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In order to improve the estimation of precipitation, the coefficients of Z–R relation should be
determined for each snow type. Therefore, it is necessary to identify the type of falling snow.
Consequently, this research addresses a problem of snow particle classification into snowflake
and graupel in an automatic manner (as these types are the most common in the study
region). Having correctly classified precipitation events, it is believed that it will be possible to
estimate the related parameters accurately.
The automatic classification system presented here describes the images with texture
operators. Some of them are well‐known from the literature: first order features, co-
occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern,
but also a novel approach to design simple local statistic operators is introduced. In this work
the following texture operators are defined: mean histogram, min–max histogram, and mean–
variance histogram. Moreover, building a feature vector, which is based on the structure
created in many from mentioned algorithms is also suggested.
For classification, the k-nearest neighbourhood classifier was applied. The results showed that
it is possible to achieve correct classification accuracy above 80% by most of the techniques.
The best result of 86.06%, was achieved for operator built from a structure achieved in the
middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an
image with two texture operators does not improve the classification results considerably. In
the best case the correct classification efficiency was 87.89% for a pair of texture operators
created from local binary pattern and structure build in a middle stage of grey-tone difference
matrix calculation. This also suggests that the information gathered by each texture operator is
redundant. Therefore, the principal component analysis was applied in order to remove the
unnecessary information and additionally reduce the length of the feature vectors. The
improvement of the correct classification efficiency for up to 100% is possible for methods:
min–max histogram, texture operator built from structure achieved in a middle stage of co-
occurrence matrix calculation, texture operator built from a structure achieved in a middle
stage of grey-tone difference matrix creation, and texture operator based on a histogram,
when the feature vector stores 99% of initial information.

© 2012 Published by Elsevier B.V.
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1. Introduction

Hokkuriku District on Honshu Island, Japan, is affected by
many monsoon winds coming from the Northeast Asian
continent. These winds move towards the land clouds, which
form over the Sea of Japan. Due to the high mountains in the
region, with elevation of 3000 m, the clouds change its stage

from developing to mature one. This combination of factors is
responsible for very high snowfall rate in this area (up to 2 m
per day). In consequence, there are many events of floods,
landslides, traffic problems, etc.

In order to prevent and diminish the influence of the
weather on life, computer systems are developed as an aid in
accurate weather forecasting. The base of these systems is
weather prediction algorithms from the data gathered by
weather radar. These data estimate the precipitation rate (R)
on the basis of the radar reflectivity factor (Z). The relation
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between these two parameters is given by (Marshall and
Gunn, 1952) by the formula:

Z ¼ BRβ
; ð1Þ

where B and β are coefficients which considerably depend on
the precipitation type. It was also noticed that these parame-
ters are strongly related to the falling particle size (Loffler-Man
and Blahak, 2001; Matrosov, 1992).

It is also known, from the work of (Mizuno, 1992), that the
predominant type of snow particle precipitation, on the coast
of the Sea of Japan, is graupel. (Matsuo et al., 1994) state that its
formation is influenced by the updraft. Additionally, (Harimaya
et al., 2004) noticed, that also the snowflake size distribution
varies within this region. In conclusion they state that the
snowflake size and density are related to the distance from the
coast. It reflects the processes responsible for snowflake creation.
As a consequence, this paper addresses the problem of snow
particle classification into snowflake and graupel. The classifica-
tion of the precipitation events would improve the accuracy of
precipitation estimation, because it would be possible to find
separate Z–R relation coefficients for each snowfall type.

This paper presents part of research concerning application
of image processing techniques, which can be used to describe
snow particle images. In previous works the statistical and
shape features have been exploited to describe the images.
Firstly, many existing statistical techniqueswith shape features
were tested. The results are presented in (Nurzyńska et al.,
2010b). Then, in order to improve the object description some
novel shape features have been developed. Their performance
is described in the paper (Nurzyńska et al., 2011a). Finally, the
possibility to apply texture operators has been researched. The
initial results were presented in (Nurzyńska et al., 2011b). In
this work the full range of conveyed experiments with image
processing technique basing on texture operators is presented.

The development of technology allowsusing adigital camera
to obtain snow particle images with satisfactory resolution. Yet,
applying image data for precipitation research is quite an old
idea. For instance, at the University of Maintz the ground-based
holographic droplet and aerosol recording system was devel-
oped in late 80s (Vössing et al., 1998). The system gathered
the information about aerosol particles and droplets from a
volume of approximately 1l on holographic images. It
permitted measuring the raindrop and hydrometeor size
distribution as well as its shapes. On the other hand, in
order to find characteristic properties of precipitation
(Frank et al., 1994) described the pluviospectrometer,
which is an optical device also utilizing image processing.
Recently, a new equipment is exploited for precipitation
recognition like Pludix, X-band disdrometer and other,
which performance have been compared by (Prodi et al.,
2011).

