
Computing and Informatics, Vol. ..,, 1–18, V 2009-Nov-9

CONSTRAINED LONGEST COMMON SUBSEQUENCE
COMPUTING ALGORITHMS IN PRACTICE

Sebastian Deorowicz

Institute of Informatics

Silesian University of Technology

Akademicka 16

44-100 Gliwice, Poland

e-mail: sebastian.deorowicz@polsl.pl

Joanna Obstój

Abstract. The problem of finding a constrained longest common subsequence
(CLCS) for the sequences A and B with respect to the sequence P was intro-
duced recently. Its goal is to find a longest subsequence C of A and B such that
P is a subsequence of C. There are several algorithms solving the CLCS problem,
but there is no real experimental comparison of them. The paper has two aims.

Firstly, we propose an improvement to the algorithms by Chin et al. and Deorowicz
based on an entry-exit points technique by He and Arslan. Secondly, we compare
experimentally the existing algorithms for solving the CLCS problem.

Keywords: Longest common subsequence, constrained longest common subse-

quence, sparse dynamic programming, string matching, sequence alignment

Mathematics Subject Classification 2000: 68W05

1 INTRODUCTION

The knowledge of the similarity of two sequences is crucial in various applications.
The sequence similarity can be defined in many ways and one of the most commonly

2 S. Deorowicz, J. Obstój

used is the length of their longest common subsequence (LCS).1 In this problem,
we are interested in a longest sequence2 which is a subsequence of both sequences
(a subsequence is obtained from a sequence by deleting zero or more symbols). The
problem is well studied [2, 3, 9, 15] and is used in many applications, like DNA
and protein analysis, text information retrieval, file comparing, music information
retrieval, or spelling correction.

There are also a lot of generalizations of this similarity measure. One of the
recent is the length of a constrained longest common subsequence (CLCS) [19]. It
generalizes the LCS measure by introduction of a third sequence, which allows to
extort that the obtained CLCS has some special properties. We deal here with
three sequences, A, B, and P , and look for a longest sequence being a subsequence
of both A and B, and containing P as a subsequence.

The CLCS problem emerged in bioinformatics, where sequences containing DNA
and proteins are compared. In the classical LCS problem, the obtained result is
sometimes of little biological value. Therefore, the biologists wanted to have a
possibility to use their prior, biological, knowledge of the sequences. Tang et al. [18]
illustrates the problem giving the following example. In the alignment of RNase
sequences, it is known that sequences contain three active-site residues, His(H),
Lyn(K), His(H). They are essential for RNA degrading. Therefore, the only sequences
interesting for the biologists are those, in which these three residues occur in the
given order (the sequence HKH is the constraint).

In Section 2, the necessary terms and a definition of the CLCS problem are given.
Section 3 contains a description of the existing algorithms for a CLCS computing.
In Section 4, some improvements to these methods are proposed. Then, in Sec-
tion 5, the implementation details are discussed, and a comprehensive experimental
comparison of the described algorithms are presented. The last section concludes
the paper.

2 DEFINITIONS

Let us have three sequences: A = a1a2 . . . an, B = b1b2 . . . bm, and P = p1p2 . . . pr,
where r ≤ min(m, n). Each of them is composed of symbols over an alphabet Σ
of size σ. The length (size) of the sequence is the number of elements it contains.
A sequence X ′, for any X, is a subsequence of X if it can be obtained from X by
removing zero or more symbols. The LCS problem for A and B is to find a longest
possible sequence C being a subsequence of both A and B. The CLCS problem,
being a generalization of the LCS problem, for A, B, P is to find a longest possible
sequence C being a subsequence of A and B and containing P as a subsequence.

The problem is symmetric, so it can be assumed without a loss of generality
that m ≤ n. The pair (i, j) is called a match iff ai = bj. A triple (k, i, j) is called a
strong match iff ai = bj = pk. For simplicity, the notation Xi...j for xixi+1 . . . xj , Xs

1 Some other possibilities, like edit distance, best alignment are discussed, e.g., in [2, 9]
2 There can be a number of such sequences of equal length

CLCS Computing Algorithms in Practice 3

for X1...s, and X−s for Xs+1...|X| is used.

3 ALGORITHMS FOR THE CLCS PROBLEM

There are several algorithms dealing with the CLCS problem. Their worst-case
time and space complexities are shown in Table 1. Since, often the knowledge of the
CLCS length only is sufficient, the space complexities are given for the two cases.

Authors Year Time Space (CLCS) Space (CLCS length)

Tsai [19] 2003 O(m2n2r) O(m2n2) O(m2n2)
Peng [16] 2003 O(mnr) O(mnr) O(mr)
Chin et al. [6] 2004 O(mnr) O(mnr) O(mr)
Peng, Ting [17] 2004 O(mnr) O(nr) O(nr)
Arslan, Eğecioğlu [1] 2005 O(mnr) O(mnr) O(mn)
Wang [20] 2006 O(mnr) O(mnr) O(mr)
Deorowicz [7] 2007 O(r(m`+ d) + n) O(dr +max(n, σ)) O(d+max(n, σ))
Iliopoulos, Rahman [13] 2008 O(rd log log n) O(max(n, rd)) O(max(n, d))

Table 1. Time and space complexities of the CLCS computing algorithms (d means the
total number of matches between A and B, and ` means the length of an LCS for A
and B)

3.1 Tsai Algorithm

The CLCS problem was introduced by Tsai, who also published the first algorithm
solving it [19]. His method is based on dynamic programming. The idea is to
compute a CLCS for all the components of sequences A and B (a component can
be obtained from a sequence by removing zero or more symbols from the beginning
and the end). The algorithm’s time complexity, O(m2n2r), makes it completely
impractical, so we will not consider it any more.

