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Abstract

Finding the longest common subsequence (LCS) of two given sequences
A = a0a1 . . . am−1 and B = b0b1 . . . bn−1 is an important and well studied
problem. We consider its generalization, transposition-invariant LCS (LCTS),
which has recently arisen in the field of music information retrieval. In
LCTS, we look for the longest common subsequence between the sequences
A + t = (a0 + t)(a1 + t) . . . (am−1 + t), and B where t is some integer. This
means that shifting all the symbols in the A sequence by some value is al-
lowed. We present two new algorithms, matching the currently best known
complexity O(mn log log σ), where σ is the alphabet size. Then, we show in
the experiments that our algorithms outperform the best ones from literature.
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1 Introduction

The problem of finding the longest common subsequence (LCS) of two given se-
quences A and B is well studied in literature and has applications in many areas.
Recently, its generalization, in which we allow to shift the values of one of the se-
quences by some amount t proved to be more relevant in the music information
retrieval [3, 7, 8].

In music analysis, one often wants to compare how similar are two music pieces.
The pieces are commonly stored as sequences of pitches and durations. The melody,
however, can be recognized from only the pitch sequence and string matching algo-
rithms are popular in this field.

A special property of music is, however, that people usually perceive the same
melody even when it is shifted from one key to another. This equals to adding
a constant to all pitch values in the sequence. The differences between pitches
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are more important than their absolute values. Therefore the LCS, the longest
string which can be obtained from both sequences by removing some symbols, is
a poor candidate as a measure of similarity for music; we should rather deal with
transposition invariant version of string matching.

2 Definitions and Background

The sequences A = a0a1 . . . am−1 and b = b0b1 . . . bn−1 are over Σ, where Σ ⊂ Z,
called an alphabet, is a finite subset of integers. We assume here Σ = {0, . . . , σ}, but
our algorithm can be easily adopted for any subset (in a similar way like in [12]).
A sequence X ′ is a subsequence of X, when it can be obtained from X by deleting
zero or more symbols. A sequence is the longest common subsequence of A and B
when it is a subsequence of both A and B and has the largest possible length.
A transposed copy of the sequence A denoted as A + t, for some t ∈ Z is (a0 +
t)(a1 + t) . . . (am−1 + t). The longest transposition-invariant common subsequence
(LCTS) of A and B is the longest common subsequence of B and A + t for any
−σ ≤ t ≤ σ. Since the problem is symmetric, we can assume without a loss of
generality that m ≤ n. For simplicity of presentation, we denote x0x1 . . . xk by Xk.

When ai = bj we say we have a match for a pair (i, j), and when ai + t = bj we
say we have a t-match for this pair. If (i, j) is a match and the LCS length for Ai

and Bj is k, then k is a rank for (i, j). Similarly, if (i, j) is a t-match, we have a
t-rank for it.

The easiest way to develop an algorithm for LCTS is to use some classical LCS
algorithm for all possible values of t (see [1, 11] for a survey of LCS algorithms). It
means, however, that the time complexity is O(σ) times greater than the complexity
of the base algorithm.

There are also algorithms specialized for LCTS. The reader is referred to the pa-
pers by Mäkinen et al. [10] and Lemström et al. [6] for an extensive description of the
existing methods. An algorithm of the worst-case time complexity O(mn log log m)
introduced in the former paper was recently improved [12] to O(mn log log σ), which
currently is the best known complexity for the problem. Unfortunately, the best al-
gorithms are rather slow. (Some experiments on practical efficiency of the LCTS
methods are given by Lemström et al. [6].)

3 Our approach

Our proposal for computing the length of LCTS is presented in Figure 1. The
algorithm processes the matrix of size m×n in a similar way as the classical dynamic
programming solutions for LCS. The matrix is traversed from top to bottom and
within each row from left to right. During the traversal we compute the lengths of
the LCS for all the possible values of t. The lengths are stored in the array L[−σ..σ].
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{A[0..m− 1], B[0..n− 1] }
01 for i← −σ to σ do
02 L[i]← 0; N [i]← −1;
03 for j ← 0 to (n + σ − 1) div σ − 1 do E[i][j].init(σ);
04 for i← 0 to m− 1 do
05 for j ← 0 to n− 1 do
06 t← B[j]−A[i];
07 if j + i× n > N [t] and not E[t][j div σ].check(j mod σ) then
08 s← E[t][j div σ].findsucc(j mod σ);
09 if s < 0 then
10 for k ← j div σ + 1 to (n + σ − 1) div σ − 1 do
11 if E[t][k].min() ≥ 0 then
12 s← k × σ + E[t][k].min(); break;
13 else
14 s← s + j − j mod σ;
15 E[t][j div σ].insert(j mod σ);
16 if s ≥ 0 then
17 N [t]← s + i× n; E[t][s div σ].remove(s mod σ);
18 else
19 N [t]← n− 1 + i× n; L[t]← L[t] + 1;
20 lcts ← L[−σ];
21 for i← −σ + 1 to σ do lcts ← max(lcts, L[i]);

Figure 1: An O(mn log log σ) algorithm for LCTS. (The operations findsucc and min
return −1 when there is no successor or minimal value respectively.)

