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Abstract 
Modern applications of biological microscopy such as high-content screening (HCS), 4D im-
aging, and multispectral imaging may involve collection of thousands of images in every ex-
periment making efficient image-compression techniques necessary. Reversible compression 
algorithms, when used with biological micrographs, provide only a moderate compression ra-
tio, while irreversible techniques obtain better ratios at the cost of removing some informa-
tion from images and introducing artifacts. We construct a model of noise, which is a func-
tion of signal in the imaging system. In the next step insignificant intensity levels are dis-
carded using intensity binning. The resultant images, characterized by sparse intensity histo-
grams, are coded reversibly. We evaluate compression efficiency of combined reversible cod-
ing and intensity depth-reduction using single-channel 12-bit light micrographs of several 
subcellular structures. We apply local and global measures of intensity distribution to esti-
mate maximum distortions introduced by the proposed algorithm. We demonstrate that the 
algorithm provides efficient compression and does not introduce significant changes to bio-
logical micrographs. The algorithm preserves information content of these images and there-
fore offers better fidelity than standard irreversible compression method JPEG2000. 
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1. BACKGROUND  
Digital imaging based on light microscopy has become an established technique in basic and applied 
biological sciences. Modern applications such as high-content screening (HCS), 4D imaging, and mul-
tispectral imaging may involve collection of thousands of images in one experiment. On the other 
hand, storage space and network transmission bandwidth which may accommodate these data is often 
limited. Therefore efficient image-compression techniques may be necessary to mitigate this problem. 
Several compression routines developed for digital photography and film, may be used for this pur-
pose. Reversible compression algorithms (Deflate, LZW, RLE, Huffman encoding, etc.) neither intro-
duce distortion to images [1] nor remove any information from images and therefore preserve the data 
integrity, as defined by 21 CFR part 11 [2]. However, reversible (“lossless”) techniques when used 
with biological micrographs usually provide only a moderate compression ratio, which does not ex-
ceed 3:1. This is caused by the large dynamic range (4096 – 65336 intensity levels per ‘color’ compo-
nent) of biological micrographs, and the fact that in a typical case the full extent of the dynamic range 
is used and all the intensity levels are populated. Furthermore, no typical intensity distribution may be 
constructed for these images. 

More efficient compression can be obtained with irreversible (“lossy”) techniques, which use 
vector quantization [3, 4], discrete cosine transform [5], wavelet transform [6, 7] or fractal coding [3, 
8]. However, these algorithms by definition remove some information from images and introduce arti-
facts. In the field of digital photography these distortions are considered acceptable as long as the es-
sential perceptual image quality is not affected [9, 10, 11, 12]. In other words, all intensity differences 
between pixels are regarded as significant if they are detectable by human observers [9]. This ap-
proach is established (sometimes mandatory) in medical applications of brightfield microscopy (in-
cluding pathology, cytology and hematology) owing to massive amounts of digitized data. For in-
stance, the whole-slide imaging (WSI), where the entire micrograph area is digitized, may generate 
daily terabytes of uncompressed data.  

However, procedure of verification of compression integrity by a panel of experts is time-
consuming and may be specific for different applications (biomedical assays). Thus, the procedure 
difficult to standardize and to apply systematically across a range of specimens and imaging regimes. 
This problem hinders use of automated data analysis/interpretation methods in the context of medical 
imaging. Therefore, one might adopt a different approach and focus on the information content of the 
input image data in order to establish acceptable compression limits and criteria. Owing to the pres-
ence of noise in the microscope images, not all intensity differences can be considered significant from 
a statistical standpoint. Thus, the number of meaningful intensity levels may be lower than the nomi-
nal dynamic range (corresponding to 12- or 16-bit precision) provided by the AD converters of the 
cameras. Therefore, to establish an irreversible yet information-preserving compression mechanism 
that does not use perceptual quality as a criterion, one should first construct a model of noise that is a 
function of signal in an imaging system. Then, intensity binning can be applied to discard insignificant 
intensity levels. The processed images are characterized by sparse intensity histograms; therefore re-
versible coding and intensity depth-reduction algorithms should be employed to provide efficient 
compression.  

Herein we report the design and implementation of a compression pre-processing scheme 
which takes advantage of the noisy nature of microscope images by preserving only statistically sig-
nificant levels of intensity. We provide results of local and global measures of intensity distribution to 
demonstrate that the alterations introduced by this algorithm to biological micrographs range from 
none to minor. We also demonstrate that the algorithm offers better fidelity than JPEG2000 (a stan-
dard "lossy" compression routine) at the same compression ratio.  
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2. MATERIALS AND METHODS 
2.1.  Cells and fluorescence labeling  

FluoCells prepared slide #2 (Molecular Probes) was used in all experiments. The slide contained fixed 
bovine pulmonary artery endothelial cells in which microtubules were labeled using mouse anti-
bovine α-tubulin monoclonal antibodies in conjunction with BODIPY FL goat anti-mouse IgG anti-
body; the cell nuclei were labeled with DAPI. 