3.2 Chin et al. Algorithm

The method by Chin et al. [6] is also based on dynamic programming, but is much
faster. The algorithm computes a three dimensional matrix M of sizes (r + 1) ×
(n+ 1)× (m+ 1) with the following simple recurrence:

M(k, i, j) =

M(k − 1, i− 1, j − 1) + 1 if i, j, k > 0 ∧ ai = bj = pk,

M(k, i − 1, j − 1) + 1 if i, j > 0, ai = bj∧
(k = 0 ∨ ai 6= pk),

max(M(k, i − 1, j),M(k, i, j − 1)) if i, j > 0 ∧ ai 6= bj .

4 S. Deorowicz, J. Obstój

The boundary conditions are:

M(0, i, 0) = 0, for 0 ≤ i ≤ n,
M(0, 0, j) = 0, for 0 ≤ j ≤ m,
M(k, i, 0) = −∞, for 0 ≤ i ≤ n, 1 ≤ k ≤ r,
M(k, 0, j) = −∞, for 0 ≤ j ≤ m, 1 ≤ k ≤ r.

An illustration of the algorithm in work is shown in Fig. 1, where the matrix
is presented in a level-wise manner. The CLCS length is located in M(r, n,m) cell.
To obtain a CLCS itself, one needs to trace back the matrix according to the cells
used to compute the actual cell starting from M(r, n,m), which is easy and fast [6].

0 0 0 0 0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 2 2 2 2 2

0 1 1 1 1 1 2 2 2 2 2 3

0 1 1 1 1 1 2 3 3 3 3 3

0 1 1 1 2 2 2 3 3 3 3 3

1 1 2 2 2 3 3 3 4 4 4 4

1 1 2 3 3 3 3 3 4 5 5 5

1 1 2 3 4 4 4 4 4 5 5 5

1 1 2 3 4 4 5 5 5 5 5 6

1 1 2 3 4 4 5 5 5 5 5 6

1 2 2 3 4 4 5 6 6 6 6 6

1 2 3 3 4 5 5 6 7 7 7 7

k=0

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

1 1 1 1 1 1

1 2 2 2 2 2

2 2 2 2 2 3

2 3 3 3 3 3

2 3 3 3 3 3

2 3 4 4 4 4

2 3 4 5 5 5

2 3 4 5 5 5

5 5 5 5 5 6

5 5 5 5 5 6

5 6 6 6 6 6

5 6 7 7 7 7

k=1

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

2 2 2 2 2

2 2 2 2 3

3 3 3 3 3

3 3 3 3 3

3 4 4 4 4

3 4 5 5 5

3 4 5 5 5

3 4 5 5 6

3 4 5 5 6

6 6 6 6 6

6 7 7 7 7

k=2

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

3 3

3 3

3 3

3 3

3 3

3 4

3 4

6 6

6 6

k=3

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

Fig. 1. Example of the algorithm by Chin et al. for A = ABAADACBAABC, B =
CBCBDAADCDBA, P = CBB. (Grayed cells denote strong matches and ‘–’ symbols
denote −∞ values.)

Matrix M of this algorithm is a concept shared by some other CLCS methods,
so we will be referring to it in the rest of the paper.

3.3 Peng Algorithm

The algorithm by Peng [16] was invented independently, but actually is almost
identical to the one by Chin et al. and can be seen as its variant, since the differences
are mainly in the implementation field.

The main recurrence is split according to k into two equations. For 1 ≤ i ≤ n,
1 ≤ j ≤ m:

M(0, i, j) = max

M(0, i− 1, j),
M(0, i, j − 1),
M(0, i− 1, j − 1) + 1, if ai = bj.

CLCS Computing Algorithms in Practice 5

For 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ m:

M(k, i, j) = max

M(k, i− 1, j),
M(k, i, j − 1),
M(k, i− 1, j − 1) + 1, if ai = bj,
M(k − 1, i− 1, j − 1) + 1, if ai = bj ∧ ai = pk.

The boundary conditions are:

M(0, i, 0) = 0, for 0 ≤ i ≤ n,
M(0, 0, j) = 0, for 0 ≤ j ≤ m,
M(k, i, 0) = −∞, for 0 ≤ i ≤ n, 1 ≤ k ≤ r
M(k, 0, j) = −∞, for 0 ≤ j ≤ m, 1 ≤ k ≤ r.

Finally, the CLCS length is located in M(r, n,m).

3.4 Arslan–Eğecioğlu Algorithm

Another DP-based approach to solve the CLCS problem was proposed by Arslan
and Eğecioğlu [1]. They started with the recurrence given by Tsai [19] and simplified
it obtaining the following set of equations.

For 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ r:

M(k, i, 0) = 0, M(k, 0, j) = 0.

