
Supplementary material

This supplementary material describes all the necessary steps to repeat the experiments
described in the main paper. The package with all source codes can be downloaded from:
http://sun.aei.polsl.pl/mugi/. Additional tables and figures are also included.

1 Mulitple Genomes Index description

Multiple Genome Index is a compressed index of collections of genomes of the same species. It
allows to ask for both exact and approximate queries.

Here we describe the usage of the tools to build the index (MuGI_build), perform the search
(MuGI_search), and parse the result to a readable form (MuGI_parse). We also provide a code
generating example queries (MuGI_exGen). All these tools are implemented in C/C++.

1.1 MuGI build

The program builds the index with set sparsity and length of k-mers, based on the input refer-
ence sequence and Variant Call Format (VCF) file describing the differences between individual
genomes and reference genome.

Usage:

• MuGI_build <input.fasta> <input.vcf> <k> <sp> <pl>

Parameters:

• input.fasta — name of the input FASTA file with the reference

• input.vcf — name of the input VCF file

• k — desired length of k-mers in the index

• sp — desired sparsity of the index

• pl — ploidity of the individuals in the collection (only 1 and 2 supported)

The output files:

• index-<k>-<sp> — built index

• index-dict — dictionary file

The following are required to build the sources:

• Intel Threading Building Blocks library
(https://www.threadingbuildingblocks.org)

• Compiler with OpenMP support (http://openmp.org)

If the ploidity is set to 2, any haploid genotype call is treated as diploid. The diploid
genotypes should be phased. The first word in successive chromosome headers should match
successive chromosomes described in the VCF file (its first column). The positions of the
variants in the VCF file should be within the current chromosome (first column). During the
process they are adjusted to present the position within the whole reference based on the size
of chromosomes sequences. The index-dict file is created along with the index. It contains
data about sizes of all chromosomes and names of all individuals. It is used to parse the search
results to a readable form.

1

For testing we implemented the possibility to build few indexes with the same k-mer
length and different sparsities (from 1 up to < sp >) at the same run. To use this mode,
CREATE_ALL_INDEXES must be defined in the defs.h file (see line 14 of defs.h).

1.2 MuGI search

The program performs the search of the input queries in the compressed collection (input
index file) and reports to the stdout statistics about queries execution times. Asmlib library
(http://www.agner.org/optimize/asmlib.zip) is required to build the sources.

Usage:

• MuGI_search <index-file> <queries-file> {<maxError>}

Parameters:

• index-file — path to file with the index

• queries-file — path to file with the sequences to search (FASTA or FASTQ or plain
sequences - one in each line)

• maxError — optional, maximum number of mismatches in found sequence (default 0,
exact search)

The output file:

• result.out — binary file with the result

1.3 MuGI parse

The program parses the binary file with result (output of MuGI_search) and creates a text file
with readable data.

For each queries, at first its name (for FASTQ and FASTA) or ordinal number (for simple
list) is written. Then, all found positions are reported (chromosome number and position within
it) along with list of all individuals in which the match was found. In a ”hex” mode (0), the list
is represented by a bit vector written in a hexadecimal form, where each jth bit set corresponds
to match found in jth haploid genome. In the ”full” mode (1) the list consist of names of
all individuals with the match. For diploid individuals, to distinguish between two haploid
sequences of each, a suffix ”-1” or ”-2” is added to the name. In the bit vector representation,
each diploid individual is represented by two consecutive bits.

Usage:

• MuGI_parse <dict> <file_to_parse> <output_file> <mode>

Parameters:

• dict — dictionary file of the index

• file_to_parse — binary file with the result

• output_file — name of the output file

• mode — optional, mode of the output: 0 (hexadecimal individuals representation) or 1
(full individual names) default: 0

2

1.4 MuGI genEx

The program generates a file with a set number of queries. The file an be in FASTQ or
FASTA format, or be a text file with list of sequences (three acceptable formats of queries for
MuGI_search). It uses the created index file, to take an excerpts from the collection of genomes.
As only Reference (REF), Variant Database (VD) and Bit Vectors (BV) are used, the k and
sp parameters of the index building process does not matter. The final queries are made as
described in the main paper.

Usage:

• MuGI_genEx <index-file> <out-file> <no_reads> {<mode>}

Parameters:

• index-file — path to file with the index

• out-file — output file with example reads

• no_reads — number of reads to generate

• mode — optional, output format: ”fastq” or ”fasta” or ”list” (default: ”list”)

2 Data source

The data used in experiments are from the Phase 1 of the 1000 Genomes Project, which contains
data about 1092 human individuals.