After processing the (i − 1)th row, the E data structure store the information
about the LCS for Ai−1 and B for all possible values of t. It stores the matches,
(i1, j1), (i2, j2), . . . , (ik, jk) of ranks 1, 2, . . . , k, respectively, with the numbers, jx

(x = 1, 2, . . . , k), of the leftmost possible columns. Processing the current row, i,
for each t-match (i, j) we look for a t-match (ip, jp) in E, with the nearest possible,
but greater than j, column number. It has some t-rank, p, and it is obvious that
the t-match (i, j) has the same t-rank. Therefore, we replace the t-match (ip, jp)
with (i, j) because the latter has the lower column number. Since all the possible
t-matches from (i, j+1) to (i, jp) have the same t-rank as (i, j), we set the value N [t]
to ip × n + jp (total number of cells in the above rows and cells left than (ip, jp + 1)
in the current row) to skip them.

Let us take a look at Figure 2 where the internal states of the data structures are
presented for a sample data. (For simplicity, we focus our attention on t = 0 only.
We assume here also σ = 4.) After processing the 2nd row, the E data structure
stores pairs (1, 0), (2, 2), (2, 11). These are 0-matches of 0-ranks 1, 2, 3 with the
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Figure 2: Example of the algorithm in work

lowest possible column numbers. Now, we process the 3rd row. We see a 0-match
(3, 0), but it does not improve any 0-match, since we already have a 0-match for
column 0 (the 0-match is marked as a small dot which indicates it is not processed
in lines 08–19). The next 0-match, (3, 5), is processed because we actually have no
0-match for column 5 in E (we denote this in the figure using a big dot). We look
for the nearest 0-match with a greater column number finding (2, 11), and since
both 0-matches have the same 0-rank, we remove (2, 11) from E and insert (3, 5).
We also make a note (in array N) that no other 0-match in the current row with a
column number lower or equal 11 will have a higher 0-rank. Therefore, for the 0-
matches (3, 6) and (3, 8) we fail in line 07. After processing the 3rd row, we have the
0-matches of 0-ranks 1, 2, 3 with the lowest possible column numbers for A3 and B.
In the end, we have the t-matches for successive ranks for the whole A and B. The
t-matches, however, does not form an LCTS, we only know its length. (In fact, it
suffices to store only column numbers in E for computing the LCTS length.)

The data structure E is organized as a family of van Emde Boas trees [4, 13],
each of size σ. They store the values [0, σ − 1], [σ, 2σ − 1], etc. We always look for
the successor of j in the current tree (line 08) and when the tree does not contain
it, we browse the successive trees (lines 09–14).

Each van Emde Boas tree stores up to σ different values, so the time complexity
for all the basic operations on it is O(log log σ). The initialization of the L, E, N
arrays takes time O(σ). The check, findsucc, insert, remove operations are executed at
most one time per each execution of the inner loop (lines 05–19) so their contribution
to the total time complexity is O(mn log log σ). The min operation can be executed
several times during the single execution of the inner loop. Fortunately, thanks to
the existence of the N array, for each execution of the main loop (lines 04–19), for
each of O(σ) t values, min will be executed only O(n/σ) times, which gives O(mn)
executions in total. This operation can be implemented in O(1) time, so the final
complexity of the algorithm is O(mn log log σ). Even when σ > nm the complexity
remains the same, since in this case the initialization can be done in O(nm).

4



1 0 1 0

1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3: Sample tree of arity 4 storing integers from the range [0, 63] (the integers
0, 3, 4, 5, 6, 10, 40, 46 are stored in leaves)

The space complexity is dominated by van Emde Boas trees. There is O(σ) ×
O(n/σ) such trees and each of them occupies O(σ), which leads to the memory
consumption of O(nσ). In fact, it suffices to interchange, if necessary, the A and B
sequences obtaining m ≥ n to get the space complexity O(min(m, n)σ).

The presented algorithm equals the time complexity obtained recently [12], but
is much simpler. Since van Emde Boas trees are slow in practice, we propose to
replace them with some other data structures. Convenient candidates are w-ary
trees, where w is the processor word size. Each inner node stores up to w bits; a bit
is set iff the corresponding child node is non-empty. Data are stored in leaves; a bit
is set iff the integer is in the tree (see Figure 3 for example).

Assuming a number of leading zero bits in an integer operation works in O(1)
time (which is true for modern processors) we can implement all the necessary oper-
ations on the tree in time O(dlog σ/ log we). This leads to the O(mndlog σ/ log we)
algorithm for the LCTS problem. The memory occupation remains unchanged.

It is also possible to precompute the number of leading zeros for all the integers
from the range [0, 2dw/2e − 1] in time O(2dw/2e). Thanks to the lookup table we can
find the number of leading zeros in every w-bit integer in 2 lookups. This strategy
is attractive when O(2dw/2e) = O(mn log σ/ log w).