2.2.  Microscope imaging 

Images of the endothelial cells were collected using a Nikon E1000 wide-field fluorescence micro-
scope equipped with a Nikon 40x Fluor oil-immersion objective lens (NA 1.3) and a 100-W Hg arc 
lamp. The BODIPY FL fluorescence was registered using a 475- to 495-nm excitation filter (band-
pass), a 505-nm long-pass dichroic mirror and a 525- to 565-nm emission filter (band-pass). A mono-
chrome CCD camera (Retiga 4000R, Qimaging, Burnaby, Canada) was used for image acquisition. A 
16x neutral density (ND) filter was used to attenuate the flux of excitation light. The microscope aper-
ture diaphragm was fully open, whereas the field diaphragm was adjusted to match the field of view of 
the objective. Image collection was carried out at room temperature. The camera was cooled to 25°C 
below ambient.  

A time series of 128 images of stationary (fixed) cells were collected using full frame (no 
binning) at 5-s intervals. The series was registered at three gain settings and for 0.25-s or 0.75-s acqui-
sition times. Image acquisition was controlled using ImagePro Plus v 5.1 (Media Cybernetics, Silver 
Spring, MD, USA).  

2.3.  Calculation of noise levels and background signal 

Levels of background (dark) and fluorescence signals together with their respective variances (corre-
sponding to total noise) were calculated as described elsewhere [13]. Briefly, for every image pixel the 
fluorescence intensity changes in time were modeled with three components: a systematic trend (re-
lated to photobleaching), a periodic component (associated with fluctuation of the excitation light 
source), and an irregular component (representing noise). Following [14] we studied our system using 
a simple univariate version of the unobserved components (UC) model: 
 t t t ty T S e= + +  (1) 
where t denotes the value of the associated pixel intensity at the tth time point, y is the observed value, 
T is the trend (or low-frequency component), S is the periodic (or “seasonal” component), and e is the 
irregular component. All the calculations were executed on a pixel-by-pixel basis utilizing the CAP-
TAIN modeling toolkit operating within the environment of Matlab [14]. First, the stochastic trend 
component was estimated using the integrated random walk (IRW) model: 
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where It is registered fluorescence intensity (at the tth time point), Tt is the smoothed intensity at the tth 
time point, Tt-1 and Tt-2 are values of Tt at two previous time points, et is measurement noise (zero 
mean, variance σ2

e), and ηt is the system disturbance (zero mean, variance σ2
η) . 

The trend was subtracted from the observed intensity (It). The de-trended data were used to 
isolate periodic components of intensity changes with the dynamic harmonic regression (DHR). Sub-
sequently, the IRW and optimal order DHR were used jointly to fit the trend and periodic component 
to the initial fluorescence intensity data (It). One should note that the noise variance ratio (σ2

η/ σ2
e) was 
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optimized in this step as well to minimize residual variance globally. The sum of the trend and peri-
odic components represented the true instantaneous fluorescence intensity (signal, Si

t) at every time 
point. Hence, the instrumental noise (for a pixel at a given time point) and its variance (for a signal 
level) were estimated as: 
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where N is the noise, S is the signal, I is the fluorescence intensity registered at the ith and tth points of 
the image time. 

Estimates of the other two components of a time series (periodic component and trend) can be 
further used to characterize the stability of the light source and the photobleaching rate of the fluoro-
chromes used in the experiment. However, they were utilized here only to provide an estimate of total 
signal level (fluorescence and background) and thus to calculate the corresponding level of total noise. 

In order to estimate the background signal, uniform dark image regions were identified for 
each time series. These regions (represented using binary masks) were comprised of pixels character-
ized by fluorescence intensity and local fluorescence heterogeneity that were smaller than 10% of the 
respective maxima. The heterogeneity was measured using the algorithm described in [15]. Average 
intensity (Ib) calculated in dim and homogenous regions was taken as the background (i.e., the pixel 
value of an image registered in the absence of fluorescence). The noise variance (V, Equation 3) was 
plotted against the signal corrected for background (Sc=S-Ib). A quadratic function was fitted to these 
data in order to characterize signal-noise dependency: 
 2 ,c cV A PS MS= + +  (4) 
where M, P, and A are estimators of the signal variance associated with the multiplicative, Poisson 
(photonic), and additive noise components. The standard deviation of Ib (ÖB) was calculated to esti-
mate the background noise.  

