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2D Feature Space for Snow Particle Classification into

Snowflake and Graupel
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SUMMARY This study presents three image processing sys-
tems for snow particle classification into snowflake and graupel.
All of them are based on feature classification, yet as a novelty
in all cases multiple features are exploited. Additionally, each of
them is characterized by a different data flow. In order to com-
pare the performances, we not only consider various features, but
also suggest different classifiers.

The best achieved results are for the snowflake discrimina-
tion method applied before statistical classifier, as the correct
classification ratio in this case reaches 94%. In other cases the
best results are around 88%.
key words: image processing, snow particle features, classifica-
tion

1. Introduction

The Japan coast of the Japan Sea is characterized by
the orographic snowfall. Clouds are created over the
sea and then transported along the direction of a pre-
vailing winter monsoon wind (northwestern direction).
The heavy snowfall is explained [5] as a consequence
of the topographic updraft, which causes snow clouds
to develop. Additionally, the stronger the wind, the
greater the riming growth of particles is. It has also
been shown by the statistical calculation over the pe-
riod of 16 years data from many meteorological station
around Japan [10] that graupel precipitation is predom-
inant in this region. Besides, it has been also noticed
that snowflake size distribution varies in this area [7],
as its creation is influenced by the temperature, place,
and particle density. Similarly, it has been proved [4]
that when the temperature distribution changes within
the cloud, the internal structure of graupels changes as
well.

On the other hand, the ground observation of
snow particles plays an important part in broad un-
derstanding of the processes responsible for the snow
cloud growth, as well as a singular particle physics be-
haviour. They allow to improve the information ac-
quired in lower atmosphere by radars and lidars [14].
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For instance, it has already been verified [6] that the re-
lation of the reflectivity factor (Z) and the precipitation
rate (R) does not depend on the snowfall intensity, as it
was suggested by Marshall and Gunn [9]. Besides it was
proven that the average size distributions of snowflakes
maintain their exponential form with increase in snow-
fall intensity and that there occur small changes in the
slope of the size distribution even in the condition of an
equal snowfall intensity. Finally, it is also known that
the characteristics are different for snowflake and grau-
pel, which has been exploited in the research for graupel
and hail recognition using multiparameter radar [2].

Therefore, we argue that an acquisition of snow
particle images and its classification into graupel and
snowflake could be exploited for participation parame-
ter calculation. Moreover, this local information can be
further utilized for more detailed snowfall phenomena
description which could be useful to explain e.g. the
local changes in snowflake distribution described in [7].

In this paper we present three developed systems
for snow particle classification into snowflake and grau-
pel. All of them exploit at least two features which
describe a snow particle. There have already been sug-
gested shape and statistical parameters or some spe-
cially designed features which take into consideration
the characteristics of the particles [15]. The emphasis
on this research was to find such features which give
high accuracy classification. Additionally, the novel
procedure for classification is described and the clas-
sification efficiency of this and statistical classifiers is
compared. We believe that the described techniques
become a powerful tool for local snowfall parameter cal-
culation.

2. Imaging system overview

In order to capture the images of falling snow particles
in sufficient resolution of 1280 x 960 the camera with
shutter speed of 1/10000 s is exploited. It is connected
to the computer via the IEEE 1394b interface. Enlight-
ening measuring volume (128W x 96H x 250D mm) by
four halogen lamps improves the image quality as well
as enables the system to work during the night. The
camera is placed in the distance of two meters from the
measuring volume inside a vertical tunnel to protect
the equipment from the weather influence. Moreover,
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(a) General (b) Measuring volume

Fig. 1 The system overview.

wind breakers are installed around (see Fig. 1).
The measurement took place at the Kanazawa Uni-

versity in the winter months of January and February,
2009. A labelling method extracted snow particles from
gathered data. Furthermore, the visual inspection of
the particle database allowed to enrich it with informa-
tion to which class belongs each particle.

