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Abstract 
Typical fluorescence microscopy images contain large amounts of noise, which depends on the 
signal in a complex manner. This characteristic is substantially different from digital 
photography or satellite data, for which most of the existing denoising algorithms have been 
designed. Therefore, an efficient estimation of the noise in fluorescence micrographs and its 
removal pose a challenge. On the other hand, as shown previously, the use of a calibrated 
microscopy detector may allow computation of the signal and noise characteristics directly from 
the image acquisition parameters. Therefore, we propose a denoising algorithm that takes 
advantage of this information to obtain an estimate of the signal and the corresponding noise in 
the wavelet domain. This general model was constructed using actual fluorescence micrographs 
and utilizes intra- and inter-scale correlations of the wavelet coefficients. The signal-to-noise 
estimate was then applied to perform local soft thresholding in the wavelet domain. The 
performance of the proposed algorithm was tested using a set of images of several common 
subcellular structures containing various amounts of signal-dependent and signal-independent 
noise. The denoising performance of the new algorithm depends on the actual amount of noise 
and on the type of imaged structures. In every case, we demonstrated that the proposed algorithm 
is superior to two other locally adaptive denoising algorithms (AdaptShrink and BivarShrink) 
and to optimal subband adaptive soft thresholding (OraclShrink).  
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1. INTRODUCTION 

The prominence of noise, which is caused by a low number of detected photons, is a typical 
problem in images registered with fluorescence microscopy. The purpose of denoising is to 
eliminate this random image component while retaining the biological structures under study. 
Traditionally, this is achieved by linear processing, such as spatial/temporal averaging and 
Wiener filtering. Inspired by the seminal works performed by Donoho and Johnstone [1, 2, 3], a 
number of studies have used nonlinear filtering based on (soft) thresholding in the wavelet 
domain. The main idea is to subtract the threshold value (T) from all of the coefficients greater 
that T and set the others to zero. In general, the threshold should be proportional to the variance 
of the noise and inversely proportional to the standard deviation of the distribution of the wavelet 
coefficients in the absence of noise [4, 5]. Determination of the optimal threshold is not a trivial 
problem, and several methods have thus been developed to this end. The signal and noise 
characteristics (and thus the threshold value) may be globally estimated as proposed by the 
VisuShrink algorithm [1]. Another option is the adoption of subband-adaptive thresholding, as in 
the SureShrink algorithm [2]. Superior performance is usually achieved with another data-driven 
algorithm, AdaptShrink [4]. The efficiency of denoising may be further improved by taking the 
correlations between coefficients at different resolution scales into account [6, 7, 8, 9].      
 It should be noted that the statistical models of wavelet transform coefficients adopted in 
these schemes were constructed for natural images [10, 11, 12, 13]. The typical dynamic range of 
this type of data corresponds to 256 levels (8 bits), with the intensity histogram spanning the 
whole range. Conversely, when larger dynamic range is used, histograms of such images tend to 
be sparse [14]. This effect is a source of a significant data redundancy. Furthermore, the majority 
of denoising algorithms have been designed for signal-independent noise, which is the major 
artifact in images acquired with consumer cameras operating at a high photon flux. These 
prerequisites may not be met in fluorescence microscopy, where a scarcity of light is the major 
limitation, but image acquisition is performed with low-noise detectors operating at a high (16 
bits) dynamic range. Fortunately, when using this modality, one does not have to compute the 
signal and noise characteristics from the images that are to be denoised. This information may be 
available beforehand if a calibrated detector (for example CCD and PMT) is used with known 
image acquisition parameters [15, 16]. 
 In this study, we constructed spatial models of wavelet-domain noise as a function of the 
image acquisition parameters of a typical CCD detector used in microscopy. We then adapted a 
bivariate shrinkage algorithm [6] to compute and apply the wavelet threshold in a locally 
adaptive inter-scale-dependent manner. We compared the proposed denoising approach to 
AdaptShrink [4], the original BivarShrink [7] and optimal subband adaptive soft thresholding 
(OraclShrink). 
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2.  MATERIALS AND METHODS 