The structure of this paper is the following. Firstly, the
imaging system used for data acquisition is presented in
Section 2. This section also contains a description of image
pre-processing algorithms applied for image database
creation. Next, Section 3, describes texture operators well-
known from the literature. Furthermore, new approaches are
suggested for texture operator definition. Section 4 presents

the chosen classification algorithm. The results with discussion
are given in Section 5. Finally, Section 6 draws the conclusions.

2. Imaging system

2.1. System overview

A laboratory dedicated for weather precipitation mea-
surements was constructed at Kanazawa University. All
equipment used for this research is placed in a small area
on the laboratory roof. This permits the assumption, that
all measurements describe the same precipitation event.

In order to conduct the research, described in this paper,
only an imaging system was applied. The imaging system
was designed to assure the best conditions for snow particle
image acquisition. Firstly, the whole construction is enclosed
by a wind breaker. Next, the camera is placed in a horizontal
tunnel 2 m from the measurement area. The measurement
space itself is placed inside a hollow tube oriented vertically.
The aim of the barriers is to diminish the influence of wind on
the snow particle speed and trajectory. Additionally, there
are four halogen lamps, which illuminate the measuring area
and assure similar conditions regardless of daytime and
sunshine illumination.

The images recorded by the camera have resolution of
1280×960 pixels. The shutter speed is 1/10,000s. The data
gathered by the camera is transmitted to an external PC by an
IEEE 1394b cable. The volume of the measuring space is
W128×H96×D250 mm.

Dedicated image pre-processing software was developed for
this system. The programanalyses each grabbed frame and crops
snow particle images. Firstly the binary representation of an
image is calculated which permits distinguishing snow particles
from the background. Next, to separatemultiple particles, which
were recorded on one image, each binary object is given a label.
Each labelled object then is cropped from the image with some
area around it (usually 30 pixels in each direction) and stored in
the snow particle image database. Some examples of recorded
snow particles are presented in Fig. 1.

2.2. Database description

From the images gathered automatically, by the system
described in the previous section, a smaller set was selected to
create a snow particle database. The only criteria applied when
choosing the snow particle image was a visual inspection. A
specialist looking through collected images was deciding
whether a particle on the image reflects snowflake or graupel
and set a corresponding label. In case when it was difficult to
make a decision or when the image was of poor quality, it was
deleted. However, when the quality was good, the image was
allocated to one of the classes.

The snow particle database, used in experiments, con-
tains 4384 snowflake and 4096 graupel grey-scale images.
The training dataset consists of 460 images of graupel and
461 of snowflake. This gives in total 7559 images in the
testing database. The database is not normalized neither in
terms of resolution of images nor in terms of rotation of
objects.

The size of each snow particle is calculated as a sum of its
pixels,whereas the pixel dimensions are equal to 0.1×0.1 mm2.
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Fig. 2 presents the size distribution of snowflakes and graupels
gathered in whole dataset. Some examples of images with
average class histogram are presented in Fig. 1.

3. Texture description

Computer programs, designed for image processing pur-
poses, aim to understand the image in such amanner as human
brain does. Therefore, many techniques have been suggested
which try to mimic brain behaviour during the recognition
process. These methods take under consideration distinctive
features of objects like shape (Nurzyńska et al., 2010b, 2011a),
texture (Nurzyńska et al., 2010a, 2011b), or both.

This research addresses a comparison of well-known
techniques for object classification based on image texture.
In other words, for an image a texture operator is calculated,
which describes the image content by means of few or even
hundreds of values. These values form a feature vector used
for classification. Below well‐known techniques are pre-
sented designed to describe the texture as well as some
novel approaches are suggested.

3.1. First order features

The first order features (FOF) are based on an image intensity
distribution over an image histogram. It describes the general
quality of the image. Let I(x, y) represent an image function of
two variables x and y, and x=0…M−1 and y=0…N−1,where
M and N are image resolution. This function takes the values
i=0…G−1, where G represents the total number of intensity
levels of an image. In this research grey-scale images are
concerned, therefore G equals to 256. The histogram (distribu-
tion) of intensity level occurrence is given by the formula

H ið Þ ¼
XM−1

x¼0

XN−1

y¼0

1; I x; yð Þ ¼ i
0; I x; yð Þ≠i

:

�
ð2Þ

Usually, in order to compare histograms of images of
different resolutions, they are normalized

h ið Þ ¼ H ið Þ
NM

: ð3Þ

Besides, it is worth noticing that h(i) represents also the
intensity density distribution function, which describes the
probability of each intensity level to occur in the image. For
example, an average intensity distribution for snowflake and
graupel classes is presented in Fig. 1. It is interesting to notice,
that although the objects on the images seem similarly grey, its
intensity distribution histograms are different. Therefore, using
only a histogram as a texture operator should allow for particle
classification.