3. Snow particle shape features

There are many features [15] introduced for classifica-
tion of the snow particles into snowflakes and graupels.
Its definitions exploit various kind of information en-
coded in image. Some features base on general knowl-
edge about snow particle surface characteristics and its
falling behaviour. Other utilize the contour complex-
ity to derive the feature value or use the illumination
changes as a main factor for particle description. Fi-
nally, there are also described those from shape and
statistical parameters, which proved to be effective for
automatic snow particle classification.

3.1 Area size

For images with normalized resolution it is possible
to compare object area size. It was noticed that the
homogoneous graupel structure has larger area than
snowflake. Although, the snowflake may seem bigger
due to its branching structure.

3.2 Perimeter

It has been noticed from the visual inspection that the
contour of a snowflake is longer than that of a grau-
pel. This is because of the complicated snowflake ob-
ject structure. Therefore, the perimeter of the parti-
cle becomes a feature. In this research this feature is
calculated for original resolution images as well as for
normalized ones (images scaled to the 40 x 40 pixels
resolution).

(a) Graupel (b) Snowflake

Fig. 2 The idea of concave number feature. Dashed line rep-
resents contour; solid line the convex hull; different colours mark
the concave parts.

3.3 Concave number

The snowflake contour is not only longer but also more
complex than that of graupel. Looking from the outside
at snowflake particle shape, it is noticeable how many
concave parts are in the contour. In order to calculate
its number, the convex hull for the object is created.
Then, each time the contour splits from the convex
hull line, a new concavity is marked and its number
is counted. Fig. 2 presents an example of this feature
calculation. Each concavity is marked with different
colour.

3.4 Brightness

Due to describe globally the changes in illumination
in the image, the brightness feature has been defined.
Actually, this parameter may be calculated in many
ways. However, in our research it has been noticed, that
the surface illumination of graupel changes slowly in
the comparison of snowflake. Therefore, this feature is
defined as the maximal difference of illumination within
3 x 3 pixel window, which passes through the object.

3.5 Volume

When the snow particle image is taken the parts of par-
ticle which are closer to the camera are brighter than
those further. Therefore, we can read the object illu-
mination values as a transformed volume of the object
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(a) Original image (b) Volume representation

Fig. 3 Visualization of volume feature idea.

(see Fig. 3). Hence, in order to calculate the volume all
intensity values are summed up. Additionally, due to
remove the influence of the size of the particle the result
is divided by the object area size, see the equation:

V =

∑
I(x, y)

Area
(1)

where I(x, y) is the intensity of the image higher than
the background threshold.

3.6 Roughness

The roughness feature describes the relation between
the object perimeter and its area size [12]. On the other
hand, it could be seen as a proportion of the perimeter
of the object with the perimeter of the circle of the
same area size. It is given with the formula:

roughness =
Perimeter

2
√
Area ∗ π

(2)

3.7 Danielsson

The relationship between object area and minimal dis-
tances from each object point to the contour are de-
scribed by Danielsson feature [13]. In order to calculate
its value following formula should be applied:

Danielsson =
Area3∑

j mini(dist(objecti, contourj))
(3)

where j iterates through contour points, i iterates
through object points, the dist function calculates Eu-
clidean distance between given points and min returns
the minimal value.

3.8 Hu moment 1st order

The Hu moment of the 1st order describes image feature
basing on image illumination and its position in image
[8]. The parameter, therefore, has been calculated for
original and thresholded images.

4. Classification methods

In order to classify snow particles Mahalanobis mini-
mum distance and k-nearest neighbourhood classifiers

has been chosen. Additionally, a double threshold clas-
sifier is introduced.