4 Comparison of algorithms for LCTS

To compare the LCTS algorithms in practice, we measured their speed on pitch
sequences from real MIDI files (σ = 127). This makes the experiments different
from presented by Lemström et al. [6] since they used randomly produced sequences
over the alphabet [0, 127]. In our experiments, n = m and the sequence lengths
varied from 20 to 10000. The examined methods are:

• BBB—a binary branch and bound method [6] of complexity O((mn+log σ)σ)
in the worst case and O(mn + log log σ) log σ) in the best case,

• CDP—a classical dynamic programming repeated for all t ∈ [−σ, σ] of com-
plexity O(mnσ) [8],
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• KBB—a k-ary (k = 3 in our experiments) branch and bound method [6] of
complexity O((mn + log(σk/(k − 1)))σk/(k − 1)),

• KBBCDP—a combination of classical dynamic programming and binary branch
and bound algorithms [6] of complexity O((mn + log σ)σ) in the worst case
and O(mn + log log σ) log σ) in the best case,

• SDP—a sparse dynamic programming [9] of complexity O(mn log m),

• YBP—a bit-parallel algorithm [2] of complexity O(mndσ/we),

• HBP—a bit-parallel LCS algorithm [5] repeated for all possible t values of
complexity O(dm/wenσ),

• OUR-1—our O(mn log log σ) algorithm,

• OUR-2—our O(mndlog σ/ log we) algorithm.

The experiments were performed on an AMD Athlon 2500 XP+ machine (1800 MHz
real CPU clock). The source codes for the BBB, CDP, KBB, KBBCDP, SDP, YBP,
HBP algorithms come from their authors. Some of the routines were optimized to
achieve better speed and similar optimization level as our implementations. The
running times (shown in Table 1 in milliseconds) are median values of 101 execu-
tions for different pairs of sequences. The second column gives the median value of
the found LCTS lengths.

As we can see, HBP is the fastest algorithm given in literature. This is an LCS
method executed 2σ + 1 times for each possible transposition. Our proposal, OUR-
2, of complexity O(mndlog σ/ log we), runs several times faster for short sequences
(0 < n,m < 500) and about 25% faster for long ones (1000 < n,m ≤ 10000). It is
the fastest method for all the examined sequence lengths.

5 Conclusions

We introduced two algorithms for computing transposition-invariant longest com-
mon subsequence length. The first of them achieves the O(mn log log σ) worst-
case time complexity of the currently best algorithm [12], but is significantly sim-
pler. The second algorithm is a variant of the first one. It offers a complexity
O(mndlog σ/ log we), which for typical values σ = 127, w = 32 is also attractive. Its
most important asset is, however, its practical speed. It is the fastest algorithm for
the whole examined range of sequence lengths. The space complexity of our meth-
ods is O(min(n,m)σ) which is usually a bit worse than O(σ2 + m) for the Navarro
et al. proposal.
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Table 1: Experimental comparison of algorithms solving LCTS (times are given in
ms). The SDP algorithm could not be evaluated for long sequences due to its huge
memory consumption exceeding 512 MB RAM available on the used computer.

n = m |LCTS| BBB CDP KBB KBBCDP SDP YBP HBP OUR-1 OUR-2

20 8 0.18 0.57 0.15 0.14 0.09 0.20 0.14 0.61 0.02
40 15 0.58 1.88 0.49 0.62 0.31 0.35 0.43 1.09 0.04
60 23 1.62 3.98 0.95 1.36 0.63 0.50 0.50 1.19 0.06
80 30 2.13 6.88 1.28 1.80 1.25 0.79 0.79 7.34 0.23

100 38 2.89 10.71 2.42 2.59 1.56 1.04 1.15 7.50 0.31
200 76 10.78 41.67 6.57 9.02 7.82 3.34 2.69 32.37 1.11
300 117 23.66 93.71 15.63 20.32 25.00 6.25 5.47 64.45 1.95
400 151 46.10 164.00 28.15 35.90 46.80 9.87 8.33 73.93 3.13
500 172 74.17 260.67 49.50 62.47 78.00 15.60 11.75 80.45 5.45
750 280 156.25 578.00 179.75 128.88 187.00 31.27 24.00 143.80 11.47

1000 373 289.00 1031.00 332.00 234.20 328.00 53.10 40.70 209.40 20.30
1500 569 648.50 2313.00 734.50 500.00 734.00 109.40 81.20 409.40 47.00
2000 704 1172.00 4125.00 1313.00 1078.00 1343.00 190.60 140.60 850.00 84.20
2500 870 1968.00 6453.00 2234.00 1625.00 2094.00 293.80 215.60 1331.20 128.00
3000 1055 2890.00 9266.00 3187.00 2187.00 3031.00 418.80 300.00 1956.20 181.20
4000 1466 4687.00 16500.00 5266.00 3563.00 5250.00 731.20 528.20 3837.40 325.00
5000 1927 6859.00 25797.00 7844.00 5515.00 8187.00 1131.40 815.60 6384.40 506.20
7500 2636 17547.00 59438.00 19735.00 13719.00 — 2500.00 1804.50 14773.00 1156.50

10000 3774 29422.00 110765.00 33469.00 22687.00 — 4476.50 3195.00 26281.00 2062.50
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