2.4.  Calculation of significant intensity levels and histogram binning (HB) 

Owing to the presence of noise in the images, not all intensity differences can be considered signifi-
cant. Thus, the number of meaningful intensity levels is lower than the nominal dynamic range pro-
vided by the cameras (12 bits, 4096 levels). Hence, the significant levels were calculated iteratively 
using the following algorithm:  
 

1. Input Ib, A, P, M  
2. Set k=0 
3. Do: 

a. Set k=k+1 
b. Set Ik

med=Ib 
c. Set s( Ik

med )=Ö(A+ Ik
med *P+ Ik

med * Ik
med*M)  

d. Set Ik
high=Ik

med+1.96*s( Ik
med )  

e. Set Ik+1
low = Ik

high  
f. Calculate Ik+1

med so that I k+1
med- I k+1

low=1.96*s(I k+1
med) 

4. Loop while Ik+1
med<4095  

5. Terminate. Output scalar s=k and vector I=[ I1
med I2

med … Is
med].  
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The algorithm produces a set of Ik
med for which Ik

med-Ik-1
med=1.96(s(I k

med)+s(I k-1
med)). The Ik

med 
values smaller than Imax represent intensity levels significantly different from one another with 95% 
probability (confidence) in the sense of Student’s t test (hence the factor of 1.96). The choice of confi-
dence interval was arbitrary. However, similar calculations can be performed for every confidence 
level. The set of values was used to segment the representative images by setting all pixel intensities 
(Ir) to the nearest significant level. This operation is hereinafter referred as histogram binning (HB).  

2.5.  Simple depth reduction and histogram packing 

Reversible image-compression algorithms used on data characterized by sparse intensity histograms 
(such as those generated by HB) may exhibit poor performance [16]. To alleviate this problem a sim-
ple depth reduction (SDR) transform, first introduced in [17] was used. SDR maps pixel intensity lev-
els in the following way: 
 0 max ,SDRI I s I=  (5) 
where ISDR denotes intensity after SDR transform, I0 is the original intensity, s is the number of signifi-
cant levels, and Imax is the intensity of the highest significant level. 

To perform the inverse SDR transform one needs to know s and Imax. The compression ratios 
were calculated taking into consideration this necessary overhead (4 bytes). 

The performance of reversible image-compression algorithms may also be improved using 
histogram packing (HP) [16]. HP maps all the significant levels to the lowest part of the nominal in-
tensity range using order-preserving one-to-one mapping. The transform is reversible provided that 
information that permits histogram expansion after decompression is encoded with compressed im-
ages. It is sufficient to encode significant intensity levels for histogram expansion, and there is no need 
to specify how many times a level was used. An array of histogram-encoding methods is available 
[18]. When the number of significant levels is low, a simple mapping table (MT) may be used. Briefly, 
if n significant intensity levels are found in the image the MT represents sorted intensity values as con-
tiguous indexes: 
 0 1 1MP( ) ( 0, 1, , 1)n nI I I I n-= -a a K a  (6) 

The compression ratios reported in this work were calculated taking into consideration the size 
of MTs encoded according to the JPEG-LS standard. Therefore the MTs were encoded with 5+2s 
bytes, where s is the number of significant levels. This form of histogram packing used together with 
histogram binning (HB) is hereinafter referred as histogram binning/packing (HBP). Note, that instead 
of storing original histogram with each compressed image, one could store it only once for all images 
that share the same detector characteristic, or just store the detector parameters used to perform Histo-
gram Binning. An implementation illustrating this possibility and allowing to experiment with the HB 
and HBP methods has been prepared (http://sun.aei.polsl.pl/~rstaros/hbp/index.html). 

2.6.  Image-compression algorithms 

We estimated compression efficiency of two still-image coding methods: JPEG-LS [19] and 
JPEG2000 [6], developed by the JPEG committee. These algorithms are recent coding standards of 
ISO/IEC and ITU organizations, and are incorporated in the DICOM standard of NEMA [20]. JPEG-
LS describes a low-complexity predictive compression algorithm with entropy coding using a modi-
fied Golomb-Rice [21, 22] code. The technique is based on the LOCO-I algorithm [23]. We used  
the SPMG/UBC implementation (version 2.2, ftp://ftp.netbsd.org/pub/NetBSD/packages/distfiles-
/jpeg_ls_v2.2.tar.gz). JPEG2000 is based on wavelet-transform image decomposition and arithmetic 
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coding [24]. This algorithm provides progressive transmission and region-of-interest coding [25]. We 
used JasPer implementation by Adams (version 1.700.0, http://www.ece.uvic.ca/~mdadams/jasper/). 
We also tested the performance of a universal data-compression algorithm Deflate (RFC 1951 [26]). 
The algorithm is based on the Ziv-Lempel dictionary coding LZ77 [27] and is incorporated in the DI-
COM standard. We used the gzip implementation (version 1.2.4, http://www.gzip.org/). 

All the compression methods were used with default coding parameters. Compression ratio is 
defined as U/C, where C is the size, in bytes, of a compressed image (including header); U is the size 
of the original image, defined as U = bn/8, where b is the image bit depth (12 in our case), and n is 
number of pixels in the image. One should note that in practice space savings may be greater than im-
plied by the compression ratio since uncompressed image file formats store image pixels on whole 
bytes, so each 12-bit pixel actually occupies 16 bits. 

One should note that both JPEG2000 and JPEG-LS may be used for reversible and irreversible 
coding. While the reversible compression ratio depends on the image contents, it may be set in arbi-
trary manner when the irreversible mode is used. However, high compression ratio is obtained in that 
case at the expense of the fidelity of decompressed image (micrograph). Typical artifacts include blur-
ring and generation of spurious image details (Fig. 1).  