On the basis of histogram data (Materka and Strzelecki,
1998) compiled formulae for parameters describing the follow-
ing values: mean, variance, skewness, kurtosis, energy, and
entropy, which describe the texture quality in this method. An
example of a histogram calculated for an image is depicted in
Fig. 3.

3.2. Co-occurrence matrix

The second order features additionally consider the spatial
relations between the luminance intensities within an image.
As a consequence, it contains information about the spatial
properties. This is important in image classification, because
usually a value of a single pixel is correlated with values of
neighbours. Otherwise, it could be suspected to be a noise.

(Haralick et al., 1973) introduced the spatial relationship
between pixel intensities in the definition of spatial depen-
dence matrix, which later became called a co-occurrence
matrix by (Zucker and Terzopoulus, 1980); this name is now
in common use. Generally speaking, the co-occurrence matrix
(COM) stores the information about the illumination values co-
appearance in the image. For given G luminance levels COM has
a resolution GxG. Each cell, com(x, y), of COM contains the
information of the co-occurrence of intensity levels of value x
and y in the given direction θ, at the distance d. Fig. 4 presents
the neighbourhood defined for each pixel in the image. Table 1
presents four basic directions for which this matrix is
calculated. It is necessary for further calculation to normal-
ize the frequency data, R, in this matrix. The normalization
factor for each direction is given in the last column of the

Fig. 1. Recorded snow particles with average class histograms of image
intensity.

Fig. 2. The size distribution of snowflake and gruapel particles in snow
particle image database.
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Table 1. Fig. 5 presents steps of this algorithm applied to an
exemplary image of five intensity levels.

Four co-occurrence matrices are calculated for one
image, they correspond to each direction. Then for all of
them 14 parameters are calculated, which describe among
others: texture contrast, correlation, entropy, and infor-
mation measure. For the definition of the parameters
please refer to (Haralick et al., 1973). The final feature
vector contains the average and standard deviation calcu-
lated for each feature over these four matrices.

The most problematic issue, when applying the co‐occur-
rence matrix, is its calculation complexity, which depends on
the co‐occurrencematrix size. Therefore, it is suggested to limit
all possible luminance level values to less than original 256, in
order to achieve better calculation speed. In this research the
image illumination was quantized non-linearly into 16 shades.
One shade represented the background and other 15 repre-
sented linear scaling for shades encountered in the object
image.

3.3. Grey tone difference matrix

Grey‐Tone Difference Matrix (GTDM) presented by
(Amadasun and King, 1998) is an attempt to define texture
measures correlated with human perception of textures.

This matrix is a column vector containing G elements. The
entries represent the difference between the intensity levels
of a pixel and an average intensity computed over a square
window centred at the pixel and sliding over the image. The
average intensity for the window centred at pixel (x, y) is

�I i ¼
1

W−1

XK
m¼−K

XK
n¼−K

I xþm; yþ nð Þ; m;nð Þ≠ 0;0ð Þ; ð4Þ

where K specifies the window size and W=(2K+1)2. Next,
the i-th entry of the grey‐tone difference matrix is

s ið Þ ¼
XM−1

x¼0

XN−1

y¼0

ji−�I ij; ð5Þ

for all pixels having the intensity level i, otherwise s(i)=0.
Fig. 6 presents a GTDM structure contents for the exemplary
image.

From this definition five features were developed, which
describe the texture coarseness, contrast, busyness, complex-
ity, and strength.

3.4. Local binary pattern

The idea of Local Binary Pattern (LBP) presented in works
of (Ojala et al., 2000) and (Ojala et al., 2002) is very simple,

Fig. 3. Histogram calculated for an exemplary image with visualization of two parameters (mean and variance) from the first order features.

6 7 8
5 o 1
4 3 2

Fig. 4. The neighbourhood of o pixel in a co-occurrence matrix.

Table 1
The direction definition and the normalization factor for co-occurrence
matrices based on notation from Fig. 4.