2.1.  Cells and fluorescence labeling  

MSU 1.1 human fibroblasts and HepG2 human hepatoma cells were cultured on 20-mm-
diameter, 0.17-mm-thick coverslips placed in tissue culture Petri dishes. DMEM (Sigma), 
supplemented with 10% fetal bovine serum (Gibco) and antibiotics, was used. Fixed and stained 
bovine pulmonary artery endothelial cells were not cultured in our laboratory but purchased from 
Molecular Probes/Invitrogen as FluoCells prepared slide #2.  
 Coverslips with live cells (MSU 1.1 or HepG2) were washed three times with PBS (with 
Mg+2 and Ca+2) and fixed with formaldehyde (1% in PBS at 20°C for 1 h). MSU 1.1 cells were 
stained by incubation with a solution of DAPI (10 μM) for 30 min to visualize the DNA. HepG2 
cells were stained by incubation with NAO (1 μM) for 15 min to visualize the mitochondria. The 
endothelial cells were labeled by the manufacturer using mouse anti-bovine α-tubulin 
monoclonal antibodies in conjunction with BODIPY FL goat anti-mouse IgG antibody. 

2.2.  Microscope imaging 

Images of the endothelial cells were acquired using a Nikon E1000 wide-field fluorescence 
microscope. The microscope was equipped with a Nikon 60x PlanApo oil-immersion objective 
lens (NA 1.4) and a 100-W Hg arc lamp. The DAPI fluorescence was registered using a 360- to 
370-nm excitation filter (band pass), a 400-nm long-pass dichroic mirror and a 400-nm emission 
filter (long pass). The fluorescence of BODIPY FL and NAO was registered using a 475- to 495-
nm excitation filter (band pass), a 505-nm long-pass dichroic mirror and a 525- to 565-nm 
emission filter (band pass). A 12-bit monochromatic CCD camera (Retiga 4000R, Qimaging, 
Burnaby, Canada) was used for image registration. The camera was cooled to 25°C below 
ambient temperature. A 16x neutral density (ND) filter was used to attenuate the flux of the 
excitation light. The microscope aperture diaphragm was fully open, whereas the field diaphragm 
was adjusted to match the field of view of the objective. Image collection was carried out at 
room temperature. Time series of 128 images of stationary (fixed) cells were collected using full 
frame (no binning) at an acquisition time of 0.75 s and a gain of 2 (DAPI) or 5 (NAO and 
BODIPY FL). The image acquisition was controlled using ImagePro Plus v 5.1 (Media 
Cybernetics, Silver Spring, MD, USA).   

2.3.  Noise modeling in wavelet domain  

A time series of 128 images of fluorescent cells was acquired as described in the previous 
paragraphs. Time-averaged images were calculated and subjected to filtering with a hybrid 
median (3x3 kernel). The background value was set to 200, and the processed images were used 
as a template for the generation of synthetic noisy images. Three such templates were generated 
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for each of three fluorophores (nine templates in total). A series of images was generated by the 
addition of Poisson and additive noise to the templates using the following formula:  

 
The noisy images contained varied amounts of signal-dependent (Poisson) noise corresponding 
to s in the range from 0 to 2.25 and varied amounts of signal-independent (Gaussian) noise 
corresponding to σ (standard deviation) in the range from 10 to 60. A set of 651 such images was 
generated for each of nine templates. One should note that the presence and the magnitude of 
these two forms of noise reflected the actual characteristics of the microscope detector (Retiga 
4000 CCD, Qimaging) determined in a previous study [15]. The referenced work was based on 
the measurement of image noise in the spatial domain. In this study, we modeled the noise in the 
wavelet domain. Therefore, the template and noisy images were subjected to forward wavelet 
transform (3 decomposition levels) using biorthogonal Daubechies’ 3.3 wavelet: 

