe the class boundaries much better. The biggest

Table III. Classification of snow particles.

Methoda kNN SVM

MMCD 89.1135 79.02P8

Rough 87.3365 87.29L

Dan 84.9025 85.17P5

MMD 83.3335 80.95RBF1.5

Hu1 82.7575 82.72L

ConN 56.7735 59.39Q

CorN 51.70 73.76P3

FN 51.70 56.95

a ConN, concave number; CorN, corner number; Dan, Daniels-
son parameter; FN, flake number; Hu1, Hu moment of the first
order; MMCD, Max min centre distance; MMD, Max min distance;
Rough, roughness.

increase in performance is visible in the case of the MMD
classifier, where the correct classification ratio rises from
43.44 to 83.33% for kNN, and to 80.95% for SVM.
The others also slightly improve the correct classification
ratio: MMCD from 88.07 to 89.11% for kNN, Rough
from 84.48 to 87.33% for kNN, Dan from 80.67 to
85.17% for SVM, Hu1 from 80.99 to 82.75% from kNN.
The only problem was noticed for the MMCD feature
used with the SVM classifier, where the performance
decreased. That might be the result of using a training
set which does not define the class distribution pattern
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K. Nurzyńska et al.

well and the calculated hyper-surface was created in the
wrong place.

4.5. Two-class classification

In order to improve the classification performance,
in this experiment two features were used simultane-
ously to describe the object’s properties, since exploit-
ing more information should return a better result.
This is a two-class classification problem which is eas-
ily solved by the kNN and SVM classifiers. Table IV
presents the results gathered for the kNN classifier and
Table V for SVM. Similarly, as in the previous exper-
iment, for each pair of features a set of classifiers
(with different k parameter for kNN and kernel for
SVM ) is applied, but the tables present only the best
results.

The results show that combining the information from
two features improves the correct classification ratio.
The worst correct classification ratio in this two feature
case is always higher than in the case of applying
only one feature (see the results for FN and CorN).
Moreover, it is interesting to note that features which
already have a high correct classification ratio in the
previous experiment improved when joined in pairs and
classified with kNN. On the other hand, SVM improved
the correct classification ratio mostly for those feature
pairs, which were weak (less than 80%) in the previous
experiment. The best classification efficiency of 90.98%,
for the Hu1 and Rough pair, is achieved for the SVM

classification. To visualize the best correct classification
performance better, the best scores are written in bold in
the tables.

4.6. Snowflake discrimination

In the initial experiment, presented in Section 4.3, it was
pointed out that two features (CorN, FN) might be use-
ful to create a snowflake discrimination classifier. Its
correct classification ratio of snowflake and graupel is
quite low, but when inspecting those classes separately
it was noticed that those features describe graupel per-
fectly (as in both cases the correct classification ratio
is above 99%). The problem was in snowflake classifi-
cation, where CorN correctly recognized only 33.82% of
snowflakes and FN 17.30% (Table II). In this experiment
a novel classification system was suggested, which was
built from two parts. In the first step the CorN feature was
applied in order to discriminate the snowflakes. The rest
of the particles (all graupel and misclassified snowflakes)
were then sent to the two-feature classifier presented in
the previous section.

Table VI presents the results achieved when the kNN
classifier was applied in the second stage, whereas
Table VII gathers correct classification ratios for SVM
classification. The application of the two step classifier
improved the performance in almost all cases: compare
the results from Table VI with Table IV, and Table VII
with Table V. However, the biggest influence of the
snowflake discrimination with the CorN feature was

Table IV. Snow particles described by two features and classified with k-nearest neighbour (Knn) classifier.

Method CorN ConN Dan FN Hu1 MMCD MMD

ConN 70.7035

Dan 85.0125 85.9735

FN 51.70 58.8535 58.1825

Hu1 87.5835 82.6815 84.9025 84.0145

MMCD 88.7315 88.2515 88.7415 89.1635 89.1235

MMD 83.1635 82.3615 87.005 83.4535 83.3335 87.2825

Rough 86.6325 86.9215 85.0525 87.6775 87.3365 89.3925 84.9615

ConN, concave number; CorN, corner number; Dan, Danielsson parameter; FN, flake number; Hu1, Hu moment of the first order; MMCD, Max
min centre distance; MMD, Max min distance; Rough, roughness.

Table V. Snow particles described by two features and classified with support vector machine (SVM) classifier.