θ Neighbours Normalization factor R

0‐degree 5 — o — 1 2Iy(Ix−d)
45‐degree 4 — o — 8 2(Ix−d)(Iy−d)
90‐degree 3 — o — 7 2Ix(Iy−d)
135‐degree 6 — o — 2 2(Iy−d)(Ix−d)
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yet powerful. Authors understand the texture as a two-
dimensional phenomenon characterized by two orthogonal
properties: spatial structure (pattern) and contrast (the
“amount” of local image texture). The definition starts from
the joint distribution of luminance value on a circularly
symmetric neighbour set of pixels in a local neighbourhood.
Then an operator invariant against any monotonic transfor-
mation of luminance is derived. Rotation invariance is
achieved by recognizing that this illumination invariant
operator incorporates a fixed set of rotation invariant
patterns.

In order to find the illumination rotation invariant texture
operator, the texture T, in local neighbourhood of mono-
chrome image, is seen as the joint distribution of the grey
levels of P(P>1) image pixels, and is given as

T ¼ t gc; g0;…; gP−1ð Þ; ð6Þ

where gc corresponds to the luminance value of the central
pixel of the local neighbourhood and gp(p=0, …, P−1)
describes the luminance values of P equally spaced pixels on

a circle of radius R(R>0), that form a circularly symmetrical
neighbourhood.

The coordinates for point gp are given by
−Rsin 2Πp

P ;Rcos 2Πp
P

� �
and for gc=(0, 0). Next, to achieve

the illumination invariance, the luminance value of central
pixel gc is subtracted

T ¼ t gc; g0−gc;…; gP−1−gcð Þ: ð7Þ

Authors assume that the difference gp−gc is independent
of gc, which allows for factorization

T≈t gcð Þt g0−gc;…; gP−1−gcð Þ: ð8Þ

Finally, they assume that the information conveyed in the
value of the central point, gc, contains only luminance informa-
tion, whereas whole texture is described by the other factors,
therefore they remove it from the definitionwithout large loss of
information for further calculation

T≈t g0−gc;…; gP−1−gcð Þ: ð9Þ

Fig. 5. Co-occurrence matrix achieved for image with 5 intensity levels. Steps 1 to 5 present the algorithm for co-occurrence matrix calculation for distance 1 pixel
and angle 0°.

Fig. 6. Grey tone difference matrix calculated for image with 5 illuminance levels.
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This texture operator should be very discriminative, yet
some further processing is necessary. Firstly, it is binarized
according to the formula

s xð Þ ¼ 1; x≥0
0; xb0

�
ð10Þ

and then the value is calculated as

LBPP;R ¼ ∑P−1
p¼0 s gp−gc

� �
if U LBPP;R

� �
≤ 2

P þ 1 otherwise;

(
ð11Þ

where

U LBPP;R

� �
¼

XP−1

p¼0

js gp−gc
� �

−s gp−1−gc
� �

j: ð12Þ

Additionally, to incorporate the information of the
illumination in the image the authors suggest the new
definition of the variance operator as

VARP;R ¼ 1
P

XP−1

p¼0

gp−μ
� �2

; where μ ¼ 1
P

XP−1

p¼0

gp: ð13Þ

Finally, they calculate the histogram over the image from
the joint distribution of LBPP,R/VARP,R. They also notice that
the coefficients P and R must not be similar in case of
calculation for both parameters. Fig. 7 presents the idea of
LBP calculated for an exemplary image with R=2 and P=12.

3.5. Run length matrix

Run lengthmatrix (RLM)wasproposed by (Galloway, 1975)
for texture classification. It is based on the assumption that the
texture of good quality is characterized by small number of
consecutive pixels in a given direction with similar luminance
(short runs). On the contrary, the coarse textures are charac-
terized with longer runs.

For an image the run length matrix cell, r(i, j), is defined as
the number of runs of pixel of luminance i and length j. Where
the maximal pixel value is G and the maximal run depends on
the image resolution K=max(N,M). Fig. 8 presents steps of the
algorithm on an exemplary image. In further research it was
noticed that such definition makes the matrix dependable on
the object rotation, therefore matrices for each direction are
calculated; similarly as in case of co-occurrencematrixmethod.

In the next step the averagematrix is calculated fromwhich
several parameters are derived according to formulae pre-
sented by (Galloway, 1975) and reported also by (Tang, 1998),
(Albregtsen et al., 2000). Moreover, additional features were
developed by (Chu et al., 1990).

3.6. Novel approach

This section presents novel approaches to texture operator
calculation. Some of the techniques are popular in image
processing, although its application for texture descriptors has
not been known to the authors. From one point of view, it is
suggested to design simple local texture statistics, which in
general, recollects the local binary pattern idea, however its

definition as well as the calculation is less complicated. On the
other hand, using structures which are designed for feature
calculation as a feature vector is also suggested.