 
Each of the decomposition levels comprised three bands corresponding to the sequential 
application of low- and high-pass wavelet filters (L and H, respectively). The difference between 
the noisy and template wavelet coefficients was analyzed in two steps. First, the noise was 
modeled as a two-dimensional linear function of these noisy coefficients and their parents 
(respective coefficients at higher decomposition level):  
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where I(x,y) is the pixel intensity in the noisy image, It(x,y) is the pixel intensity in the respective template 
image, P is a random value from a Poisson distribution, s is a constant representing the amount of Poisson noise, 
B is a uniform background (200), A is a random value from a Gaussian distribution with a mean of 0, and σ is the 
standard deviation representing the amount of additive noise.  
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where SL is the ith wavelet coefficient at level L, WL is ith biorthogonal wavelet, and I(x,y) and It(x,y) are the 
pixel intensities in the noisy and template images, respectively. In the reminder of this study the image spatial 
coordinates (x,y) are omitted for clarity. 
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where St

LB and SLB are the ith wavelet coefficients (template and noisy, respectively) obtained by decomposition 
at level L and in band B (HH, LH or HL), S(L+1)B is the corresponding ith noisy parent wavelet coefficient 
(coarser resolution level) in the same band (HH, LH or HL, respectively), δ2 is the square of the difference 
between the noisy and template wavelet coefficients, V is the average δ2 (variance), and E, D and C are 
phenomenological regression coefficients.  
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The coefficients of this variance function were calculated using the LLS (linear least squares) 
method separately for two decomposition levels corresponding to finest details (1 and 2) and for 
each of three bands (HH, LH and HL). The respective coefficients representing the nine 
templates were averaged. Therefore, the variance represents the expected value for the square of 
the difference as a function of the energy of the noisy coefficient and its parent in a given band 
and level. A high correlation (r2 > 0.98) indicated that the model provided an accurate 
representation of the noise variance as a function of the wavelet energy.  
 The variance functions were calculated at several levels of signal-dependent and signal-
independent noise. Therefore, in the second step, the dependence of the variance function 
coefficients on the noise levels (characterized by s and σ, see eq. 1) were modeled using two-
dimensional fifth-order Chebyshev polynomials:  

 
The Chebyshev coefficients were calculated using LLS. The values predicted using these 
polynomials did not deviate from the coefficients of variance function (eq. 3) by more 1%. 
Consequently, by combining equations 3 and 4, one may calculate the local level (at each 
wavelet coefficient) of expected noise in the wavelet domain as a function of the global amounts 
of signal-dependent and signal-independent noise measured in the spatial domain (in an image). 
Using this information, a thresholding rule was implemented and tested in the wavelet domain, 
as described in the subsequent paragraphs.  

2.4.  Adaptive thresholding in the wavelet domain  

To establish a set of local wavelet thresholds adaptive to decomposition, the sub-band expected 
noise variance was calculated using the following formula:  
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where SLB is the ith noisy wavelet coefficient obtained by decomposition at level L and in band B (HH, LH or 
HL), S(L+1)B is the corresponding ith noisy parent wavelet coefficient (coarser resolution level) in the same band 
(HH, LH or HL, respectively), s is a constant representing the amount of Poisson noise (eq. 1), σ is the standard 
deviation representing the amount of additive noise (eq. 1), and ELB, DLB and CLB are phenomenological 
regression coefficients (eq. 3) at level L and in band B calculated as a function of s and σ using a Chebyshev 
polynomial (eq. 4).  
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where ULB is the variance function coefficient (E, D or C, eq. 3) corresponding to the decomposition level L and 
band B (HH, LH or HL), s' and σ' are scaled between -1 and 1, and a-u are Chebyshev polynomial coefficients.  
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The expected variance was calculated separately for every coefficient at two decomposition 
levels corresponding to finest details (1 and 2) and for each of three bands (HH, LH and HL). To 
obtain a more accurate estimate of the variance, local averages were computed within sub-bands:  

 
Similarly, the total and signal variances of the wavelet coefficients were calculated using the 
following formulas:  

 
Using a local estimate of the signal and noise variances, a soft thresholding operation was 
implemented in the wavelet domain using the following formula:  

 
Thresholding was performed in each of the three decomposition bands (HH, LH and HL) at two 
decomposition levels (1 and 2). The denoised images were reconstructed through inverse wavelet 
transform:  

 
The denoising efficiency was calculated with the mean square error (MSE) using the template 
image as the standard:  
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where SLB is the ith noisy wavelet coefficient at level L and in band B (HH, LH or HL), SD