4.1 Mahalanobis minimum distance classifier (MMD)

The definition of Mahalanobis minimum distance clas-
sifier [1], [11] takes its origin from the Bayes theorem.
It assumes the normal distribution of the likelihood,
moreover the covariance matrices should be similar for
each class and non-diagonal. It allows to simplify the
quadratic discriminant function equation into:

gi(A) = −1

2
(A− µi)

T
∑

−1(A− µi) (4)

where i is a class index, A is a feature value,
∑−1 is

an inverse of covariance matrix
∑

, and µi is the class
average value of the feature. In other words, this equa-
tion describes a hyper-ellipsoid which encloses inside all
values representing one class. When hyper-ellipsoids for
different class overlap, then in this area it is difficult to
classify. On the other hand, when object is placed in
the area which does not belong to any of the hyper-
ellipsoids, then it will be unclassified (for 2D example
see Fig. 4a).

4.2 K-nearest neighbourhood classifier (kNN)

Having a labelled training dataset for each new object
we create around it a virtual hyper-sphere which en-
closes k objects from a training dataset [3]. The ra-
dius of the hyper-sphere is given by the biggest dis-
tance between a new object and one of the k objects
from training dataset. The object then is classified to
this class which representatives are the majority within
the k-object dataset. In this case only when in the k
neighbourhood the number of different class members
is equal an unclassification occurs (see Fig. 4b).

4.3 Double threshold classifier (DT)

The double threshold classifier can be described as a
combination of threshold classifier with voting. For
each object two (or more in multi-dimensional case)
parallel classification by threshold classifier takes place.
An object is classified to a class if all classifiers return
the same result (vote similarly), otherwise it becomes
unclassified (see the Fig. 4c). Such definition assures
that the miss-classification of an object is on very low
level, which is the advantage we are looking for. More-
over, it returns a considerable amount of unclassified
objects, which can be classified once again.

5. Snowflake discriminant methods

The snowflake discriminant methods are a distin-
guished class of snow particle classifiers, which have
one common feature. Each of these classifiers correctly
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(a) Mahalanobis minimal dis-
tance

(b) K-nearest neighbourhood,
k=3

(c) Double threshold

Fig. 4 The comparison of classification methods for two class problem. Spirals point,
the classified object; circle mark, the neighbourhood.

classifies all or almost all (more than 98%) of graupel
particles, but its efficiency to classify snowflake is much
lower (less than 50%). Therefore, as a general clas-
sifier their performance is unsatisfactory. Yet, when
we notice that they never misclassify a graupel as a
snowflake, we can exploit them for snowflake discrimi-
nation in the input data. Such an application allows to
create a system, which in first step enable to recognize a
small part of input data (and only snowflake particles),
but simultaneously assures that this discrimination is
free of error.

There have been defined following techniques:

α flake number (number of snow particles in one im-
age),

β corner number (number of bending of the particle
contour),

γ hole number (number of holes in the snow particle)
and flake number,

δ hole number and corner number,
ε flake number and perimeter (of particle),
ζ flake number and corner number.

6. Proposed system data flow

Having so many snow particle features and classifica-
tion methods, it is possible to design many systems. In
this work we describe three systems designed for au-
tomatic snow particle classification into snowflake and
graupel.

6.1 Simple classification system

The simple classification system describes each object
by a pair of features and uses for classification one of
the three classification techniques described in Section
4. Therefore, in our research for each feature pair and
each classifier separate system was designed.

Fig. 5 The decision flow in the system with snowflake discrim-
ination applied.

6.2 Snowflake discrimination methods for classifica-
tion improvement

This is a two step classifier, which data flow is presented
in Fig. 5. Firstly the snowflake discrimination thresh-
old classifier is applied. Those particles which are not
classified as snowflake are then classified by the simple
classification system. This combination allows in first
step to correctly classify a part of data, which possi-
bly could be miss-classified in the second step. That
should improve the results. Many systems combining
each from snowflake discriminant techniques with each
feature pair classified by MMD or kNN classifier were
tested.

6.3 Cascading decision system

The idea of the cascading system is following. Firstly,
the input data goes through the DT classifier. This
step could be repeated for the unclassified data with



NURZYNSKA et al.: 2D FEATURE SPACE FOR SNOW PARTICLE CLASSIFICATION INTO SNOWFLAKE AND GRAUPEL
5

(a) H - pair (b) I - pair (c) J - pair (d) L - pair

Fig. 7 The examples of achieved scatter plots for selected feature pairs.