Method CorN ConN Dan FN Hu1 MMCD MMD

ConN 71.47P6

Dan 85.22P5 86.06P4

FN 76.25P5 62.63Q 86.60RBF1

Hu1 87.16P5 84.26L 89.72RBF1 83.81RBF2

MMCD 80.36P9 83.47P5 86.40P7 80.82P9 84.34P9

MMD 81.27P9 79.17P9 84.18P6 80.24P9 85.77P9 84.35P9

Rough 87.30RBF1 89.39P3 87.31RBF1 87.60RBF1 90.98L 87.49P9 87.79L

ConN, concave number; CorN, corner number; Dan, Danielsson parameter; FN, flake number; Hu1, Hu moment of the first order; MMCD, Max
min centre distance; MMD, Max min distance; Rough, roughness.
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Table VI. Two stage system results: snowflake discrimination threshold followed by k-nearest neighbour (KNN) for two features.

Method ConN Dan FN Hu1 MMCD MMD

Dan 87.3415

FN 63.7365 85.6125

Hu1 86.6625 85.3825 86.8095

MMCD 88.7415 88.8515 89.2835 89.2535

MMD 83.6335 87.1415 83.9935 83.8765 87.3125

Rough 87.9025 85.5225 87.6475 87.3065 89.4425 85.1915

ConN, concave number; CorN, corner number; Dan, Danielsson parameter; FN, flake number; Hu1, Hu moment of the first order; MMCD, Max
min centre distance; MMD, Max min distance; Rough, roughness.

Table VII. Two stage system: snowflake discrimination threshold followed by support vector machine (SVM) for two features.

Method ConN Dan FN Hu1 MMCD MMD

Dan 86.69L

FN 69.15RBF4 86.63RBF1

Hu1 86.68L 90.07P3 86.77Q

MMCD 85.41P6 86.55P7 82.66P9 86.77P4

MMD 80.44P5 84.32L 81.37P9 87.49P4 84.90P9

Rough 89.35P3 87.44Q 87.55L 91.15Q 87.27Q 88.16Q

ConN, concave number; CorN, corner number; Dan, Danielsson parameter; FN, flake number; Hu1, Hu moment of the first order; MMCD, Max
min centre distance; MMD, Max min distance; Rough, roughness.

noticeable in the case of classifiers which presented a
weak performance in the first experiment, e.g. ConN,
FN, Dan. Generally, the results improved by around
1–2%. In particular, the highest improvement, of almost
30%, was found for the FN-Dan feature pair in the kNN
classification. Finally, there are two pairs, Hu1-Dan and
Rough-Hu1, whose score is 91.15%.

5. Conclusions

This article presents research concerning an automatic
classification of snow particle images, especially for
cases of snowflake and graupel. Statistical and shape
features have been investigated as a method of snow par-
ticle description. Additionally, five novel shape features
were introduced and tested. For classification purposes,
threshold, k-nearest neighbour (kNN ) and support vector
machine (SVM ) classifiers were used.

Firstly, by threshold classification, the Hu1 moment
was chosen as the best from the statistical features, rough-
ness (Rough) and Danielsson (Dan) parameters were
used to represent shape features, and also the perfor-
mance of novel features were tested. The highest correct
classification ratio, of 88%, was achieved by max min
centre distance (MMCD). Next, for classification pur-
poses the kNN or SVM were applied. In both cases the
results improved. In the following experiment, each snow
particle was described by two different features. For this
two-class classification problem the kNN or SVM were
also applied. The use of two features improved the clas-
sification results. The best score (90.98%) was achieved
for the Rough-Hu1 pair classified with SVM. Finally,

the two step classifier was presented. Its application
improved the results slightly. In this case the best result
of 91.15% was also achieved by the Rough-Hu1 pair
classified with SVM. However, it is also worth mention-
ing that the MMCD-Hu1 and MMCD-FN pairs classified
with kNN in the two last experiments score the sec-
ond place. Finally, it could be stated, that considering
the simplicity of creating a one dimensional classifier
based on the MMCD parameter it works very well, as
it loses only 3% to the best two-dimensional classi-
fiers.

To conclude, the presented methods for snow particle
classification proved to be a powerful tool. Considering
the difficulties arising from the fact that the classified
objects are the natural phenomenon, the accuracy above
90% is very high. Therefore, it is hoped that many
application for this system could be found. Knowledge
about snowfall gained by this system may improve
the understanding of radar backscatter. Furthermore, the
possible fields of application are research concerning
radar meteorology, precipitation and also the physics of
snow particle growth.
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