3.6.1. Local texture statistic operators
This section presents simple texture operators based on

local texture statistics. All represent joint distribution of
local statistical features calculated for an image. The locality
is defined by a sliding window with side equal to 7 pixels.
Application of square neighbourhood allows also to assume
the rotation invariance of the achieved operators. Following
operators are introduced:

• mean histogram (MH) — for each pixel the mean value in
the window is calculated and the results are presented as a
histogram of 64 bins. Fig. 9(a) shows an idea of this texture
operator;

• min–max histogram (MMH) — for each pixel the minimal
and maximal value in the window are found and its absolute
difference is the value stored in the histogram of 64 bins (see
Fig. 9(b));

• mean–variance histogram (MVH)— for each pixel the mean
and variance in the window are calculated and the results
index two‐dimensional histogram (16×16 bins) (see
Fig. 9(c)).

3.6.2. Structure based texture operators
Most of the described texture operators, e.g. FOF, COM,

RLM, and GTDM, in order to calculate a descriptive feature,
create firstly a special data structure, which is used for
parameter calculation. Here the idea of (Albregtsen et al.,
2000) is followed, where the data structure is utilized as a
feature vector and gives better results than the features
itself. It is proposed to create a feature vectors which are
based on the data structures corresponding to the other
mentioned techniques. In consequence, additional texture
operators are defined as feature vectors built from data
structures of:

• normalized histogram (FOF) of 64 bins,
• co-occurrence matrix (COM) calculated for images with
quantized luminance into 16 values,

Fig. 7. Local binary pattern matrix achieved for image with 5 luminance
levels. LBP is calculated for radius equal to 2 pixels and for 12 points.
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• grey-tone difference matrix (GTDM) achieved for original
images of 256 grey shades.

In order to distinguish between the standard method using
feature vector based on features (FVBF) and the suggested
approachwith feature vector based on data structure (FVBDS) a
letter is inserted in a subscript— it is F, for all based on features,
andM, for data structures. Fig. 10 depicts the difference in data
processing of these two approaches for feature vector design.

4. Classification technique

The k-nearest neighbour (kNN) classifier does not assume
any data distribution pattern. It is an example of a supervised
classification method. It means that a labelled training dataset
is necessary. The preparation of the labelled dataset bases on
the visual inspection of chosen images.

Each object, from testing dataset, represents a point in
P-dimensional space (where P corresponds to the feature

(a) Mean histogram (b) Min-max histogram

(c) Mean-variance histogram

Fig. 9. Histograms calculated for local texture statistic operators.

Fig. 8. Run length matrix calculated for image, with resolution 5×7 pixels and 5 grey-scale levels. Steps 1 to 5 present the calculation of run lengths for each grey-
scale level.
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vector length). A virtual hyper-sphere (e.g. for P=2
features it is a circle, for P=3 - a sphere) is created which
encloses k training objects only. The tested object is
classified to this class, which is represented by the majority
of training objects enclosed in the hyper-sphere. Therefore,
it is important to choose the k parameter to be an odd
number in case of two-class problem, otherwise there
might be the same number of neighbours belonging to both
classes, what makes the classification impossible. Example
of kNN classification (for k=3) in two-dimensional case is
presented in Fig. 11.

In the case of presented experiments the classifierwas tuned
up to assure that k parameter is set to an optimal value.
Therefore, firstly classification tests for all techniques were
conveyed for k in range 15–95, where the values changed with
step equal to 10. After comparing the results, it occurred that for
k=25mostmethods achieved the best efficiency and this value
was used in experiments. It is not surprising that smaller value
of the parameter gave the best results. Generally, the bigger the
k parameter becomes the higher is the probability that the
element will be miss-classified. It is a consequence of consid-
ering only a local area, in the case of small k value, and interpret
data globally, when k value is getting bigger.

5. Results and discussion

This section presents all experiments performed in order to
evaluate properties of mentioned before texture operators.
Considering classification of snow particles into snowflake and
graupel, it is possible to apply the k-nearest neighbour classifier.
The goal is to achieve the highest classification efficiency for
images gathered in the snow particle image database, which
represents the data collected by the image acquisition system.

The creation of labelled dataset of snowflake and graupel
demanded a co-operation with a person, who could appoint
each image to one of the classes. The visual inspection assumed
that only images with low quality could be removed from the
database. Otherwise, the experience of the specialist was the
only criteria used for image classification.