 
 

 
 

Fig. 1.  JPEG2000 compression at different ratios. Enlarged fragment of micrograph: raw image (A), 
for which the reversible JPEG-LS ratio is 1.75, and images compressed with irreversible JPEG2000 at 
ratios 10 (B), 25 (C) and 50 (D). 
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2.7.  Estimation of global changes in fluorescence intensity distributions  

We used the earth mover’s distance (EMD) algorithm in order to establish whether compression intro-
duced changes in the total fluorescence intensity distributions [28]. We compared image histograms of 
raw images with their counterparts processed with SDR, HB, or irreversible JPEG2000. The minimal 
average intensity change (per pixel) needed to transform histograms of a compressed image into the 
respective histogram of an uncompressed (reference) image was computed for every such image pair. 

2.8.  Alterations of local fluorescence distributions  

To verify whether reduction in the number of intensity levels altered spatial fluorescence intensity dis-
tributions, raw images were compared with their counterparts subjected to HB. The distributions were 
compared using texture parameters (features): Haralick features based on the grey-level co-occurrence 
matrix (GLCM), gradient-based features, run-length matrix parameters, and wavelet energy. Detailed 
descriptions of these parameters are provided in [29, 30]. The GLCMs were calculated at distances 
from 1 to 9. The gradient-based features and run-length matrix parameters were calculated at 0 (hori-
zontal), 45, 90 (vertical), and 135 degrees. The wavelet energy was calculated at first, second, and 
third decomposition levels. Calculations were performed for the areas where the fluorescence intensity 
was higher than background. The texture parameters of images subjected to histogram binning were 
divided by the respective values for their raw counterparts. The total number of 137 normalized tex-
ture parameters was subjected to step-wise linear discriminant analysis. The Mahalanobis distance was 
used to establish the parameters characterized by the highest discriminant power. The parameters were 
added to and removed from the analysis set using probability of F (0.05 for entry and 0.10 for re-
moval). An identical set of texture parameters was calculated for images processed with SDR and 
compressed with irreversible JPEG2000.  

3. RESULTS  
3.1.  CCD noise and background 

Square roots of Poisson and additive noise coefficients (Equation 4) were analyzed as a function of 
gain for the monochrome (single-channel) images registered Retiga 4000R CCD camera at 12-bit 
(4096 levels) precision., as described in detail elsewhere [13]. Briefly, the amount of both types of 
noise depended linearly on the gain for the CDD, but was not affected by acquisition time (Table 1). 
On the other hand, the background signal (see Materials and Methods) increased linearly with acquisi-
tion time and gain [13]. There was no significant difference between the additive noise (ÖA) and back-
ground noise (ÖB). Hence both these parameters may be regarded as estimators of the dark noise. Con-
sequently, dependence between signal and noise for the CCD may be accurately expressed using 
Equation 4 [13].  

 
Table 1. Dependence of Poisson and additive noise on CCD gain for the set of 12-bit single-channel 
images used in experiments. The respective fit coefficients (√P, √A, eq.2) calculated for the variance 
(V, eq. 2) as the function of gain are given with their standard errors (for details see [13]).  
 

 acq. time [s] slope (SLp) intercept (INp) correlation (r2) 
0.250 0.0948 ± 0.0070 -0.028 ± 0.005 0.98 Poisson noise 
0.750 0.0986 ± 0.0060 -0.018 ± 0.002 0.99 
0.250 2.030 ± 0.150 -1.07 ± 0.10 0.98 Additive noise 

 0.750 2.087 ± 0.371 -0.37 ± 0.22 0.99 
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3.2.  Calculation of significant intensity levels and histogram binning 

The CCD cameras registered images with 4096 nominal intensity levels (12-bit digitization). How-
ever, owing to the presence of noise not all differences in intensity between pixels may be considered 
significant (see Materials and Methods), and consequently practical dynamic resolution is lower than 
nominal. Hence, the number of significant intensity levels (with 0.95 probabilities) was calculated at 
several values of CCD settings (gain, acquisition time and, offset) and are presented in Table 2. These 
numbers of levels were used to perform SDR (Equation 5). Furthermore, the respective vectors of in-
tensity values corresponding to significant levels were used to segment series of images registered at 
given values of gain, acquisition time, and offset (see Materials and Methods) by setting all pixel in-
tensities (Ir) to the nearest level (histogram binning, HB). Result of these transformations is illustrated 
by a representative image in the Fig. 2. One may note that no gross image distortions were introduced 
by this operation.  