For 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ r:

M(k, i, j) = max{M ′(k, i, j),M(k, i− 1, j),M(k, i, j− 1)},

M ′(k, i, j) = max{M ′′(k, i, j),M ′′′(k, i, j)},

M ′′(k, i, j) =

M(k − 1, i− 1, j − 1) + 1
if (k = 0 or (k > 0
and M(k − 1, i− 1, j − 1) > 0))
and ai = bj = pk,

0 otherwise ,

M ′′′(k, i, j) =

M(k, i− 1, j − 1) + 1
if (k = 0 or
or M(k, i− 1, j − 1) > 0)
and ai = bj,

0 otherwise .

In this algorithm, there are more than one matrix, but the time and space
complexity is still O(mnr). The CLCS length is obtained in M(r, n,m).

3.5 Peng–Ting Algorithm

The first algorithm for the CLCS problem, which does not fill one or more three
dimensional matrices cell by cell, was presented by Peng and Ting [17]. Their
method is an example of a divide and conquer technique.

6 S. Deorowicz, J. Obstój

A general scheme of the algorithm is:

1. Find the division point (k, dn/2e, j) for all 0 ≤ j ≤ m and 0 ≤ k ≤ r.

2. Compute by recurrence C1 for Adn/2e, Bj, Pk.

3. Compute by recurrence C2 for A−dn/2e, B−j, P−k.

4. Return the concatenation of C1 and C2.

A key point is to find the j and k indexes in the first step. They are computed as:

argmax
0≤j<m
0≤k≤r

{M(1, k, 1, dn/2e, 1, j)+M(k + 1, r, dn/2e+ 1, n, j + 1, m)}.

The necessary M values are calculated by the following recurrence (1 ≤ i ≤ n,
1 ≤ j ≤ m and 0 ≤ k ≤ r):

M(1, k, 1, i, 1, j) =

M(1, k − 1, 1, i− 1, 1, j − 1) + 1 if ai = bj = pk,
M(1, k, 1, i− 1, 1, j − 1) + 1 if ai = bj 6= pk,
max(M(1, k, 1, i− 1, 1, j),

M(1, k, 1, i, 1, j− 1)) if ai 6= bj.

The boundary conditions are:

M(0, i, 0) = 0 and M(k, i, 0) = −∞, for 1 ≤ k ≤ r and 0 ≤ i ≤ n,

M(0, 0, j) = 0 and M(k, 0, j) = −∞, for 1 ≤ k ≤ r and 0 ≤ j ≤ m.

To compute the value of M(k + 1, r, dn/2e+ 1, n, j + 1, m) the sequences A, B,
P are reversed and then the same equations are used.

3.6 Deorowicz Algorithm

In matrix M of the algorithm by Chin et al., in most cases, there are no differences
between the neighbor cells, i.e., at least one of the: left or upper cell has the same
value as the actual cell. Any important changes appear for matches. This property is
often called a sparsity of the dynamic programming matrix and there are a number
of algorithms for the LCS problem exploiting it. Most of them are based on the
Hunt–Szymanski [12] or Hirschberg [11] proposals. There is, however, one reason
that makes a direct application of such algorithms difficult for the CLCS problem.
In the LCS problem, the neighbor cells differ by at most 1, while in the CLCS
problem, the differences can be much larger. Therefore, a careful implementation of
the idea is necessary. The first such an algorithm was proposed by Deorowicz [7].
The time complexity of the method is O(r(ml + d) + n), where l is the LCS length
for A and B and d is the number of matches between A and B.3

3 This complexity can be alternatively expressed as O(rn`), but we use the longer form
to stress the dependence on the number of matches also

CLCS Computing Algorithms in Practice 7

The main idea is to restrict the computation to only those cells that represent
matches. Therefore, the following recurrence is used:

M(k, i, j) =

max
0≤i′<i

0≤j′<j
a
i′
=b

j′

M(k − 1, i′, j ′) + 1 if i, j, k > 0 ∧ ai = bj = pk,

max
0≤i′<i

0≤j′<j
a
i′
=b

j′

M(k, i′, j ′) + 1 if i, j > 0, ai = bj ∧ (k = 0 ∨ ai 6= pk).

The boundary conditions are the same as in the Chin et al. algorithm. The key
point is to effectively compute the maximum over the cells of M . The details are
not difficult, but a detailed description would be to long, so we refer the interested
reader to the original paper [7].

3.7 Wang Algorithm

Matrix M of the Chin et al. algorithm has several interesting properties that can
be used to reduce the number of computations. Wang observed and proved [20] the
two following:

• if M(k− 1, i, j) = M(k, i, j) then cell M(k− 1, i, j) never influences on the final
result,

• if M(k, i, j) = −∞ then the values of M(g, i, j) for k < g ≤ r are also equal
−∞.

Therefore, instead of storing the whole (r + 1) × (n + 1) × (m + 1) dynamic
programming matrix, Wang postulates to maintain (n+1)× (m+1) matrix and in
each cell (i, j) to store a list of only the necessary to compute cells (k, i, j), i.e., the
cells that are known to contain no −∞ values and influence on the total result. This
strategy helps if for a large number of pairs (i, j) only a few levels are evaluated,
which is often a case. The original work [20] contains the necessary pseudocodes,
which are too long to be presented here.