5.1. Texture operator comparison

This experiment aimed to evaluate the classification efficien-
cy of all presented texture operators. In order to describe the
classification quality, three different parameters were calculated.
Firstly, the classification efficiency is given as a ratio of number
of snow particle images, which belong to the class to which
were classified, to all tested images. Secondly, the probability of
detection represents the fraction of correctly classified images
from one class (e.g. snowflake), to all images classified as this
class (e.g. snowflake). Finally, the false alarm rate corresponds
to miss-classified images of one class (e.g. snowflake classified
as graupel), to all images classified as this class (e.g. snowflake).
The results are given in Table 2.

The best classification efficiency, 86.06%, was achieved for
COMM method. However, there are many methods (LBP, MVH,
FOFM, MH, GTDMM) which result is around 85%. It is worth to
point out three things. Firstly, in all cases classification with
feature vectors based on structure data (bold font in table), gives
better result in comparison to the traditionally calculated
features. Probably, using all information gathered in the data
structure, instead of only few parameters derived from it,
improved the classification result. In times when these tech-
niques were developed, short feature vectors were important
due to calculation overload, but nowadays this problemcould be
neglected. Secondly, it is interesting that the results achieved by
LBP, and local texture statistic operators MVH, and MH are
almost similar. Finally, considering the additional parameters, it

Fig. 10. Two approaches of data processing for feature vector design.

Fig. 11. K-nearest neighbour classification.
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occurred that all techniques better managewith graupel images
than with snowflake. In all cases the probability detection is
higher for graupel and the false alarm rate is lower. It is a
consequence of snow particle structure, which corresponds to
image quality. Generally, graupel structure is dense whereas
snowflake is fluffy what on images sometimes results in low
contrast. Moreover, sometimes in the case of snowflake it is
difficult to precisely describe the object outline, which may
result in confusing background as a particle part and vice versa.

5.2. Multiple texture operators

Describing the snow particle image by one texture
operator is sufficient for classification. However, this exper-
iment checks whether it is possible to improve the results
when two texture operators are implemented. In order to
create pairs of texture operators only these which efficiency
was higher than 80 % in previous experiment are considered.
Therefore, 55 pairs of multiple texture operators were
created. Due to the lack of space, Table 3 presents results
for these pairs where class efficiency is higher than the best
score in a previous experiment (86.06 %).

This experiment shows, that exploring information con-
cerning an image texture from two texture operators, can
improve the classification. In the best case — LBP−GTDMM

pair — the classification efficiency is 87.89%, which is almost
2% higher than in previous experiment. The results are a little
bit disappointing, because the improvement in classification
is not considerable. This result suggests that, however, the
texture operators are calculated using different approaches,

the information stored in them is redundant. Therefore,
combining more of them will not improve the classification
efficiency, because no new information will be added.

5.3. Dimension reduction

The length of feature vectors of most of the presented
texture operators is considerably long. Detailed lengths are
presented in Table 4. Moreover, the results from previous
experiment suggest that probably the information stored in
the feature vector is redundant. Therefore, this experiment
checks the influence of reduction of feature vector length on
the classification performance.

While reducing the data dimensions, it is important to
remove the redundant data, but preserve the information,which
permit to distinguish between objects. In case of dataset with
high-dimensionality, when it is impossible to visualize data to
find patterns governing the dataset, the statistic tools become
useful. Principal component analysis (PCA) is a statistic tool used
to solve this kind of problems. Thismathematical procedure uses
Karhunen–Loève transform to find a set of principal components
(eigen vectors), which describe the data. The set of the principal
components can be understood as a new set of axes, which
follows some rules. First of all, the axes are defined in this
direction where the highest variability of the data is noticed.
Therefore, the number of principal components can be smaller
or equal to the number of original features. Next, for each
principal component a value (eigen value) is given. It corre-
sponds to the data variability in this direction. It is important to
remember that the eigen vectors are orthogonal. In order to
apply PCA on the dataset it should be assured that its mean is
zero. In other words, the mean value for each feature should be
subtracted from the dataset. Fig. 12 presents an exemplary two-
dimensional data distribution and its eigen vectors.

Let E=[e1, e2,…, el] to be a matrix of eigen vectors, ei, and
EE=[ee1, ee2, …, eel] represents a vector of eigen values, eei,
corresponding to the eigen vectors. Eigen vectors, ei, in E
should be ordered according to the decreasing value of its
eigen value, eei. As it was mentioned, the eigen value describes
the variability of data in direction defined by the eigen vector.
From other point of view, this value corresponds to the
information which is described by this eigen vector. However,

Table 2
Correct classification efficiency for texture operators.