Fig. 6 The decision flow in the cascading decision system.

different set of feature pairs. The main advantage of
this part of processing is the low miss-classifcation ratio
with comparison to other systems. Next, the unclassi-
fied particles are classified by the statistical classifiers
(see Fig. 6).

7. Result and discussion

7.1 Image database description

The snow particle database contains 8480 gray scale
images. It is divided into training and testing datasets.
The training dataset consists of 460 snowflake images
and 461 graupel images. The testing dataset contains
3924 snowflake and 3635 graupel images.

7.2 Feature pair selection

There are many features which could be used in the au-
tomatic snow particle classification system. Therefore,
firstly, we narrow the research only to those which com-
bination should bring good results. In order to select
the best ones the double feature scatter plots have been
created for all combination (examples are depicted in
Fig. 7). It allowed to select 25 pairs of features, but
the results over 60% achieved only 19 pairs, therefore

only those are presented in Table 1.

7.3 Simple classification system

Results achieved by applying the simple classification
system are presented in Table 2 for MMD and kNN and
Table 3 for DT classification. The second column of Ta-
ble 2 presents the results for the MMD classifier. Here
only three methods result worse than 70%, while two of
them N (perimeter and volume) and J (brightness and
roughness) have the classification ratio on the level of
80%. Three right columns of Table 2 show the results
achieved for the kNN classifier. This method has been
applied with three different values of k parameter equal
to 5, 15, and 25. It is worth to notice, that increasing
the number of neighbours for voting does not always
improve the classification ratio. Yet, it is difficult to
find any pattern of such behaviour. Generally, larger
the neighbourhood, worse the average performance of
all systems is. Therefore, bigger neighbourhood was
not taken into consideration. The highest classifica-
tion ratios have been achieved for k = 25, and there
the threshold of 80% is overcome considerably. The
best 3 results are for C (Hu moment 1st order original
and roughness), E (Hu moment 1st order original and
Danielsson), and J (brightness and roughness). In case
of C and E classifiers we can see that if the classification
ratio for one-dimentional classification was high (eg.,
Hu moment 1st original – 80.99%, Danielsson – 80.67%
– and roughness – 84.48%) it also works well in com-
bination with other features. On the other hand, the
brightness classification ratio in one-dimensional classi-
fication was low – 75.16, what in consequence diminish
the roughness – 84.48% – performance slightly in the
case of J pair.

Table 3 presents the classification ratio achieved
for DT classifier. In this case all classification parame-
ters are shown: correct classification, miss-classification
and unclassified ratios. This method assumes lower cor-
rect classification ratio than those previously described,
but the miss-classification ratio should be much lower
as well. Therefore, the results around 70% for the B
(Hu moment 1st order original and volume), D (Hu
moment 1st order original and area), and F (Hu mo-
ment 1st order original and brightness) methods are
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Table 1 The selected pair combinations.

Symbol Feature 1 Feature 2

A Hu 1st order thresh. area
B Hu 1st order org. volume
C Hu 1st order org. roughness
D Hu 1st order org. area
E Hu 1st order org. Danielsson

F Hu 1st order org. brightness
G roughness resized area
H roughness area
I perimeter resized roughness
J brightness roughness

K Danielsson area
L Danielsson perimeter resized
M volume area
N volume perimeter
O perimeter resized area

P concave number volume org.
R concave number area
S brightness area
T brightness concave number

Table 2 The simple system classification results. The second
right column presents result for MMD classification modul, while
the three left columns show results for kNN for different k values.