8 S. Deorowicz, J. Obstój

3.8 Iliopoulos–Rahman Algorithm

The authors started from the recursive rule by Arslan–Eğecioğlu (see Section 3.4)
and modified it in the following way:

M(k, i, j) = max{M ′(k, i, j),M ′′(k, i, j),M(k, i− 1, j),M(k, i, j− 1)},

V1 = max
1≤i′<i, 1≤j′<j, ai′=bj′

{M(k − 1, i′, j ′)}

V2 = max
1≤i′<i, 1≤j′<j, ai′=bj′

{M(k, i′, j ′)}

M ′(k, i, j) =

{

V1 + 1 if (k = 1 or (k > 1 and V1 > 0)) and ai = bj = pk,
0 otherwise ,

M ′′(k, i, j) =

1 if (i = 0 or j = 0) and (ai = bj)
V2 + 1 if (k = 0 or or V2 > 0) and ai = bj,
0 otherwise .

The most important problem in this algorithm is the calculation of V1 and V2

values. The authors show how the bounded heap introduced by Brodal et al. [4] can
be used to calculate each V1 and V2 value in time O(log logn). This data structure
employs van Emde Boas trees [8] to achieve such complexities. Moreover, all the
necessary updates can be made on bounded heaps in amortized time O(log logn)
per match. The time complexity of Iliopoulos–Rahman algorithm, O(rd log logn),
looks promising if the total number of matches, rd, is much smaller than mnr, since
in the worst case the algorithm is Ω(mnr)-time.

4 IMPROVEMENTS OF THE ALGORITHMS

Similar observations to those of Wang (see Section 3.7) ware made by He and Ar-
slan [10]. They observed that it is unnecessary to compute the whole three dimen-
sional dynamic programming matrix M , since there is no possibility that some its
parts impact on the final results obtained in M(r, n,m).4 If the LCS length of Ai

and Pk is less than k > 0, then all the cells M(k, i, j) for any j store −∞. Moreover,
if the LCS length of Ai...n and Pk...r for 0 < k ≤ r is less than r−k+1, then all cells
M(k − 1, i− 1, j) for any j have no way to impact on M(r, n,m). (It is clear when
we realize that this is the same case as previous when all the sequences A, B, P
are reversed.) A similar observations can be made for sequence B. Therefore, each
matrix level can be trimmed to only that part, that stores positive values that can
affect M(r, n,m) (Fig. 2).

The strong matches are special, in such a sense that they represent the only cells
in the matrix which are directly dependent on the matrix cells from a lower level.

4 To make the description of the method clearer, we present the technique in terms of
matrix M by Chin et al. even if He and Arslan solved in fact some other problem, namely
pairwise sequence alignment

CLCS Computing Algorithms in Practice 9

0 0 0 0 0 0

0 1 1 1 1 1

k=0

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

1

1

2

k=1

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

2 2 2

2 2 2

3 3 3

3 3 3

3 4 4

3 4 5

3 4 5

3 4 5

3 4 5

k=2

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

3 3

3 3

3 3

3 3

3 3

3 4

3 4

6 6

6 6

k=3

i

A

0

B

1

A

2

A

3

D

4

A

5

C

6

B

7

A

8

A

9

B

10

C

11

j

C0

B1

C2

B3

D4

A5

A6

D7

C8

D9

B10

A11

Fig. 2. Example of the algorithm by Chin et al. with trimmed levels for A =
ABAADACBAABC, B = CBCBDAADCDBA, P = CBB. (Grayed cells denote strong
matches and ‘–’ symbols denote −∞ values. The complete levels are shown, however,
only the trimmed parts are filled with numbers.)

When we remove from the set of all the strong matches those that do not belong
to the trimmed parts of the levels, we obtain the so-called entry-exit points (EEP).
These are the only cells necessary to be computed to successfully process the matrix.
He and Arslan show how the EEP can be easily found in a fast precomputing stage
and that only these cells of previous level need to be stored during the computation
of the actual level if we are interested in the CLCS length only.

As was said above, the idea of the EEP was proposed not for the CLCS problem
but for a related pairwise sequence alignment (CPSA) problem, so it has not been
used for the CLCS problem yet. Since this technique looks promising, we apply it
in the algorithms by Chin et al. and Deorowicz. (Note, however, that this technique
does not improve the worst-case time complexities of the algorithms.) We have not
incorporated this technique into other algorithms as:

• Peng and Arslan–Eğecioğlu algorithms use a very similar recurrence to the one
by Chin et al.,

• Peng and Ting algorithm is a divide and conquer method and the application
of this techniques is not easy.

• Wang algorithm employs a similar idea,

• Iliopoulos–Rahman algorithm computes the dynamic programming matrix in
some other way and the cells containing −∞ values are efficiently handled.

The application of the EEP technique to the Chin et al. algorithm is straight-
forward. After precomputing the entry-exit points for each level, the computation
of the cells of matrix M is restricted to only those cells that are necessary to obtain
the values of the EEP, i.e., the trimmed part of each level.

The Deorowicz’s algorithm processesM matrix level-wise and in each level—row-
wise, so it is also easy to integrate the EEP technique with it. After precomputing

10 S. Deorowicz, J. Obstój

the EEP, the processing of each level is reduced to only the trimmed part. The
additional cost of the preprocessing is negligible, O(n).

5 EXPERIMENTAL RESULTS

5.1 Implementation Details

The CLCS computing algorithms consume a lot of memory, so the details of the
implementation, especially memory management, are important. All the mentioned
CLCS computing algorithms were implemented by ourselves as presented in the
original papers. We, however, took special care of speed and tried to achieve a
similar code optimization level. For example, the formulation of the Chin et al.

algorithm does not specify in which way to compute matrix M . It is convenient to
describe the algorithm ideas when the matrix is computed level-wise and the memory
is organized similarly, i.e., the levels are stored one after another. In practice, this
approach leads to cache miss problems. If (k, i, j), cell at kth level, is a strong
match, cell M(k− 1, i− 1, j − 1) is used in computation, but it is about 4nm bytes
earlier5, which even for moderate sizes of the sequences can mean megabytes. It is
almost sure that this cell was flushed from the cache memory.