Method Efficiency [%] Probability of
detection [%]

False alarm rate[%]

Snowflake Graupel Snowflake Graupel

COMM 86.06 84.45 88.00 46.23 38.91
LBP 85.91 85.89 85.93 47.62 47.53
MVH 85.87 83.85 88.40 45.81 36.55
FOFM 85.52 82.55 89.48 44.82 31.13
MH 85.26 83.36 87.61 45.85 37.51
GTDMM 85.17 80.19 92.97 42.51 18.46
COMF 84.75 83.81 85.84 46.70 42.78
RLMM 83.15 80.61 86.50 44.82 34.53
MMH 81.46 78.27 85.97 43.66 31.31
FOFF 81.27 77.72 86.49 43.13 29.25
GTDMF 80.21 75.77 87.44 41.51 24.17
RLMF 55.81 57.55 54.09 48.74 52.25

Table 3
Classification efficiency for multiple texture operators.

Method A Method B Efficiency [%]

LBP GTDMM 87.89
LBP COMM 87.60
LBP FOFM 87.56
FOFF RLMM 87.41
LBP MVH 87.11
FOFF COMF 87.04
COMM FOFM 86.58
LBP MH 86.95

Table 4
Feature vector length after PCA transformation with assurance that at least N
percent of information is stored in new data representation.

Method Data dimension vs. information

Original 99% 95% 90%

RLMM 640 65 42 30
LBP 416 101 33 5
GTDMM 256 79 53 34
MVH 256 19 8 6
COMM 256 8 6 4
FOFM 64 15 7 5
MH 64 12 6 4
MMH 64 9 6 4
COMF 28 1 1 1
RLMF 12 1 1 1
FOFF 6 2 1 1
GTDMF 5 1 1 1
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it is more convenient to present eei in percents. Then each eigen
value is recalculated according to the following formula:

eei ¼
eei

∑l
k¼1 eek

: ð14Þ

Then the decision concerning the number of eigen vectors
necessary to describe the data is dependent upon equation

Xm
k¼1

eei > PE; ð15Þ

where PE corresponds to the percent of information that
should be available in a new set with diminished dimensions
andm is the number of chosen eigen vectors. Hence, for 100%
m= l. Otherwise, a new matrix Enew=[e1, …, em] is created.
Finally, the dataset with reduced dimensions, Onew, is
achieved according to the equation:

Onew ¼ ETnewO; ð16Þ

where O denotes original data, and o is an object feature
vector (which has p dimensions, and p≥m).

Table 4 concludes the application of PCA in regard of feature
vector length. In the second column, the length of a feature
vector is given before the dimension reduction. The columns
from three to five contain the feature vector lengths achieved
after application of PCA. The difference is the percentage of how
many features from original information remained. Generally,
the bigger reduction of the feature vector length means, that

the original data is characterized by high redundancy. For
instance, in case of RLMM method using 99% of original data
information, reduces the feature vector length to 10%. Similarly,
after reduction, the feature vector calculated for COMM contains
only 8 elements from 256 at the beginning (that is only 3% of
the original length). On the other hand, when one decides to
losemore information from the original dataset, it is possible to
compress the feature vector even more (please see columns 4
and 5). However, in these cases the amount of lost data may
become crucial, and diminish the descriptive properties of the
feature vector. It is also interesting to notice, that in case of
feature vectors based on features, the data spread only in one
direction. Therefore, the length of the feature vector after
dimension reduction is one.

Next, Table 5 gathers correct classification efficiency calcu-
lated for data of reduced dimensionality. This table does not
present results for all methods which feature vector length, due
to PCA application, with its size reduced to one dimension.
Unfortunately, this reduction made the correct classification
impossible in all these cases. For texture operators, with very
long feature vectors, the dimension reduction improves the
classification considerably, as in the best cases 100% accuracy
was achieved forMMH, COMM, GTDMM, and FOFM. It seems that
removing the redundant data permit the kNN classifier to
describe between class boundary more precisely.

5.4. Examples of snow particle classification

This section presents some examples of snow particle and
its classification results. For consideration, theMHmethod was
chosen, because its feature vector could be easily visualized as a
histogram. This method also returned high correct classifica-
tion ratio: in the case of one dimensional classification it was
85.26%, and after application of PCA, 95% of original informa-
tion, the result increased to 99.24%, while reducing the feature
vector length from 64to 6 elements.