Method MMD kNN

Parameters k = 5 k = 15 k = 25

A 68.59 68.78 69.07 70.01
B 79.10 78.66 78.69 78.45
C 77.38 87.62 87.62 87.72
D 68.59 69.29 69.07 70.01
E 76.11 81.69 83.36 85.12

F 77.06 77.97 76.77 77.55
G 70.29 69.92 70.02 70.26
H 71.36 69.93 70.21 70.26
I 72.63 66.44 56.62 54.78
J 80.71 80.65 77.34 77.47

K 74.32 78.12 76.76 74.88
L 64.73 78.41 77.83 77.27
M 74.98 72.56 71.91 71.27
N 80.83 77.77 78.12 77.89
O 75.66 76.93 75.80 73.93

P 77.83 77.14 76.74 76.45
R 71.42 70.05 69.85 70.08
S 72.46 72.13 72.23 71.33
T 75.22 73.16 74.16 74.84

very high. Unfortunately, in the cases of high correct
classification ratio the miss-classification is high as well
and overcomes 10%.

It is worth to notice, that the sum of correct classi-
fication ratio with unclassified ratio (which is presented
in column Total, Table 3) in many cases is above 90%,
hence it seems to be a good idea to combine those meth-
ods with high total percentage into a cascading system.

7.4 Snowflake discrimination methods for classifica-
tion improvement

The results achieved by systems exploiting the
snowflake discrimination are shown in Figs. 8 and 9.
In order to better visualize the differences in classifica-
tion accuracy the presented techniques are sorted from

Table 3 The classification results achieved for the simple sys-
tem for the DT classification method.

Method Correct Unclassified Total Missed

A 49.24 44.27 93.50 6.50
B 68.57 19.01 87.60 12.40
C 67.75 29.62 97.37 2.63
D 68.44 15.19 83.62 16.38
E 64.65 32.36 70.10 29.90

F 71.22 17.53 87.75 12.25
G 57.58 44.54 98.13 1.87
H 56.35 42.47 98.84 1.16
I 28.98 70.51 99.50 0.50
J 65.22 30.67 95.89 4.11

K 53.51 44.71 98.23 1.77
L 26.63 71.77 98.40 1.60
M 60.76 24.70 85.46 14.54
N 27.78 71.16 98.94 1.06
O 43.34 28.75 72.09 27.91

P 46.77 38.46 85.22 14.78
R 49.90 28.10 78.00 22.00
S 59.65 28.75 88.40 11.60
T 45.48 42.85 88.33 11.67

Fig. 8 Classification efficiency for the MMD classifier applied
after one from six snowflake discriminant methods.

those giving the best results in the left part of the plot
to the worst one in the right side.

The conclusion drawn from this experiment is that
the highest increase in correct classification ratio is
when the β (corner numbers) snowflake discriminant
method is utilized, and this pattern is visible for all
tested systems. When applying one of the γ, δ, ε, and
ζ the results also improve in comparison with the re-
sults from previous experiment, see Table 2. Only in
case of α (flake number) the efficiency is worse in some
cases (methods C, J, N). That must be influenced by
wrong graupel classification by the snowflake discrimi-
nant method. The better the result the brighter colour
depicts its pillar. The best result achieved in this exper-
iment has the correct classification ratio of 94.14% when
the system uses the snowflake discrimination method β
and k=25 for kNN classifier.
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Fig. 9 Classification efficiency for the k=25 of kNN classifier
applied after one from six snowflake discriminant methods.

7.5 Cascading decision system

Table 4 presents results when the cascading system is
composed of 2 steps of DT classification only. As a first
DT the I (roughness and perimeter resized) classifier is
applied as it has the lowest wrong classification ratio of
0.5% (as shown in previous experiment, please refer to
Table 3). Different results have been achieved for dif-
ferent feature pairs applied in the second step of DT.
The selected methods characterized small wrong clas-
sification error less than 10%. For comparison Table 5
presents results when in the second step the kNN (k =
25) or MMD classifier is used. In case of this system

Table 4 Results achieved for two iteration of DT cascading
system.

Method Classification

in 2nd DT Correct Missed

J 68.50 4.34
C 61.64 2.73
G 58.63 1.77
K 57.35 1.85

H 56.67 1.20
A 56.17 6.43
H 55.34 5.7
N 46.73 1.47
L 30.27 1.76

Table 5 Results achieved for cascading system when as a first
was used the DT classifier for method I followed by k=25 of kNN
classifier (left) or MMD classifier (right).