An alternative approach is to transpose (virtually) the matrix to have the men-
tioned cells at a distance approximately 4rm bytes, which in practice increases sig-
nificantly the amount of cache hits, as r is typically small. In a preliminary ex-
periment, this rearrangement of computations gave about 20% gain in speed, so in
further experiments we consider only the faster alternative.

The used compiler was MS Visual C++ 2008 and the source codes were compiled
with the maximal optimization for speed. In the experiments, we used a computer
equipped with an AMD Phenom II X4 810 processor (2.6GHz real CPU clock), MS
Vista 64-bit, and 4GB of RAM.

5.2 Data Sets and Testing Methodology

We made a number of experiments on random and real data. Random data were
chosen to check the behavior of the algorithms for variable: main sequence lengths,
constrained sequence length, size of the alphabet. In random tests, the sequences
are produced by uniform random number generator. For tests on real data we built a
corpus of sequences proposed for evaluation of algorithms for related problems, i.e.,
constrained pairwise sequence alignment (CPSA) and constrained multiple sequence
alignment (CMSA). Chin et al. in their experiments on the CMSA problem [5] pro-
posed four data sets that contain RNase sequences of lengths from range [111, 327].
All these data are included in our corpus. The last data set was taken from Lu and
Huang [14]. They made experiments also for the CMSA problem and we picked
the data set containing the aspartic acid protease family sequences (Lu and Huang

5 It is assumed that a cell is stored in 4 bytes

CLCS Computing Algorithms in Practice 11

made experiments also for some data from [5]). Main traits of the corpus are given
in Table 2.6 The 0-order entropy calculated for the sequences of each data set show
that the frequencies of occurrences of symbols in each data set are relatively close
to that of random sequences.

Data Num. Contents Seq. Length Alph. H0 Origin
Set Seq. (min, med, max) Size

ds0 7
H-RNase3, H-RNase2, BP-RNaseA,
BS-RNase, H-RNaseA, H-RNase4,
RC-RNase

(111,124,134) 20 4.172 [5]

ds1 6

gi|119124|sp|P12724|ecp human,
gi|2500564|sp|P70709|ecp rat,
gi|13400006|pdb|ldyt|,
gi|20930966|ref|xp 142859.1|,
gi|20873960|ref|xp 127690.1|,
gi|20930966|ref|xp 142859.1|

(124,149,185) 20 4.246 [5]

ds2 6

gi|20930966|ref|XP 142859.1|,
gi|119124|sp|P12724|ECP HUMAN,
gi|2500564|sp|P70709|ECP RAT,
gi|13400006|pdb,
gi|20930966|ref|XP 142859.1|,
gi|20873960|ref|XP 127690.1|

(131,142,160) 20 4.189 [5]

ds3 5

gi|10068295|gb|AAE40716.1|,
gi|17549935|ref|NP 510780.1|,
gi|28509297|ref|XP 282983.1|,
gi|28499937|ref|XP 204162.2|,
gi|4902995|dbj|BAA77929.1

(189,277,327) 20 4.191 [5]

ds4 6
Protease: HTLV-1, RSV, HIV-1,
SRV-1, CaMV, 17.6

(98,114,123) 20 4.111 [14]

Table 2. Data sets of real data used in the experiments. Column H0 contains 0-order en-
tropy of the sequences (in bits). Note that the entropy of uniform random sequence
over alphabet of size 20 is about 4.322 bits

In tests on random data, in each experiment 201 triples of sequences of assumed
lengths and alphabet size were prepared. Then, the median of the computing time
was determined for graphs. In tests on real data, each algorithm is executed on each
possible pair of different sequences within each data set and with some assumed con-
strained sequence. Then, the total time of computations per data set is calculated.
These experiments were also run 201 times and medians of the computation time
for each pair from a data set were summed up.

The tested algorithms are presented in figures and tables under the names:

• AE — the algorithm by Arslan and Eğecioğlu [1],

• Chin — the algorithm by Chin et al. [6],

• ChinEE — the algorithm by Chin et al. with the EEP improvement,

• Deo — the algorithm by Deorowicz [7],

6 Data sets can be obtained from http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.

zip

12 S. Deorowicz, J. Obstój

• DeoEE — the algorithm by Deorowicz with the EEP improvement,

• IR — the algorithm by Iliopoulos and Rahman [13],

• PT — the algorithm by Peng and Ting [17],

• Wang — the algorithm by Wang [20].

5.3 CLCS Computing Algorithms

In the first experiment on random data, we measured the influence of the alphabet
size on the algorithms’ speed. We performed four tests for various sizes of the three
sequences (Fig. 3). The alphabet size does not appear explicitly in the time com-
plexities, but for some algorithms it affects indirectly the speed. E.g., the algorithms
Deo, DeoEE, and IR process the matches only and the number of matches is less if the
alphabet size is large. Moreover, for the EEP-based algorithms, ChinEE and DeoEE,
the influence of the alphabet size is also of other kind. The larger alphabet means,
approximately, the shorter the resulting sequence and the smaller areas to compute
at each level since the ‘level trim’ effect is bigger and there are less entry-exit points.