The human reference sequence used can be found at the NCBI’s anonymous FTP server (ftp:

//ftp-trace.ncbi.nih.gov//1000genomes/ftp/technical/reference//human g1k v37.fasta.gz). We removed
all non-chromosomal supercontigs, leaving only 1–22, X, and Y chromosomes.

The VCF (Variant Call Format) files can be downloaded from the NCBI’s anonymous
FTP server. It can be either EBI (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/

integrated call sets/) or NCBI (ftp://ftp.ncbi.nih.gov//1000genomes/ftp/phase1/analysis results/integrated

call sets/) FTP site. Note that the size of the complete set is about 1.2 TB. The complete list
of compressed VCF files used:
ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr2.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr3.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr4.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr5.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr6.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr7.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr8.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr9.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr10.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr11.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr12.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr13.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr14.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr15.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr16.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr17.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr18.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

3

ALL.chr19.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr20.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr21.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chrX.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

ALL.chrY.phase1_samtools_si.20101123.snps.low_coverage.genotypes.vcf.gz

Because of the two pseudoautosomal regions (PAR1 and PAR2) shared between X and Y
chromosomes in male individuals, the diploid genotype calls for variants in the pseudoautosomal
regions in X and Y chromosomes are stored in the available VCF file for X chromosome, while
haploid genotype calls for non-pseudoautosomal regions (nonPAR, between PAR1 and PAR2) of
X and Y chromosomes are stored in the corresponding VCF files. For Y chromosome there are
information for one additional individual (not present in other VCF files). To have consistent
data with one diploid representation for the whole reference, we removed the extra individual
data and artificially extended the list of genomes described in the VCF file of chromosome Y
to be the same as for other chromosomes, that is, to include female individuals. The alleles
values were set to zero (reference allele) in the genotype fields. The tool building the index
with the diploidity parameter is set to 2, treats all haploid calls as diploid—occurring variant
is introduced in two generated sequences. This modification of the dataset means there can
be matches reported in non existing regions, i.e, chromosome Y of a female individual or two
chromosomes X of a male individual, but these false results are easy to identify and correct in
the post processing process.

To build an index for a single chromosome of all individuals in the collection, the reference
sequences of single assembled chromosomes may be useful. They can be found at the GenBank
and downloaded from the NCBI’s anonymous FTP server:
ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Eukaryotes/vertebrates mammals/Homo sapiens/GRCh37/Primary

Assembly/assembled chromosomes/FASTA/

3 Experiments

Here we describe all necessary steps to build an index and perform experiments on single human
chromosome and on the whole human genome.

3.1 Single chromosome

To build the index for a single autosomal chromosome of all individuals from the collection, it
is enough to download the related reference sequence and VCF file. Only FASTA file requires
slight modification, so its first word matches CHROM field in the VCF file. The script below
shows the steps for the 22 chromosome (wget and gzip tools required). It downloads and
decompresses the data, builds the index with sparsity 3 and k-mer length set to 25, generates
100K queries (in FASTA format), performs exact search and parse the resulting file to store the
complete report (positions and names of individuals) in the full-results.txt file

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
integrated_call_sets/ALL.chr22.integrated_phase1_v3.20101123.
snps_indels_svs.genotypes.vcf.gz

gzip -d ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz

mv ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf > chr22.vcf

wget ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/
Homo_sapiens/GRCh37/Primary_Assembly/assembled_chromosomes/FASTA/chr22.fa.gz

gzip -d chr22.fa.gz

4

sed ’s/>/>22 /g’ chr22.fa > chr22.fasta

./MuGI_build chr22.fasta chr22.vcf 25 3 2

./MuGI_genEx index-25-3 queries.fa 100000 fasta

./MuGI_search index-25-3 queries.fa 0

./MuGI_parse results.out full-results.txt 1

3.2 Whole genome

Building the index for the whole genome requires pre-processing of the available data (reference
sequence and the 24 VCF files) as described in Section 2. The detailed steps and additional
guidelines (for the unix-like environment):

1. Pre-processing the reference sequence

We cut from the downloaded and decompressed reference file anything after the Y chromo-
some (strting from the mitochondria). The following example script downloads the available
reference and creates human.fasta file with the desired reference (wget, gzip and awk tools
required):

wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
human_g1k_v37.fasta.gz

gzip -d human_g1k_v37.fasta.gz

awk ’BEGIN{c=1} /^>MT/ {c=0} // {if(c==1){print $0}}’ human_g1k_v37.fasta > human.fasta