LB is its thresholded 
(denoised) counterpart, and sgn is the sign operator. Note that if Vs

loc=0, then TLB
loc is infinite (i.e., the wavelet 

coefficient is rejected regardless of its value).  
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where max is the maximum operator.  
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where K is the neighbourhood of the ith noisy wavelet coefficient SLB at level L and in band B (HH, LH or HL), 
and N(K) is the number of coefficients in K.  
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where SD

LB is the ith thresholded wavelet coefficient at level L and in band B, and W-1
L is the inverse 

biorthogonal wavelet.  
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The total level of noise (eq. 1) depended on the signal-dependent and signal-independent 
components as well as the image content. The denoising performance was also affected by these 
factors. Hence, the relative MSE (FMSE) instead of its absolute value was used as an estimator of 
the denoising efficiency. The proposed algorithm required a choice of the neighborhood size (K, 
eqs. 6 and 7). Although this choice is arbitrary, it does not significantly affect the algorithm 
performance because similar values of FMSE were obtained with neighborhoods of 3x3, 5x5 and 
7x7. A size of at least 9x9 resulted in a decrease in the performance. Therefore, a neighborhood 
of 3x3 was used in all presented calculations.  
 The proposed method takes advantage of both the inter-scale and intra-scale 
dependencies between the wavelet coefficients. This algorithm may adapt its operation to the 
local distribution of the wavelet coefficients in different decomposition sub-bands (i.e., it is sub-
band and locally adaptive). Therefore, the performance of the proposed algorithm was compared 
to performance of two other methods that operate based on similar principles, namely 
AdaptShrink proposed by Chang et al. [4, 5] and bivariate shrinkage with local variance 
estimation (BivarShrink) proposed by Sendur et al. [6, 7]. A free software that allows testing of 
the proposed method using the data of the Reader was prepared 
(http://sun.aei.polsl.pl/~rstaros/wddpc/index.html).  

2.5.  Reference methods 

Briefly, to characterize the activity level at a pixel using AdaptShrink, a weighted average of the 
absolute value of the pixel neighbors was calculated: 

  
The neighborhood comprised the eight nearest neighbors of a coefficient and its parent at the 
lower decomposition level. The weights were found through a least squares estimate to minimize 
the difference between the Z values and the corresponding wavelet coefficients. The variance 
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where K is the neighbourhood of the ith noisy wavelet coefficient SB in band B (HH, LH or HL) and at level L or 
L+1 (parent), N(K) is the number of coefficients in K, and wT is the transpose of the weight matrix. 
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where It is the template image (eq. 1), ID is the denoised image, N(I) is the number of pixels in the image, and 
MSEn is the mean square error calculated for a noisy image (eq. 1), similarly to its denoised counterpart. 
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wavelet was estimated from the other coefficients whose context variables were close in value to 
Z. For a given coefficient, the C closest points (in value of Z) above and the C closest points 
below were taken, resulting in a total of 2C-1 points. Hence, the signal variance of the wavelet 
coefficients was calculated using the following formula: 

 
The sizes of the neighborhood and context window (C = 50) were optimized with respect to the 
denoising performance (eq. 9). To further improve the performance, the deviation in the 
empirical noise variance (σ2

e, calculated from the template and noise image) was used (instead of 
the variance of σ2 from eq. 1 corresponding to Gaussian noise only). This parameter was used as 
an estimation of the noise variance (similar to Vn

loc) to perform soft thresholding using the 
procedure described in eq. 8. One should note that thresholding was executed at two levels 
corresponding to finest details (1 and 2) and for each of three bands (HH, LH and HL). Similarly, 
wavelet reconstruction and FMSE calculation were executed as in the proposed technique. 
 Several variants of BivarShrink were tested, and model 1 [7] was chosen because it 
provided the highest denoising performance of the four presented models. Estimation of the total 
variance was implemented in BivarShrink in the same manner as in the proposed method using 
eq. 6 with a local operator. The neighborhood was optimized in terms of performance, and a size 
of 5x5 was used in the subsequent calculations. Consequently, the signal variance was estimated 
using the following equation: 