3.3.  Coding efficiency of sparse histogram images 

Fluorescence microscopy images characterized by various levels of noise and background were coded 
reversibly using JPEG2000, JPEG-LS, and Deflate compressors (Table 3). Only moderate ratios of 
compression were obtained by digital photography dedicated algorithms such as JPEG2000 and JPEG-
LS. Nonetheless, these ratios were higher than those provided by the Deflate algorithm (which is not 
optimized for image data). Reduction in the number of intensity levels achieved by HB operation re-
sulted in a slight increase in compression ratio for JPEG-LS, and a large improvement for the Deflate 
algorithm. These results indicate that HB improved compressibility of microscopic images. However, 
HB caused deviation from typical image data characteristics necessary for optimal performance of 
standard image compression algorithms. As expected, application of HBP operation markedly in-
creased compression ratios of JPEG2000 and JPEG-LS, but did not significantly affect the perform-
ance of Deflate. The increase in compression was similar for JPEG2000 and JPEG-LS. The resultant 
ratios were better by about 45% comparing with the Deflate algorithm. Even greater improvement in 
compression efficiency was obtained when SDR was used. However, the standard deviation of the 
mean compression ratio was greater in SDR than in HBP, indicating that only some specific images 
were compressed more efficiently with SDR than with HBP.  
 
 
Table 2. Total number of significant (p=0.95) intensity levels of the CCD calculated with histogram 
binning (HB) for the detector and acquisition parameters used in experiments. The highest numbers of 
levels are indicated with asterisks, the lowest with crosses.  
 

 Offset [AU]  
 0   150   400  acq. time [s] gain 

HB SDR HB SDR HB SDR 
05 074* 066* 072 061 070+ 052+ 
10 036* 032* 036 032 034+ 026+ 

0.250 

15 024* 022* 024 021 023+ 019+ 
02 190* 165* 186 146 178+ 124+ 
05 074* 065* 072 060 069+ 055+ 

0.750 

10 036* 032* 036 026 034+ 028+ 
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Fig. 2. Micrograph of fluorescently (BODIPY) immunostained tubulin in a fibroblast, registered at 
gain of 10, acquisition time of 0.75 s, and black level of 150 units. The image is shown using nominal 
(A) and reduced number of intensity levels, calculated with histogram binning, HB (B), and simple 
depth reduction, SDR (C). For comparison a raw image compressed using irreversible JPEG2000 
(with the same ratio as obtained with HBP and reversible JPEG2000 coding) is shown (D). Image 
segmentation was performed using HB with p=0.95. Scale bar 10 mm.  
 
 
Table 3. Compression efficiency of micrographs with full and reduced number of intensity levels. The 
images were reversibly coded with JPEG2000, JPEG-LS, and Deflate. Compression ratios are ex-
pressed as the average ± standard deviation.  
 

 Coding algorithm  
Intensity depth reduction method 

JPEG 2000 JPEG LS Deflate 
None 01.80 ± 0.21 01.79 ± 0.20 1.13 ± 0.08 
Histogram binning (HB) 01.94 ± 0.21 02.87 ± 0.26 6.46 ± 0.52 
Histogram binning + packing (HBP) 09.45 ± 0.47 09.55 ± 0.50 6.53 ± 0.51 
Simple reduction (SDR) 11.44 ± 1.79 11.48 ± 1.53 8.29 ± 1.08 
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3.4.  Conservation of image information in histogram binning and simple depth reduction  

3.4.1. Alteration of global intensity distribution in compression 

The intensity histograms of the processed images were compared quantitatively to the histograms of 
their raw counterparts. Average EMD values for HB-processed images with histogram binning (HB) 
and their raw counterparts (see Table 4) were small comparing to the average distance between nearest 
significant intensity levels (the nominal intensity range divided by the number of significant levels, see 
Table 2). This notion indicates that HB did not introduce gross changes to global intensity distribu-
tions. Greater alterations were introduced by simple depth reduction (SDR). On the other hand, com-
pression of raw images with irreversible JPEG2000 (compression ratio was adjusted to match effi-
ciency of HBP with reversible JPEG2000) produced much smaller histogram alterations than HB did.  

3.4.2. Alteration of local intensity distribution in compression 

Local intensity distribution in the images was characterized using Haralick texture parameters based 
on GLCM, wavelet energy, and gray-level runlength (see Materials and Methods). The parameters 
which provided strongest discrimination between raw and HB-processed images were identified using 
linear discriminant analysis (LDA). As a result of LDA the following parameters were studied in de-
tail: wavelet energy (LH and HH bands), runlength (fraction and short run emphasis), and Haralick 
features (contrast, correlation, inverse difference moment, difference average). 

3.4.3. Wavelet energy 

Application of HB resulted in a modest increase of wavelet energy in five out of six decomposition 
bands (Fig. 3A-E). No change of energy was observed in the LH band at the third decomposition level 
(Fig. 3F). This band corresponded to details 8 to 16 pixels in size. A larger increase in the energy in 
the former five bands was detectable when SDR was used (Fig. 3A-E). One should note that this 
method produced some distortions detectable at the highest (third) decomposition level (Fig. 3EF). 
Furthermore, the dispersion of the relative energy values was larger with SDR than with HB, indicat-
ing that the effect of image content on the magnitude of the distortion was greater with SDR than with 
HB. Compression with irreversible JPEG2000 (with the same ratio as obtained with HBP and reversi-
ble JPEG2000) generated no significant change of the wavelet energy in the bands at the third decom-
position level corresponding to 8-pixel (Fig. 3E) and 8-16 pixel (Fig. 3F) details. However, at the sec-
ond decomposition level (the HH [4-pixel details] and LH bands [4-8 pixel details]) the energy change 
was similar in magnitude to that produced by HBP and SDR, but opposite in sign (Fig. 3CD). Fur-
thermore, at the first decomposition level (the HH [2-pixel details] and LH bands [2-4 pixel details]) 
irreversible JPEG2000 generated larger distortions than HPB (Fig. 3AB). One should note that signifi-
cant dispersion (manifested at the 2-pixel detail level, Fig. 3A) indicates that the distortion was af-
fected by the image content and was not uniform within images (as describer further). 
 