2. Pre-processing the Y chromosome

For consistency of the data the VCF file for the Y chromosome were pre-processed as de-
scribed in Section 2. We are providing the C++ example code preProcessY.cpp together
with MuGI distribution, that can be used for this step. The arguments of the program are:
input Y chromosome VCF file and output name. The following example script downloads
and pre-processes the VCF file and creates its modified version: chrY.vcf (gcc compiler used
in the example, wget and gzip tools required):

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
integrated_call_sets/ALL.chrY.phase1_samtools_si.20101123.snps.
low_coverage.genotypes.vcf.gz

gzip -d ALL.chrY.phase1_samtools_si.20101123.snps.low_coverage.genotypes.vcf.gz

g++ -O3 preProcessY/preProcessY.cpp -o prepY

./prepY ALL.chrY.phase1_samtools_si.20101123.snps.low_coverage.genotypes.vcf chrY.vcf

3. Merging the VCF files

We merged all 24 VCF files downloaded from the data source (section 2), including pre-
processed VCF file for Y chromosome (previous step) to one VCF file with single header
(taken from the VCF file of 1 chromosome, other headers were discarded). The example
script performing the task (assuming all VCF files are already decompressed and the modified
VCF file name is chrY.vcf) and creating single human.vcf file:

cp ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf human.vcf

tail -n+31 ALL.chr2.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr3.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr4.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr5.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr6.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr7.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

5

tail -n+31 ALL.chr8.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr9.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr10.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr11.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr12.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr13.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr14.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr15.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr16.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr17.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr18.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr19.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr20.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr21.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+31 ALL.chr22.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+32 ALL.chrX.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf >> human.vcf

tail -n+27 ALL.chrY.vcf >> human.vcf

In our experiments we merged the minimal versions of the VCF files (VCFmin files, that can
be obtained from the VCF files as in [Deorowicz et al.(2013)]), what speeds up the merging
and reduces the required disk space. The resulting human.vcf file is a valid input for the
MuGI_build program.

4. Building the index

To build the index with k-mer length 30 and sparsity 4:

./MuGI_bulid human.fasta human.vcf 30 4 2

The resulting index name is index-30-4

5. Generating the sample data

To generate 100K sample queries for the collection, stored as a simple list:

./MuGI_genEx index-30-4 queries.txt 100000

6. Searching

Example search for generated sequences in the compressed collection, assuming maximum 2
mismatches:

./MuGI_search index-30-4 queries.txt 2

The result is stored in the binary file result.out

7. Parsing the result

To see the results in a readble format (with hexadecimal representation of occurrence or not
of match in all individuals):

./MuGI_parse index-dict result.out parsed_results.txt 0

References

[Deorowicz et al.(2013)] Deorowicz, S. et al. (2013) Genome compression: a novel approach for large collections. Bioinfor-
matics, 29(20), 2572–2578.

6

4 Additional tables

Table 1: Query times for k = 40 and sparsity = 3 (size 13.4 GB). All times are expressed in µs

Percentile Max. allowed mismatches
0 1 2 3 4 5

10% 12.4 27.7 44.0 62.1 81.1 100.0
25% 15.4 32.2 50.3 69.9 90.7 111.8
50% 18.7 38.3 58.8 81.4 105.8 131.4
75% 23.8 48.5 73.5 103.7 141.9 199.5
90% 35.9 76.5 116.0 188.0 707.0 3,747.5
95% 57.0 112.7 182.9 718.1 4,972.8 17,619.4

average 39.4 85.5 136.1 372.5 1,334.0 4,021.0

7

Table 2: Query times for various variants of the index. All times are expressed in µs. For
sparsities larger than 8, the times for large values of mismatches (4 and 5) are significant and
we do not recommend to use such setting

k sparsity size Max. allowed mismatches
[GB] 0 1 2 3 4 5

25 1 24.7 214.2 450.8 699.5 971.5 1,438.3 2,976.8
25 3 11.8 225.0 481.2 751.6 1,024.3 1,599.9 3,647.1
25 4 10.2 229.8 493.1 754.0 1,050.9 1,676.4 4,004.2
25 8 7.7 243.1 528.3 814.6 1,158.5 2,341.4 6,790.4
25 12 6.9 257.2 558.3 868.0 1,337.8
25 16 6.5 268.8 588.6 916.6 1,787.9