 
The inter-scale dependencies between the wavelet coefficients were implemented in this 
algorithm in the thresholding step:  
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where σ2

e is the variance corresponding to the total noise in the image. 
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where B is the set of wavelet coefficients SLB whose context Z falls within a moving window with a size of 2C+1, 
and σ2

e is the variance corresponding to the total noise in the image.  
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Thresholding was executed at the decomposition level corresponding to finest details (1) and in 
each of three bands (HH, LH and HL). Wavelet reconstruction and FMSE calculation were 
executed as described in the previous paragraphs. 
 The performances of the proposed method, AdaptShrink and BivarShrink were also 
compared to performance of oracle wavelet shrinkage (OraclShrink, [5]). Briefly, global soft 
thresholding was applied separately at two levels corresponding to finest details (1 and 2) and for 
each of three bands (HH, LH and HL). The thresholds were calculated to minimize the square of 
the error between the wavelet coefficients of the denoised image and their counterparts in the 
template image. One should note that OraclShrink is a sub-band adaptive technique that does not 
use information of the inter-scale and intra-scale dependencies between the wavelet coefficients.  
 

3.  RESULTS  

3.1.  Noise modeling in the wavelet domain  

The noise was modeled in the wavelet domain as a two-dimensional linear function (variance 
function, eq. 3) of the energy of the noisy coefficients and their parents (respective coefficients at 
a higher decomposition level) in two decomposition levels corresponding to finest details (1 and 
2) and each of three bands (HH, LH and HL). The dependence of the variance function 
coefficients on the noise levels (s and σ, eq. 1) were modeled using two-dimensional Chebyshev 
polynomials of the fifth order (eq. 4). The respective plots of the variance function coefficients 
and surfaces corresponding to the fitted polynomials are shown in Fig. 1. The fifth-order 
polynomials provided an accurate representation of the dependency of the variance function 
coefficients in all wavelet decomposition levels and bands (Fig. 1). The nine polynomials 
comprised 21 coefficients each (eq. 4, Table 1). This order was the lowest one that provided an 
accurate and flexible representation of the variance function dependency.  
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where SLB is the ith noisy wavelet coefficient at level L and in band B (HH, LH or HL), S(L+1)B is the 
corresponding ith noisy parent wavelet coefficient (coarser resolution level) in the same band (HH, LH or HL, 
respectively), and SD

LB is its thresholded (denoised) counterpart.  
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3.2.  Denoising of fluorescence micrographs  

The denoising efficiency of the proposed algorithm was tested on biological fluorescence 
micrographs and compared to the efficiency of AdaptShrink, BivarShrink and OraclShrink. 
Noisy data were generated using image templates different from those used to create the model 
of the noise, and these templates corresponded to the following: the Golgi apparatus (Fig. 2A), 
nucleoli (Fig. 2B), actin filaments (Fig. 2C), tubulin filaments (Fig. 2D), endoplasmic reticulum 
(Fig. 2E), mitochondria (Fig. 2F), nuclei (Fig. 2G) and endosomes (Fig. 2H). A subjective 
evaluation of the performance obtained with images of actin filaments (Fig. 3) and mitochondria 
(Fig. 4) indicates that the proposed algorithm may perform well when the noise level is high (σ = 
60 for Gaussian noise and s = 2.25 for Poisson noise, respectively). However, the denoising 
efficiency of the algorithm is likely to vary depending on the spatial fluorescence distribution, 
amount and type of the noise. Thus, the performance of the algorithm is discussed based on the 
following three categories: high, moderate, and low denoising efficiency.  

High efficiency  

The highest overall denoising efficiency of the proposed algorithm was obtained with images 
(Fig. 2AB) of the Golgi apparatus and nucleoli (Figs. 5D and 6D, respectively). The efficiency 
increased with the level of additive noise, but only a slight dependence on the level of Poisson 
noise could be noted. The performance of the proposed algorithm was better than the 
performance of BivarShrink (Figs. 5C and 6C) and AdaptShrink (Figs. 5B and 6B). This 
superiority over BivarShrink and AdaptShrink was most pronounced at low levels of noise and at 
high levels of noise, respectively. One should also note that the proposed algorithm performed 
better than OraclShrink (Figs. 5A and 6A), which was the most efficient alternative to the 
proposed routine. However, the difference in performance decreased with an increase in the 
noise levels. The proposed algorithm was better than OraclShrink by 0.052 at the highest noise 
level investigated (max. efficiency of 0.595) and by 0.15 at the lowest level (efficiency of 0.348). 