Correct classification

Method k = 25 NN MMD

B 81.12 81.53
C 88.37 78.32
E 87.30 –
J 80.38 83.01

L 78.02 –
N 80.43 83.36
P – 79.56
Y 79.96 80.02

there were chosen those methods, which correct clas-
sification ratio was higher than 77% (it is a threshold
above which the best five efficiency ratios are found).

From that experiment we can see that the clas-
sification as well as the miss-classification ratio when
exploiting only two DT classifiers are still low. On the
other hand, the combination of DT classifier with kNN
or MMD resulted in the classification ratio around 80%.

In the next experiment we have created system in
which firstly two DT classifiers have been used, and af-
ter them followed the kNN or MMD classifiers. There
were selected two method combination for DT method.
One was when I pair is followed by H pair, as this com-
bination has the smallest wrong classification error. Re-
sults achieved for this systems are presented in Table
6. The second pair was I pair followed by J pair, this
combination has the highest correct classification ra-
tio. Results for this cascading system for this classifier
are presented in Table 7. The achieved performance is
better in case when we apply two passes through DT
classifier and follow it with statistical classifiers. This
experiments shows that combining many different ap-
proaches for feature classification improve the results.
Moreover, here we can also notice that applying the
kNN classifier brings better results than MMD classi-
fier.

8. Conclusion

Three approaches have been presented for multi-feature

Table 6 Results achieved for cascading system when as a first
was used the DT classifier for method I followed by DT method
H and finally followed by k=25 of kNN classifier (left) or MMD
(right).

Correct classification

Method k = 25 NN MMD

B 85.04 85.00
C 88.38 81.45
E 87.66 –
J 84.44 86.73

L 79.36 –
N 85.04 86.69
P – 83.13
Y 83.75 84.27

Table 7 Results achieved for cascading system when as a first
was used the DT classifier for method I followed by DT method
J and finally followed by k=25 of kNN classifier (left) or MMD
(right).

Correct classification

Method k = 25 NN MMD

B 83.56 82.91
C 87.93 84.56
E 87.64 –
J 81.94 84.03

L 86.45 –
N 83.62 84.27
P – 82.39
Y 82.26 81.58
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snow particle classification into snowflakes and grau-
pels. All of them as a mean for the decision making
take a pair of features, which have been selected from
broad range of features designed for this problem clas-
sification.

Firstly, the simple, one step system is presented,
where the input data flows through the classification
module only. There are compared 19 feature pairs
and the performance of MMD classifier, kNN classifier
with newly introduced DT classifier. The best results
achieved for this system was 87%. This system due to
its simplicity saves classification computation time with
little los of accuracy.

Secondly, the influence of applying the snowflake
discrimination method and applying the simple system
only for unclassified images is discussed. Here also all
19 pairs are taken into consideration, but the classifi-
cation is done by the MMD or kNN classifiers. The
experiment shows that enriching the system with this
one step can improve the results slightly almost in all
cases. Additionally, the correct classification ratio is
over 90% when β snowflake discrimination technique is
applied before the C or E feature pairs classification
with kNN. This technique combination allowed to im-
prove system classification accuracy.

Finally, the cascading decision system has been in-
troduced. In this case the DT classifier is combined
with MMD or kNN classifier. It shows that there also
could be achieved satisfactory results, however the max-
imal performance was around 88%. Sometimes the need
of avoiding wrong classification is more important than
the classification accuracy, what can be achieved by this
system. For example, when we consider to estimate
the relationship between radar reflectivity and snowfall
rate, we may permit lower particle classification ratio,
but the misclassification is inadmissible [16].

Generally, the presented systems for snow parti-
cle classification, based on the feature selection from
images, create a powerful tool. Their possible appli-
cations are various. For instance, the imaging system
with a specialized software could be useful in fields like
radar meteorology or in research concerning the physics
of precipitation.
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