 
Table 4. Alterations of fluorescence intensity distributions (histograms) in irreversible compression, 
as measured using EMD. Data are expressed as the average ± standard deviation.   
 

Method EMD 
Histogram binning (HB) 19.73 ± 8.810 
Simple depth reduction (SDR)  59.62 ± 27.64 
JPEG2000 1.14 ± 0.60 
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Fig. 3. Change of relative wavelet energy in compression with HBP, SDR, and irreversible JPEG 2000 
(at the same compression ratio as obtained with HBP). The energy was calculated in HH (A, C, E) and 
LH (B,D,F) bands at first (A,B), second (C,D), and third (E,F) levels of decomposition. The data 
boxes represent medians with 75th percentiles, while error bars indicate corresponding 90th percentiles.  
 

3.4.4. Haralick features 

Reduction of the number of intensity levels and coding with HBP resulted in a moderate increase of 
GLCM contrast at the 1-pixel distance (Fig. 4A). HB did not produce changes of this parameter at 4-
pixel (Fig. 4C) and 7-pixel (Fig. 4E) distances. When compression of raw images (with ratio identical 
to that obtained with HBP) was performed using irreversible JPEG2000, a decrease in the contrast was 
detected at the 1-pixel distance, whereas no changes were observed at larger distances. One should 
note that the decrease was similar in magnitude to the change produced by HBP at the same distance. 
Application of SDR resulted in an increase of the contrast detectable at all pixel distances (Fig. 
4ACE). The increase was larger than that generated by HBP. Furthermore, dispersion of the correla-
tion was greater with SDR than with HBP. One should note that the former algorithm altered GLCM 
correlation at all pixel distances (Fig. 4BDF). No such effect was observed when HBP or irreversible 
JPEG2000 was used.  
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Fig. 4. Change of relative GLCM contrast (ACE) and correlation (BDF) in compression with HBP, 
SDR, and irreversible JPEG 2000 (at the same compression ratio as obtained with HBP). The GLCM 
parameters were calculated at 1-pixel (AB), 4-pixel (CD) and 7-pixel (EF) distances. The data boxes 
represent medians with 75th percentiles, while error bars indicate corresponding 90th percentiles. 

 
 
Application of HBP produced a marked increase in inverse difference moment at distances of 

1 pixel (Fig. 5A), 4 pixel (Fig. 5C) and 7 pixels (Fig. 5E). The magnitude of this increase was similar 
at all distances. Only small dispersion of GLCM inverse difference moment values was observed (at 
all distances) when HBP was used. Larger median increase and dispersion were detected when SDR 
was applied (Fig. 5ACE). Both these parameters were dependent on pixel distance when this algorithm 
was used. On the other hand, application of irreversible JPEG2000 resulted in increase of the inverse 
difference moment only at the 1-pixel distance. Furthermore, the magnitude of this change was smaller 
(by a factor of 10) than that generated by HBP. The opposite situation could be observed when texture 
alterations were studied using GLCM difference average. Application of HBP did not generate any 
significant changes of this parameter (Fig. 5BDF), whereas irreversible JPEG2000 produced a marked 
decrease at the 1-pixel distance and a smaller decrease at the 4-pixel distance. One should note that  
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Fig. 5. Change of relative GLCM inverse difference moment (ACE) and difference average (BDF) in 
compression with HBP, SDR, and irreversible JPEG 2000 (at the same compression ratio as obtained 
with HBP). The GLCM parameters were calculated at 1-pixel (AB), 4-pixel (CD) and 7-pixel (EF) 
distances. The data boxes represent medians with 75th percentiles, while error bars indicate corre-
sponding 90th percentiles. 

 
 

large dispersion of this parameter was detectable at the 1-pixel distance. This indicates that the distor-
tion was affected by the image content (as described further). As with HBP, use of SDR did not result 
in a significant median change of the correlation. However, dispersion of this parameter was large at 
all pixel distances.  