Moderate efficiency  

Images of actin filaments, tubulin filaments, endoplasmic reticulum, mitochondria, and nuclei 
(Figs. 2C-2G) were denoised with moderate efficiency by the proposed algorithm (Figs. 7D-11D, 
respectively). A marked dependence of the efficiency on the level of additive noise and only a 
slight dependence on the levels of Poisson noise were similar to those described in the previous 
paragraph. An increase in efficiency obtained with an increase in additive noise was most 
pronounced with the images of nuclei (Fig. 11D) and least pronounced with the images of actin 
filaments (Fig. 7D). The performance of the proposed algorithm was markedly better than the 
performance of BivarShrnik (Figs. 7C-11C) and AdaptShrink (Figs. 7B-11B). The efficiency of 
the proposed routine was also better than the performance of OraclShrink (Figs. 7A-11A) at a 
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low level of additive noise but usually only slightly better at a high level of noise. OraclShrink 
was therefore the second best algorithm in this test. The differences to the best method varied 
(depending on the biological structure) from 0.011 to 0.315 (max. efficiency of 0.376 to 0.384) at 
the highest noise level and from 0.067 to 0.214 (max. efficiency of 0.098 to 0.240). One may 
note that that the fraction of removed noise obtained with BivarShrnik (Figs. 7C-11C) was 
negative at low levels of noise. This effect indicates that artifacts were produced during the 
course of denoising using this method.  

Low efficiency  

The lowest denoising performance was obtained for the images of endosomes (Fig. 2H) with all 
of the tested algorithms (Fig. 12). However, the efficiency of the proposed method (Fig. 12D) 
was better than the efficiency of AdaptShrink (Fig. 12B) and BivarShrink (Fig. 12C) over the 
whole range of noise levels. Similarly to the images denoised with moderate efficiency, the 
fraction of noise removed by the latter method was negative at low noise levels. This effect was 
also obtained by AdaptShrink, albeit only at the lowest levels of signal-dependent and signal-
independent noise. These two algorithms were outperformed by OraclShrink, which also under 
these conditions was the second-best algorithm. The proposed method performed only slightly 
better than OraclShrink at a high noise level, at which the difference was 0.049 (max. efficiency 
of 0.280). However, at a low noise level, the difference was more pronounced, i.e., 0.157 (max. 
efficiency of 0.158).   
 