2 5 10 20 50 100 200
0.2

0.5
1
2

5
10
20

50
100
200

500

AE
Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

2 5 10 20 50 100 200
0.2

0.5
1
2

5
10
20

50
100
200

500
AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

a) m = 256, n = 4096, r = 4 b) m = 256, n = 4096, r = 16

2 5 10 20 50 100 200

0.1

1

10

100 AE
Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

2 5 10 20 50 100 200
0.1

1

10

100

1000

AE
Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

c) m = 1024, n = 1024, r = 4 d) m = 1024, n = 1024, r = 16

Fig. 3. Comparison of the CLCS computing time for changing alphabet size

CLCS Computing Algorithms in Practice 13

For small alphabet sizes (less than 5) the fastest algorithm is the one by Chin et

al. It computes always the whole three dimensional matrix, but does it extremely
simply. The more sophisticated algorithms, like Deo and DeoEE, pay for their in-
tricacy and due to large number of processed matches cannot beat Chin. When the
alphabet size grows, the Deo and DeoEE algorithms clearly win. Also the IR and
the ChinEE algorithms are quite fast for large alphabets, thanks to small number of
matches and the ‘level trim’ effect, respectively.

The main field, in which the CLCS problem appears is bioinformatics, where,
e.g., protein and RNase sequences are compared. The alphabet size for them is 20.
The frequency of symbols is not exactly uniform, but for simplicity we used, in the
next tests, the same uniform generator with the alphabet size fixed to 20. Figure 4
shows the influence of: a) the constrained sequence length, b) the shorter main
sequence length, on the speed.

2 5 10 20 50

1

10

100

1000
AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

r

T
im

e
[m

s]

150 200 300 400500 700 1000

0.2

0.5
1
2

5
10
20

50
100
200

500
AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

m

T
im

e
[m

s]

a) σ = 20,m = 1024, n = 1024 b) n = 1024, r = 16, σ = 20

Fig. 4. Comparison of the CLCS computing time for the: a) changing constrained sequence
length, b) changing shorter main sequence length

As one would expect, the non-EEP-based algorithms slow down when the con-
strained sequence gets longer. It is because the computation time is proportional to
the length of the constrained sequence for the algorithms computing the whole three
dimensional matrix. For the EEP-based methods, the matrix size also grows when
the constrained sequence comes longer and the algorithms primarily slow down, but
the ‘level trim’ effect finally dominates and the speed up for long enough sequences
can be observed.

In the last experiment of this series, we measured the impact of the main se-
quences length (Fig. 5). The Deo and DeoEE algorithms win, and the difference
between them gets smaller when the sequences get longer. It is a result of the
smaller ‘level trim’ effect for long main sequences.

The results for real data are given in Table 3. They confirm our conclusions
drawn from simulating the bioinformatic sequences. The fastest algorithm, DeoEE,
is 2.0–4.6 times faster than Deo and 3.2–5.4 times faster than ChinEE. The other
algorithms are much slower. As can be observed for tests on data set ds1, the

14 S. Deorowicz, J. Obstój

200 500 1000 2000

0.1

1

10

100

1000

AE

Chin

Deo

PT

Wang

ChinEE
DeoEE

IR

n=m

T
im

e
[m

s]

200 500 1000 2000

0.1

1

10

100

1000 AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

n=m

T
im

e
[m

s]

a) r = 4, σ = 20 b) r = 16, σ = 20

Fig. 5. Comparison of the CLCS computing time for changing the length of the main
sequences

speedup of DeoEE over Chin grows when the constraint comes longer. Also the total
time of computations made by EEP-based methods (ChinEE and DeoEE) is smaller
for longer constraints due to ‘level trim’ effect.

Table 3. CLCS computation times (in ms) of algorithms on real data. In parenthesis: the
number of times the given algorithm is faster than Chin

AE Chin ChinEE Deo DeoEE IR PT Wang

data set ds0, P = HKH

10.827 5.969 3.871 3.012 1.117 22.084 12.504 116.018
(0.55) (1.00) (1.54) (1.98) (5.34) (0.27) (0.48) (0.05)

data set ds1, P = HKH

11.964 6.662 5.442 3.227 1.567 23.247 13.557 137.817
(0.56) (1.00) (1.22) (2.06) (4.25) (0.29) (0.49) (0.05)

data set ds1, P = HKSH

16.055 8.258 5.030 4.012 1.423 26.603 16.584 137.823
(0.51) (1.00) (1.64) (2.06) (5.81) (0.31) (0.50) (0.06)

data set ds1, P = HKSTH

19.760 9.818 4.831 4.801 1.393 30.574 19.360 143.683
(0.50) (1.00) (2.03) (2.04) (7.05) (0.32) (0.51) (0.07)

data set ds2, P = HKSH

13.631 7.047 3.745 3.534 1.070 24.701 14.447 110.691
(0.52) (1.00) (1.88) (1.99) (6.59) (0.29) (0.49) (0.06)

data set ds2, P = HKSTH

16.770 8.386 3.310 4.207 0.915 27.752 16.964 113.112
(0.50) (1.00) (2.53) (1.99) (9.16) (0.30) (0.49) (0.07)

data set ds3, P = HKH

27.313 17.220 15.676 5.868 2.878 43.931 24.778 280.309
(0.63) (1.00) (1.10) (2.93) (5.98) (0.39) (0.69) (0.06)

data set ds4, P = DGGG

8.461 4.376 2.502 2.329 0.791 14.014 9.178 69.436
(0.52) (1.00) (1.75) (1.88) (5.53) (0.31) (0.48) (0.06)