3.4.5. Runlength parameters 

Application of HB and SDR resulted in a decrease of runlength short-length emphasis (Fig. 6). The 
median decrease was similar in all directions (compare panels A,B,C, and D in Fig. 6) and the disper-
sion was small in all cases. Compression with reversible JPEG2000 did not alter median the value of 
this parameter. However, dispersion short-length emphasis indicated that changes in texture could be 
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Fig. 6. Change of relative runlength short-run emphasis in images compressed with HBP, SDR, and 
irreversible JPEG 2000 (at the same compression ratio as obtained with HBP and reversible JPEG2000 
coding). The parameter was calculated at directions corresponding to 0 degrees (A), 45 degrees (B), 90 
degrees (C), and 135 degrees (D). The data boxes represent medians with 75th percentiles, while error 
bars indicate corresponding 90th percentiles 
 
 
present in some of the images. Furthermore, the dispersion was detectable only at 0 degrees (Fig. 6A), 
and not at 45, 90, or 135 degrees (Fig. 6B-D). This notion indicates directional character of these al-
terations. Like the previous parameter the runlength fraction was decreased when images were com-
pressed using HB and SDR (Fig. 7). Again the magnitude of the decrease was similar in all directions 
and the values exhibited small dispersion. No changes of this parameter were detected in the images 
compressed with irreversible JPEG2000. 

3.4.6. Local vs. global image distortion 

The presented measures of image distortion deliver one estimate which takes into account all pixels in 
a studied image. However, one may hypothesize that the distortions are not distributed uniformly in 
images. Closer investigation of images reveals no such effect in the images compressed with HBP 
(Fig. 8B) and SDR (Fig. 8C), where dim and bright image regions are altered in similar manner. How-
ever, in the images compressed with irreversible JPEG2000 pronounced smoothing is detectable in the 
dim but not in the bright image regions (compare Fig. 8A and 8D). Furthermore, texture artifacts (in 
the form of crosses) are introduced in the dim image regions when this algorithm is used. This notion 
indicates that compression with irreversible JPEG2000 resulted in both removal of original and intro-
duction of new texture elements.  
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Fig. 7. Change of relative runlength fraction in images compressed with HBP, SDR, and irreversible 
JPEG 2000 (at the same compression ratio as obtained with HBP). The parameter was calculated at 
directions corresponding to 0 degrees (A), 45 degrees (B), 90 degrees (C), and 135 degrees (D). The 
data boxes represent medians with 75th percentiles, while error bars indicate corresponding 90th per-
centiles 
 

4. DISCUSSION 
Owing to the heterogeneity of imaged specimens and the presence of detector noise, typical biological 
micrographs are characterized by a large number of intensity levels. Using characteristics of noise as a 
function of signal one may reduce the number of levels with intensity-binning (HB) procedure. The 
resultant images have sparse histograms, i.e., a small number of intensity levels distributed throughout 
the nominal intensity range. One should note that image-compression algorithms are not optimized for 
this type of histograms. Indeed, the presence of sparse histograms has been reported to worsen com-
pression ratios of images coded with reversible algorithms [16]. Therefore, to take advantage of a 
small number of intensity levels, histogram-packing techniques should be used with reversible coding.  

This idea is in agreement with the observation that only a small increase in compression ratios 
was obtained when images with sparse histograms were coded using reversible algorithms optimized 
for image data (JPEG-LS and JPEG2000). On the other hand, compression efficiency was signifi-
cantly improved when a universal coding algorithm (such as Deflate) was used. As expected, the high-
est compression ratios for biological fluorescence micrographs were obtained when histogram packing 
(employing HBP or SDR) was combined with reversible image coding (JPEG-LS and JPEG2000). 
The ratios were nearly an order of magnitude higher than those typically obtained for the reversible 
coding used with raw data. One should note that histogram packing did not improve compression effi-
ciency for universal coding. Usually, higher ratios were obtained with SDR than with HBP. However, 
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Fig. 8. Enlarged central region of micrograph of fluorescently immunostained fibroblast (presented in 
the Fig. 2). The image is shown with gamma of 1.3 and using nominal (A) and reduced number of in-
tensity levels, calculated with histogram binning, HB (B), and simple depth reduction, SDR (C). For 
comparison a raw image compressed using irreversible JPEG2000 (with the same ratio as obtained 
with HBP and reversible JPEG2000 coding) is shown (D). Image segmentation was performed using 
HB with p=0.95. Scale bar 5 mm.  
 
 
this notion was true for images characterized by high background (i.e., registered at high offset val-
ues), so it may not be regarded as a general rule. 

Compression pre-processing with HBP does not markedly affect the global intensity distribu-
tion (image histogram) as estimated with EMD. The average change in pixel intensity was 0.48% of 
the nominal intensity range (4096 levels). Greater distortion was observed when SDR was used 
(1.46% of the intensity range). However, both these values were smaller than the average distance be-
tween nearest intensity levels in the images processed with HBP and SDR (2.57%). Histogram altera-
tions generated by irreversible JPEG2000 were negligible when compared to SDR and HBP (0.03% 
respectively).  

Processing images with HBP and SDR does significantly alter local intensity distribution 
measured with wavelet energy, regardless of decomposition band. On the other hand, distortions de-
tectable in the decomposition bands corresponding to fine details were produced when irreversible 
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JPEG2000 was used. One should note that these distortions were dependent on image content and 
were not uniform within images. Irreversible JPEG2000 compression and HBP/SDR produced 
changes in Haralick contrast and correlation similar in magnitude but opposite in sign. Larger disper-
sion of these values was noted only when SDR was used, indicating some dependence on image con-
tent. Irreversible JPEG2000 generated no texture changes detectable with GLCM inverse difference 
moment, whereas such changes were observed for HBP and SDR. Conversely, JPEG2000 generated 
changes in GLCM correlation at small distances (corresponding to fine details), whereas HBP did not 
influence this value. Large dispersion of the correlation values suggests dependence of JPEG2000-
generated distortion on image content. Similar large dispersion was noted for SDR, albeit with smaller 
median compared to the respective value for JPEG2000. 