30 1 26.3 85.4 193.4 303.0 456.0 1,036.4 3,004.6
30 3 12.3 95.7 220.8 340.6 520.4 1,258.0 3,716.2
30 4 10.6 100.4 227.8 351.5 544.0 1,376.5 4,104.5
30 8 7.9 121.8 267.0 414.5 713.6 2,215.2 6,994.5
30 12 7.1 134.0 291.4 456.4 959.4
30 16 6.6 149.2 319.3 506.8 1,490.4

35 1 27.9 41.4 98.0 152.0 301.8 1,033.4 3,114.6
35 3 12.9 53.6 121.2 193.0 380.4 1,280.8 3,861.2
35 4 11.0 58.6 130.2 206.3 419.2 1,411.7 4,277.6
35 8 8.2 77.2 166.1 260.3 608.3 2,224.4 7,120.4
35 12 7.2 93.3 196.2 314.6 905.3
35 16 6.8 107.0 222.2 382.4 1,506.4

40 1 29.6 28.8 65.2 102.3 291.0 1,109.9 3,348.8
40 3 13.4 39.4 85.5 136.1 372.5 1,334.0 4,021.0
40 4 11.4 43.4 94.4 151.4 412.2 1,471.1 4,461.1
40 8 8.4 61.0 128.9 210.3 615.4 2,297.9 7,350.3
40 12 7.4 76.3 160.0 271.8 917.0
40 16 6.9 90.4 184.4 344.3 1,514.1

45 2 18.3 25.9 56.2 97.9 329.6 1,207.0 3,687.2
45 3 14.0 31.3 67.7 116.5 375.5 1,353.3 4,115.0
45 4 11.8 36.3 77.2 132.6 421.2 1,490.9 4,525.3
45 8 8.6 54.2 112.4 196.2 625.8 2,394.4 7,523.9
45 12 7.5 70.4 142.9 262.5 942.0
45 16 7.0 82.1 168.4 342.3 1,531.9

GEM mapper 5.0 14.3 26.6 40.4 71.9 126.7 262.7

8

Table 3: Sizes of the index components. All sizes in MBs

k sparsity REF VD BV kMA0 kMA1 kMA2 kMA3 Total

25 1 1,548 698 2,704 11,502 8,021 84 123 24,680
25 3 1,548 698 2,704 3,879 2,731 84 123 11,767
25 4 1,548 698 2,704 2,926 2,070 84 123 10,153
25 8 1,548 698 2,704 1,496 1,078 84 123 7,732
25 12 1,548 698 2,704 1,020 747 84 123 6,925
25 16 1,548 698 2,704 782 582 84 123 6,521

30 1 1,548 698 2,704 11,502 9,634 85 137 26,307
30 3 1,548 698 2,704 3,879 3,270 85 137 12,320
30 4 1,548 698 2,704 2,926 2,474 85 137 10,571
30 8 1,548 698 2,704 1,496 1,281 85 137 7,948
30 12 1,548 698 2,704 1,020 883 85 137 7,074
30 16 1,548 698 2,704 782 684 85 137 6,637

35 1 1,548 698 2,704 11,502 11,254 85 151 27,942
35 3 1,548 698 2,704 3,879 3,810 85 151 12,875
35 4 1,548 698 2,704 2,926 2,880 85 151 10,992
35 8 1,548 698 2,704 1,496 1,484 85 151 8,167
35 12 1,548 698 2,704 1,020 1,019 85 151 7,225
35 16 1,548 698 2,704 782 786 85 151 6,754

40 1 1,548 698 2,704 11,502 12,881 86 166 29,584
40 3 1,548 698 2,704 3,879 4,354 86 166 13,434
40 4 1,548 698 2,704 2,926 3,288 86 166 11,415
40 8 1,548 698 2,704 1,496 1,689 86 166 8,387
40 12 1,548 698 2,704 1,020 1,156 86 166 7,377
40 16 1,548 698 2,704 782 889 86 166 6,872

45 1 1,548 698 2,704 11,502 14,515 86 181 31,234
45 2 1,548 698 2,704 5,784 7,303 86 181 18,305
45 4 1,548 698 2,704 2,926 3,697 86 181 11,840
45 8 1,548 698 2,704 1,496 1,894 86 181 8,608
45 12 1,548 698 2,704 1,020 1,293 86 181 7,531
45 16 1,548 698 2,704 782 993 86 181 6,992

9

5 Additional figures

6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

50

100

150

200

250

Size [GB]