CLCS Computing Algorithms in Practice 15

5.4 CLCS Length Computing Algorithms

Sometimes the computation of a CLCS is superfluous, and only its length is needed.
This length is a dual of so-called indel distance (the number of insertions and dele-
tions of symbols necessary to transform the first sequence into the second). In such
a case, the algorithms can work significantly faster. The time complexity does not
change, but the memory consumption could be much lower. E.g., in the Chin et

al. algorithm, it suffice to store only two levels: the current and the previous to
compute M(r, n,m) cell. The gain in memory consumption may lead to much faster
computation since the memory (especially cache) is much better used. Moreover,
the CLCS computing algorithms usually need to make some kind of trace back to
obtain a CLCS, after computing its length, and now this is also unnecessary. There-
fore, for the second set of experiments on random data (Fig. 6), we modified the
original algorithms to make use of this simpler problem properties.

2 5 10 20 50 100 200

0.2

0.5

1

2

5

10

20

50

100

AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

2 5 10 20 50 100 200

0.1

1

10

100

1000

AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

Alphabet size

T
im

e
[m

s]

a) m = 256, n = 4096, r = 4 b) m = 1024, n = 1024, r = 16

150 200 300 400500 700 1000
0.1

1

10

100
AE

Chin

Deo

PT

Wang

ChinEE

DeoEE

IR

m

T
im

e
[m

s]

200 500 1000 2000

0.1

1

10

100

AE

Chin
Deo

PT
Wang

ChinEE

DeoEE

IR

n=m

T
im

e
[m

s]

c) n = 1024, r = 16, σ = 20 d) r = 4, σ = 20

Fig. 6. Comparison of the CLCS length computing time for various parameters

The algorithms for the simpler problem are faster by a factor from 1.5 (Deo) to
6.0 (Wang). Nevertheless, still the fastest for a typical (σ = 20) and large alphabets
are the algorithms DeoEE, Deo, ChinEE.

16 S. Deorowicz, J. Obstój

The results for real data are given in Table 4. Similarly, like in the CLCS com-
puting experiments, they confirm the results on random data. The fastest algorithm
is DeoEE which is 2.1–5.1 times faster than Deo and 3.1–3.5 times faster than ChinEE.
The other algorithms are much slower. It can be also noticed that most algorithms
are about 20% faster when computing only the CLCS length rather than a CLCS
(cf. Tables 3 and 4).

Table 4. CLCS computation times (in ms) of algorithms on real data. In parenthesis: the
number of times the given algorithm is faster than Chin

AE Chin ChinEE Deo DeoEE IR PT Wang

data set ds0, P = HKH

9.922 5.446 3.078 2.625 0.922 20.403 12.935 17.995
(0.55) (1.00) (1.77) (2.07) (5.90) (0.27) (0.42) (0.30)

data set ds1, P = HKH

10.822 6.036 4.333 2.810 1.310 21.375 14.190 20.686
(0.56) (1.00) (1.39) (2.15) (4.61) (0.28) (0.43) (0.29)

data set ds1, P = HKSH

16.407 7.565 3.917 3.499 1.159 24.405 17.278 20.620
(0.46) (1.00) (1.93) (2.16) (6.53) (0.31) (0.44) (0.37)

data set ds1, P = HKSTH

19.270 9.051 3.734 4.193 1.128 28.003 20.488 21.539
(0.47) (1.00) (2.42) (2.16) (8.03) (0.32) (0.44) (0.42)

data set ds2, P = HKSH

13.659 6.486 2.940 3.068 0.869 22.703 15.016 16.434
(0.47) (1.00) (2.21) (2.11) (7.46) (0.29) (0.43) (0.39)

data set ds2, P = HKSTH

16.037 7.739 2.526 3.666 0.720 25.416 17.717 16.809
(0.48) (1.00) (3.06) (2.11) (10.75) (0.30) (0.44) (0.46)

data set ds3, P = HKH

20.497 10.986 8.328 5.020 2.389 40.547 25.859 38.216
(0.54) (1.00) (1.32) (2.19) (4.60) (0.27) (0.42) (0.29)

data set ds4, P = DGGG

8.858 4.040 1.986 2.019 0.645 12.860 9.447 10.614
(0.46) (1.00) (2.03) (2.00) (6.26) (0.31) (0.43) (0.38)

6 CONCLUSIONS

We described the existing algorithms solving the CLCS problem. Then, we modified
the algorithms by Chin et al. and Deorowicz by incorporation of the entry-exit
points technique proposed by He and Arslan for the pairwise sequence alignment
problem. All the algorithms were implemented and evaluated in practice for the
CLCS problem and the simpler, CLCS length only problem, for both random and
real data.

The results show that among the classical algorithms (without the EEP im-
provement) the fastest one is the algorithm by Chin et al. or by Deorowicz. In
experiments on random data, which is the winner depends on the alphabet size.
For small alphabets (of size less than 5) Chin et al. wins, but for larger, Deorowicz

CLCS Computing Algorithms in Practice 17

dominates the rest, and the difference becomes bigger when the alphabet size grows.
In a typical case, σ = 20, the algorithm by Deorowicz is more than 5 times faster
than the other methods. Experiments on real data (RNase and protein sequences)
show that the algorithm introduced in this paper is about 2–3 times faster than the
second best algorithm.