4.  DISCUSSION AND CONCLUSIONS 

In this study, we describe a new adaptive wavelet denoising algorithm for fluorescence 
microscopy images. The proposed technique, similarly to the bivariate shrinkage algorithm 
described in previous studies [6, 7], exploits the intra- and inter-scale correlations of the wavelet 
coefficients. However, in contrast to the previous work [6, 7] and to other standard denoising 
algorithms [1, 3, 4], which estimate noise parameters directly from the untransformed or 
transformed data being denoised, we constructed general phenomenological wavelet-domain 
image detector noise models as a function of the acquisition parameters. Our model is based on 
an analysis of actual fluorescence micrographs acquired with a CCD camera [15, 16]. Hence, the 
images contain varied amounts of signal-dependent (Poisson) and signal-independent (Gaussian) 
noise, which correspond to actual acquisition parameters. The expected noise is then computed 
for each magnitude of the wavelet coefficients and used as an input for soft thresholding in the 
wavelet domain.   
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 The performance of the proposed algorithm was compared to the performance of 
AdaptShrink [4] and BivarShrink [7] and to optimal subband adaptive soft thresholding 
(OraclShrink) using a set of biological micrographs containing eight types of common 
subcellular structures. The performance of the proposed algorithm was affected by the type of 
imaged structure. The best efficiency was obtained with images of Golgi structures and nucleoli 
because the majority of the noise was removed with the algorithm. Conversely, the worst 
performance was observed in the case of the endosome images. It should be noted that while the 
former structures are characterized by a low internal complexity (they constitute uniform image 
regions), the latter comprises a set of small isolated objects (few pixels in size). Thus, the 
correlations between the respective wavelet coefficients at different resolution scales and 
between their magnitudes at the same scale are less pronounced than in the case of larger objects 
(nucleoli, filaments, etc.). Moreover, small structures are represented by a small set of wavelet 
coefficients and therefore appear more similar to noise (which corresponds to uncorrelated 
coefficients). Nonetheless, in this scenario, the proposed algorithm performed similarly or better 
that the other tested in this study.   
 One of the possible advantages of the proposed approach is the explicit estimation of 
signal-dependent (Poisson) noise. It is therefore interesting to note that the proposed method 
offered superior denoising performance when the contribution of this form of noise was minor 
(images comprising mostly constant background) or totally absent. The soft wavelet thresholding 
used in this study was directly adopted from the method constructed for the removal of signal-
independent noise only [7], which opens new avenues for further improvement. For instance, one 
may combine the proposed method with more sophisticated wavelet shrinkage schemes 
(developed for signal-dependent noise), such as Stein's unbiased risk estimate, SURE [17] and 
multi-stage Wiener filtering [18]. These approaches will be tested in further studies, and the 
construction of a simpler model of the relationship between of signal and noise in the wavelet 
domain will also be investigated in the future. 
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Figures and Table 
 

Table 1 
Coefficients of the Chebyshev polynomial model (rows, eq. 4) corresponding to the regression 

coefficients of the variance model (columns, eq. 5) at the respective bands of the wavelet 
decomposition transform. 

Wav. tr. 
band 

HH HL 
 

LH 

Ch. cf, 
(eq. 4)/ 
R. cf 
(eq. 5) 