HBP and SDR produced large decreases in runlength fraction and short-run emphasis. How-
ever, this change was similar in all the images (as indicated by small dispersion) and independent of 
direction. No significant change of median values of these parameters was introduced by irreversible 
JPEG2000. A large dispersion fraction values indicated directional character of the changes. 

It should be emphasized that the texture parameters were specifically picked to detect changes 
introduced to the images by reduction in the number of intensity levels. Therefore the presented results 
may be considered to be upper estimates of image distortions introduced by SDR and HBP. Therefore, 
this specific set of texture parameters might not detect all distortions introduced by irreversible 
JPEG2000. Nonetheless, performance of HPB was superior to irreversible JPEG2000 in the sense of 
many texture parameters. What is more, the effects produced by the former were similar within the 
image set and uniform within single images. Hence, possible distortions were introduced in a consis-
tent and non-arbitrary manner. This is not surprising since reduction of the number of intensity levels 
was performed using the detector characteristics but not image-content information. JPEG2000 and 
other popular irreversible image-compression algorithms do not offer these advantages as they are op-
timized to preserve perceptual image quality. 

Although objective metrics of image fidelity are used in this work, one may note also that the 
changes introduced to images by tested methods could be detected on visual inspection. These changes 
were clearly manifested on the large scale SDR method (Fig. 2 and 8). Similar effects of HBP or 
JPEG2000 (at ratio identical to HBP) could be noticed when pixels become distinguishable with naked 
eye (small scale, Fig. 1 and 8). Since these differences may not always be evident in print or pdf file 
(as creating these is an operation of image processing) we provide original (uncompressed bitmap) 
figures upon request.  

Intensity binning presented in this work was executed so that the levels were different from 
one another with 95% probability (confidence). The choice of confidence interval was arbitrary. Simi-
lar calculations can be performed for every confidence level. Therefore, one may optimize the statisti-
cal significance of intensity differences to obtain a desired compression ratio. In other words limited 
storage space or network transmission bandwidth may be used optimally so as to accommodate maxi-
mum amount of scientific information. Since such optimization depends only on detector characteris-
tics and is not affected by image content management of the storage and bandwidth resources may be 
facilitated by intensity binning. This advantage may be especially important in the storage systems 
consisting of separate volumes connected by a network. Furthermore, image data corresponding to 
various levels of statistical significance may be encoded sequentially providing progressive image 
transmission over a network. One should note that data may be transmitted in this scheme in the order 
of statistical significance (as opposed to ("visual importance"). This may be an important advantage in 
the fields of telemicroscopy [31, 32] and telemedicine [32, 33].   



 18 

The proposed HBP algorithm can be used directly with JPEG2000 and JPEG-LS compres-
sors/decompressors. In fact, direct support for histogram packing, designed initially for palette images, 
is part of the JPEG-LS baseline standard [19]. Moreover, the 2nd part of the JPEG2000 standard [7] 
describes two generic non-linear transformations that may be applied to decoded pixel intensity levels: 
the piece-wise linear function and the gamma-style function. Encoding packed histogram as a mapping 
table is a special case of the latter. Therefore these algorithms are capable of reconstructing an image 
and its original histogram employing their standard functionality (i.e., no additional step of histogram 
expansion is required). Furthermore, the JPEG-LS and JPEG2000 standards define only the decoding 
parts of the respective algorithms and the format of the compressed data stream. Provided that histo-
grams are encoded in the required format, the whole process of applying HBP and core JPEG-
LS/JPEG2000 image-coding routines is compliant with these standards. 
 The SDR and HP algorithms, applied in this study for monochrome images, might also be 
used with color data. It should be noted that color channels are usually transformed (Multi-Component 
Transform) to remove their mutual correlation. Therefore, if such operation was applied directly to 
multi-channel images processed with HB an increase of the number of levels would be expected. Con-
sequently, the compression results could be worsened. This problem may be avoided by applying 
SDR/HP to individual channels of color image after subjecting them to HB and prior to Multi-
Component Transform. 
 The presented algorithms were used with commercial package for modeling of camera noise. 
In the next stage open-source implementation of SDR and HP together with the noise analysis routine 
is envisaged.  

5. CONCLUSIONS 
The results presented show that HBP pre-processing provides significant enhancement in compression 
efficiency and does not introduce significant changes to biological micrographs. The algorithm has 
better fidelity than irreversible JPEG2000 (at the same compression rate) and can be easily imple-
mented within the context of the current image-compression standards. This makes the proposed pro-
cedure an attractive enhancement to data-acquisition packages developed for biological imaging sys-
tems. 
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