T
im

e
[µ
s]

Exact queries

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 1: Times for exact queries for various k and sparsity. The rightmost points for each k
is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2 (due to
limitation of our test machine)

10

6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

100

200

300

400

500

600

Size [GB]

T
im

e
[µ
s]

Max. 1 mismatch

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 2: Times for up to 1 mismatch queries for various k and sparsity. The rightmost points
for each k is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2
(due to limitation of our test machine)

11

6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

200

400

600

800

1,000

Size [GB]

T
im

e
[µ
s]

Max. 2 mismatches

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 3: Times for up to 2 mismatches queries for various k and sparsity. The rightmost points
for each k is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2
(due to limitation of our test machine)

12

6 8 10 12 14 16 18 20 22 24 26 28 30 32
200

400

600

800

1,000

1,200

Size [GB]

T
im

e
[µ
s]

Max. 3 mismatches

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 4: Times for up to 3 mismatches queries for various k and sparsity. The rightmost points
for each k is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2
(due to limitation of our test machine)

13

6 8 10 12 14 16 18 20 22 24 26 28 30 32
1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Size [GB]

T
im

e
[µ
s]

Max. 4 mismatches

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 5: Times for up to 4 mismatches queries for various k and sparsity. The rightmost points
for each k is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2
(due to limitation of our test machine)

14

6 8 10 12 14 16 18 20 22 24 26 28 30 32
2,000

3,000

4,000

5,000

6,000

7,000

8,000

Size [GB]

T
im

e
[µ
s]

Max. 5 mismatches

k = 25
k = 30
k = 35
k = 40
k = 45

Figure 6: Times for up to 5 mismatches queries for various k and sparsity. The rightmost points
for each k is for sparsity = 1 except for k = 45, where the rightmost point is for sparsity = 2
(due to limitation of our test machine)

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

101

102

103

104

max mismatches

T
im

e
[µ
s]

k = 40, sparsity = 3

10%

25%

50%
avg

75%

90%

95%

Figure 7: Percentile times for various types of queries (from 0 to 5 mismatches)

16

0 10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

103

%

T
im

e
[µ
s]

k = 40, sparsity = 3

exact
1mismatch

2mismatches
3mismatches
4mismatches
5mismatches

Figure 8: Percentile times for various types of queries (from 0 to 5 mismatches)

17

0 10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

103

%

T
im

e
[µ
s]

k = 35, sparsity = 3

exact
1mismatch

2mismatches
3mismatches
4mismatches
5mismatches

Figure 9: Percentile times for various types of queries (from 0 to 5 mismatches)

18

0 10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

103

%

T
im

e
[µ
s]

k = 30, sparsity = 3

exact
1mismatch

2mismatches
3mismatches
4mismatches
5mismatches

Figure 10: Percentile times for various types of queries (from 0 to 5 mismatches)

19

0 10 20 30 40 50 60 70 80 90 100
10−3

10−2

10−1

100

101

102

103

%

T
im

e
[µ
s]

k = 25, sparsity = 3

exact
1mismatch

2mismatches
3mismatches
4mismatches
5mismatches

Figure 11: Percentile times for various types of queries (from 0 to 5 mismatches)

20

0 10 20 30 40 50 60 70 80 90 100

10−3

10−2

10−1

100

101

102

%

T
im

e
[µ
s]

k = 25, exact

sparsity = 1
sparsity = 2
sparsity = 3
sparsity = 4
sparsity = 6
sparsity = 8

Figure 12: Percentile times for various types of queries (from 0 to 5 mismatches)

21

0 10 20 30 40 50 60 70 80 90 100

10−3

10−2

10−1

100

101

%

T
im

e
[µ
s]

k = 35, exact

sparsity = 1
sparsity = 2
sparsity = 3
sparsity = 4
sparsity = 6
sparsity = 8

Figure 13: Percentile times for various types of queries (from 0 to 5 mismatches)

22

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

%

T
im

e
[µ
s]

k = 35, errors = 3

sparsity = 1
sparsity = 2
sparsity = 3
sparsity = 4
sparsity = 6
sparsity = 8

Figure 14: Percentile times for various types of queries (from 0 to 5 mismatches)

23

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

103

104

%

T
im

e
[µ
s]

k = 35, mismatches = 5

sparsity = 1
sparsity = 2
sparsity = 3
sparsity = 4
sparsity = 6
sparsity = 8

Figure 15: Percentile times for various types of queries (from 0 to 5 mismatches)

24