 
C 

 
D 

 
E 

 
C 

 
D 

 
E 

 
C 

 
D 

 
E 

a 2.45E+00 8.12E-01 -4.39E-03 1.48E+01 4.74E-01 -9.14E-03 1.54E+01 4.61E-01 -1.06E-02 

b -2.36E-01 6.31E-02 1.82E-03 2.24E-01 7.03E-02 1.43E-03 2.61E-01 6.88E-02 1.62E-03 

c -7.22E-01 1.71E-01 2.27E-04 1.52E+00 2.64E-01 -6.75E-03 1.96E+00 2.62E-01 -7.95E-03 

d 1.52E-02 -1.33E-02 -4.54E-04 -1.11E-01 -6.90E-03 -2.49E-04 -1.09E-01 -6.54E-03 -2.87E-04 

e 2.21E-01 -9.31E-02 -9.62E-04 -1.16E+00 -6.60E-02 7.63E-04 -1.25E+00 -6.32E-02 8.98E-04 

f -5.12E-02 -5.03E-02 1.23E-03 -1.60E+00 -1.17E-02 1.68E-03 -1.64E+00 -9.75E-03 1.89E-03 

g 2.12E-05 3.28E-03 1.36E-04 1.61E-02 1.29E-03 6.95E-05 1.60E-02 1.32E-03 7.07E-05 

h -2.01E-02 2.33E-02 4.30E-04 2.24E-01 8.74E-03 1.43E-04 2.34E-01 8.09E-03 1.55E-04 

i -7.74E-03 4.55E-02 -4.96E-04 7.90E-01 9.89E-03 -5.59E-04 8.06E-01 8.88E-03 -6.41E-04 

j 6.94E-02 9.15E-03 -4.66E-04 2.55E-01 -1.13E-02 2.30E-04 2.29E-01 -1.13E-02 2.83E-04 

k -4.07E-05 -5.77E-04 -3.94E-05 1.81E-04 -3.42E-04 -1.62E-05 -2.34E-03 -2.82E-04 -1.43E-05 

l 1.48E-03 -5.14E-03 -1.81E-04 -3.33E-02 -1.80E-03 -7.97E-05 -2.82E-02 -1.74E-03 -9.52E-05 

m 1.87E-03 -1.38E-02 5.77E-06 -1.59E-01 -2.36E-03 1.21E-05 -1.56E-01 -2.19E-03 6.13E-06 

n -4.16E-02 -1.44E-02 4.53E-04 -2.46E-01 2.98E-03 5.23E-05 -2.35E-01 2.92E-03 2.50E-05 

o -2.52E-02 7.60E-04 5.15E-05 5.54E-02 3.24E-03 -1.58E-04 6.16E-02 3.05E-03 -1.81E-04 

p -6.93E-04 1.99E-04 2.33E-05 1.17E-03 8.64E-05 -2.82E-09 -7.97E-04 1.15E-04 1.71E-05 

q 5.07E-05 1.47E-03 7.13E-05 1.65E-03 6.70E-04 4.26E-05 2.44E-03 6.10E-04 3.29E-05 

r 1.11E-03 4.10E-03 5.34E-05 3.12E-02 8.49E-04 2.63E-05 3.18E-02 8.66E-04 8.49E-06 

s 1.04E-02 6.53E-03 -1.08E-04 7.52E-02 -9.64E-05 1.50E-06 7.67E-02 -1.49E-04 -2.20E-05 

t 3.16E-02 2.49E-03 -1.64E-04 2.94E-02 -1.82E-03 3.98E-05 2.24E-02 -1.58E-03 4.13E-05 

u 6.03E-03 -1.09E-03 1.34E-05 -3.69E-02 -1.35E-04 3.20E-05 -3.70E-02 -4.64E-05 2.96E-05 
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Fig. 1.  Dependence of noise on the magnitude of the wavelet transform coefficients (panel A) at 
the first decomposition level of the HH band. One of the coefficients (C) of the signal-variance 
model (eq. 3) is represented as a function of the image registration parameters (levels of additive 
and Poisson noise) obtained using the Chebyshev polynomial (panel B, eq. 4).   
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Fig. 2.  Representative template images of Golgi structures (A), nucleoli (B), actin filaments (C), 
tubulin filaments (D), endoplasmic reticulum (E), mitochondria (F), nuclei (G) and endosomes 
(H) used for the generation of noisy images for algorithm testing. The squares in C and F 
indicate the regions shown in Figs. 3 and 4, respectively. Bar - 10 mm. The images were obtained 
from the Murphy Lab database – PSLID (http://murphylab.web.cmu.edu/services/PSLID/). 
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Fig. 3.  Region of the image of actin filaments (Fig. 2C) containing noise (σ = 60, s = 2.25) and 
processed with OraclShrink (A), AdaptShrink (B), BivarShrink (C) and the proposed algorithm 
(D). The respective template (noiseless) image is included for comparison (E). Bar – 1.5 mm.  
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Fig. 4.  Region of the image of mitochondria (Fig. 2F) containing noise (σ = 60, s = 2.25) and 
processed with OraclShrink (A), AdaptShrink (B), BivarShrink (C) and the proposed algorithm 
(D). The respective template (noiseless) image is included for comparison (E). Bar – 1.5 mm.  
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Fig. 5.  Fraction of noise removed from the images of Golgi structures with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1).   
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Fig. 6.  Fraction of noise removed from the images of nucleoli with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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Fig. 7.  Fraction of noise removed from the images of actin filaments with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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Fig. 8.  Fraction of noise removed from the images of tubulin filaments with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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Fig. 9.  Fraction of noise removed from the images of the endoplasmic reticulum with 
OraclShrink (A), AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The 
denoising efficiency is plotted as a function of the magnitude of additive noise (x axis) and the 
Poisson noise (y axis, represented with the respective coefficient, eq. 1).  
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Fig. 10.  Fraction of noise removed from the images of mitochondria with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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Fig. 11.  Fraction of noise removed from the images of nuclei with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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Fig. 12.  Fraction of noise removed from the images of endosomes with OraclShrink (A), 
AdaptShrink (B), BivarShrink (C) and the proposed algorithm (D). The denoising efficiency is 
plotted as a function of the magnitude of additive noise (x axis) and the Poisson noise (y axis, 
represented with the respective coefficient, eq. 1). 
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