Fig. 13 presents examples of snow particles with calcu-
lated feature vectors (Fig. 13b, c, e, and f) and additionally
average histograms of feature vectors achieved for each class:
graupel (Fig. 13a) and snowflake (Fig. 13d). It is not surprising
that the shape of the average class histograms of feature vectors
corresponds to the average class histogram of image intensity
presented in Fig. 1. It is a consequence of titMH method
definition, which can be seen as a smoothed version of the
intensity histogram, where additionally the number of bins

Fig. 12. Exemplary data distribution on Cartesian plane. Additional axes
correspond to eigen vectors direction. The length of each axis reflects the
eigen value.

Table 5
Classification efficiency achieved for datasets created after applying PCA
with various information reductions.

Method Classification efficiency [%]

vs information [%]

90 95 99

MMH 97.17 100.00 100.00
COMM 79.78 100.00 100.00
GTDMM 99.87 99.86 100.00
FOFM 99.83 99.96 100.00
MVH 97.84 99.50 99.99
LBP 99.90 99.96 99.97
RLMM 99.36 99.24 99.01
MH 96.11 99.24 97.42
FOFF - - 79.66
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was reduced four times. In both cases, the slope of the
histograms for the snowflake class is straight whereas the
shape of the histograms achieved for the graupel class
resembles a saddle. Particles presented in Fig. 13 are
examples of correct and miss-classified objects when one
dimensional classifier was applied. However, the kNN
decision is based on the Euclidean distance calculated in 64
dimensional space, one can notice that the particles which
feature vector shape reflecting the saddle was classified as
graupel (see Fig. 13b and Fig. 13f), whereas these described
by feature vector which histogram has straight slope was
classified as snowflake (see Fig. 13c and Fig. 13e).

Applying PCA before classification allowed for correct
classification of all particles. Unfortunately, the applied software
does not return the feature vectors achieved after the dimension
reduction. Therefore, the shape of the reduced feature vector is
unknown. However, looking at the exemplary feature vectors, it
is worth to point out that in all cases only features between 10
and 30 bin vary, others are always set to 0. Next, from the range
10−30, one can see that the biggest variation is in the end of the
set, and probably this part is represented in the reduced feature
vector.

6. Conclusions

This work presents an application of texture operators for
snow particle images classification into the snowflake and
graupel. Many texture operators were considered, namely:
first order features, co-occurrence matrix, run length matrix,

grey-tone difference matrix, and local binary pattern. More-
over, a novel approach which design simple local statistic
operators was introduced. Here, three new texture operators
were presented: mean histogram, min–max histogram, and
mean–variance histogram. Finally, it was suggested to use
feature vector based on the data structure, which is created in
a middle stage by many of methods, instead of using a feature
vector based on features only.

Calculating the correct classification efficiencywith k-nearest
neighbourhood classifier shows that all these techniques except
RLMF describe the object well and allow to classifywith accuracy
above 80%. The best result was achieved for COMM texture
operator and its correct classification efficiency is 86.06%. It was
noticed, that utilizing feature vectors based on structures, in
comparison with feature vectors based on features, gives better
results. A next experiment checked whether it is possible to
improve the correct classification accuracy by using more
texture operators in order to describe an image. Although, the
correct classification efficiency increased up to 87.89% for LBP−
GTDMM pair, generally the improvement is not satisfactory.
Moreover, it was found, that the redundancy in the data is so
high, that applyingmore texture operators for object description
does not increase the information. Therefore, principal compo-
nent analysiswas applied in order to remove the redundant data
(and also to reduce the feature vector length). In consequence,
when keeping 99% of original information describing the object,
it was possible to reduce the feature vector length even down to
10% of its original length in case of RLMM texture operator. Next,
using reduced feature vectors for class description, it improved

(a) Average histogram
for graupel

(b) Correctly classified
graupel

(c) Miss-classified
graupel

(d) Average histogram
for snowflake

(e) Correctly classified
snowflake

(f) Miss-classified
snowflake

Fig. 13. Visualization of feature vector achieved for MH method.
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the classification considerably, as in case of MMH, COMM,
GTDMM, FOFM the correct classification efficiency was 100%.

Using a snow particle classification system of high accuracy
allows to easily distinguishing between the precipitation types.
Combining the information about the precipitation type with
precipitation rate and radar readouts is a next step in the
research which aims to find better coefficients describing the
Z–R relation. It is hoped, that finding accurate parameters,
which bound the radar reflectivity factor with measured
precipitation rate, allow for good precipitation forecasting. On
the other hand, applying the snowparticle classification system
in future research is also possible. As the snow particle type
depends on the developing stage of cloud, it is believed that
this system could help in research concerning cloud growth
and development.
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