An application of the entry-exit points can give a significant speedup. The
obtained gain depends on the data, since when the levels are trimmed only a bit, it
can even make a little slow-down. Fortunately, the possible speedup is huge, and the
cases in which the slow-downs were observed are rare, so the answer to the question
whether the EEP technique should be used is definitely positive.

The most important open question related to the CLCS problem concerns the
O(mnr) worst-case time complexity. Today, no existing algorithm breaks this barrier
and we also do not know if it is possible.

7 ACKNOWLEDGEMENTS

The research of this project was partially supported by the Minister of Science
and Higher Education grant 3177/B/T02/2008/35. The authors thank Szymon
Grabowski for reading preliminary versions of the paper and suggesting improve-
ments.

REFERENCES

[1] Arslan A.N., Eğecioğlu O.: Algorithms for the constrained longest common sub-

sequence problems, International Journal of Foundations of Computer Science 16(6):
1099–1109, 2005.

[2] Apostolico A. General pattern matchings. Chapter in Handbook of Algorithms and

Theory of Computation, M.J. Atallah (Editor), Chapter 13, 1998.

[3] Bergroth L., Hakonen H., Raita T. A survey of longest common subsequence algo-

rithms. In Proceedings of 7th International Symposium on String Processing Infor-
mation Retrieval (SPIRE), Curuña, Spain, pp. 39–48, 2000.

[4] Brodal G.S., Kaligosi K., Katriel I., Kutz M. Faster algorithms for computing longest

common increasing subsequences. In Lewenstein M. and Valiente G., editors, CPM,
volume 4009 of Lecture Notes in Computer Science, pp. 330–341. Springer, 2006.

[5] Chin F.Y.L., Ho N.L., Lam T.W., Wong P.W.H. Efficient Constrained Multiple

Sequence Alignment with Performance Guarantee. Journal of Bioinformatics
and Computational Biology, 3(1): 1–8, 2005.

[6] Chin F.Y.L., De Santis A., Ferrara A.L., Ho N.L., Kim S.K.: A simple

algorithm for the constrained sequence problems, Information Processing Letters, 90:
175–179, 2004.

[7] Deorowicz S.: Fast Algorithm for Constrained Longest Common Subsequence Prob-

lem, Theoretical and Applied Informatics, 19(2): 91–102, 2007.

18 S. Deorowicz, J. Obstój

[8] van Emde Boas P., Kaas R., Zijlstra E., Preserving order in a forest in less

than logarithmic time and linear space, Information Processing Letters 6(3):
80–82, 1977.

[9] Gusfield D.: Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology, Cambridge University Press, 1997.

[10] He D., Arslan A.N.: A Space-Efficient Algorithm for the Constrained Pairwise

Sequence Alignment Problem, Genome Informatics 16(2): 237–246, 2005.

[11] Hirschberg D.S.: Algorithms for the longest common subsequence problem, Journal
of the ACM 24: 664–675, 1977.

[12] Hunt J.W., Szymanski T.G.: A fast algorithm for computing longest common

subsequences, Communications of the ACM 20(5): 350–353, 1977.

[13] Iliopoulos C.S., Rahman M.S.: New Efficient Algorithms for LCS and Con-

strained LCS Problem, Information Processing Letters 106(1): 13–18, 2008.

[14] Lu Ch.L, Huang Y.P. A Memory-Efficient Algorithm for Multiple Sequence Align-

ment with Constraints. Bioinformatics 21(1): 20–30, 2005.

[15] Navarro G. A Guided Tour to Approximate String Matching. ACM Computing
Surveys, 33(1): 31–88, 2001.

[16] Peng Ch.-L.: An Approach for Solving the Constrained Longest Common

Subsequence Problem. Master’s Thesis, Department of Computer Science and Engi-
neering, National Sun Yat-sen University, Taiwan, 2003. http://etd.lib.nsysu.
edu.tw/ETD-db/ETD-search/getfile?URN=etd-0828103-125439&filename=

etd-0828103-125439.pdf

[17] Peng Z.S., Ting H.F.: Time and Space Efficient Algorithms for Constrained Se-

quence Alignment, In Proceedings of the Implementation and Application of Au-
tomata, 9th International Conference (CIAA), pp. 237–246, 2004.

[18] Tang C.Y., Lu C.L., Chang M.D.-T., Tsai Y.-T., Sun Y.-J., Chao K.-M., Chang J.-
M., Chiou Y.-H., Wu C.-M., Chang H.-T., Chou W.-I. Constrained multiple sequence

alignment tool development and its application to RNase family alignment. In Pro-
ceedings of the first IEEE Computer Society Bioinformatics Conference (CSB 2002),
pp. 127–137, 2002.

[19] Tsai Y.-T.: The constrained common subsequence problem, Information Processing
Letters, 88: 173–176, 2003.

[20] Wang W.-L., Longest Common Subsequence with Constraints, Master’s The-
sis, Department of Computer Science and Information Engineering National
Chi-NanUniversity, R. O. C., June, 2006. http://alg.csie.ncnu.edu.tw/or/

WLWang2006.pdf

