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Abstract

In this paper we present a new lossless image compression algorithm. To achieve
the high compression speed we use a linear prediction, modified Golomb—Rice code
family, and a very fast prediction error modeling method. We compare the algo-
rithm experimentally with others for medical and natural continuous tone grayscale
images of depths of up to 16 bits. Its results are especially good for big images, for
natural images of high bit depths, and for noisy images. The average compression
speed on Intel Xeon 3.06 GHz CPU is 47 MB/s. For big images the speed is over
60 MB/s, i.e., the algorithm needs less than 50 CPU cycles per byte of image.

KEY WORDS: lossless image compression; predictive coding; adaptive modeling; medical imaging;
Golomb—Rice codes

1 Introduction

Lossless image compression algorithms are generally used for images that are documents
and when lossy compression is not applicable. Lossless algorithms are especially impor-
tant for systems transmitting and archiving medical data, because lossy compression of
medical images used for diagnostic purposes is, in many countries, forbidden by law.
Furthermore, we have to use lossless image compression when we are unsure whether dis-
carding information contained in the image is applicable or not. The latter case happens
frequently while transmitting images by the system not being aware of the images’ use,
e.g., while transmitting them directly from the acquisition device or transmitting over the
network images to be processed further. The use of image compression algorithms could
improve the transmission throughput provided that the compression algorithm complex-
ities are low enough for a specific system. Some systems such as medical CT scanner
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systems require rapid access to large sets of images or to volumetric data that are further
processed, analyzed, or just displayed. In such a system, the images or volume slices are
stored in the memory since mass storage turns out to be too slow—here, the fast loss-
less image compression algorithm could virtually increase the memory capacity allowing
processing of larger sets of data.

An image may be defined as a rectangular array of pixels. The pixel of a grayscale
image is a nonnegative integer interpreted as the intensity (brightness, luminosity) of the
image. When image pixel intensities are in the range [0,2Y — 1], then we say that the
image is of N bit depth, or that it is an N-bit image. Typical grayscale images are of bit
depths from 8 to 16 bits.

Grayscale image compression algorithms are used as a basis for color image compres-
sion algorithms and for algorithms compressing other than images 2-dimensional data
characterized by a specific smoothness. These algorithms are also used for volumetric
3-dimensional data. Sometimes such data, as a set of 2-dimensional images, is com-
pressed using regular image compression algorithms. Other possibilities include prepro-
cessing volumetric data before compressing it as a set of 2-dimensional images or using
algorithms designed exclusively for volumetric data—the latter are usually derived from
regular image compression algorithms.

We could use a universal algorithm to compress images, i.e., we could simply encode
a sequence of image pixels extracted from an image in the raster scan order. For a uni-
versal algorithm such a sequence is hard to compress. Universal algorithms are usually
designed for alphabet sizes not exceeding 2% and do not exploit directly the following
image data features: images are 2-dimensional data, intensities of neighboring pixels are
highly correlated, and the images contain noise added to the image during the acquisition
process—the latter feature makes dictionary compression algorithms perform worse than
statistical ones for image data [1]. Modern grayscale image compression algorithms em-
ploy techniques used in universal statistical compression algorithms. However, prior to
statistical modeling and entropy coding the image data is transformed to make it easier
to compress.

Many image compression algorithms, including CALIC [2, 3], JPEG-LS [4], and
SZIP [5], are predictive, as is the algorithm introduced in this paper. In a predictive
algorithm, we use the predictor function to guess the pixel intensities and then we calcu-
late the prediction errors, i.e., differences between actual and predicted pixel intensities.
Next, we encode the sequence of prediction errors, which is called the residuum. To calcu-
late the predictor for a specific pixel we usually use intensities of small number of already
processed pixels neighboring it. Even using extremely simple predictors, such as one that
predicts that pixel intensity is identical to the one in its left-hand side, results in a much
better compression ratio, than without the prediction. For typical grayscale images, the
pixel intensity distribution is close to uniform. Prediction error distribution is close to
Laplacian, i.e., symmetrically exponential [6, 7, 8]. Therefore entropy of prediction errors
is significantly smaller than entropy of pixel intensities, making prediction errors easier
to compress.

The probability distribution of symbols to be encoded is estimated by the data model.
There are two-pass compression algorithms that read data to be compressed twice. Dur-
ing the first pass the data is analyzed and the data model is built. During the second pass
the data is encoded using information stored in the model. In a two-pass algorithm we
have to include along with the encoded data the data model itself, or information allow-
ing reconstructing the model by the decompression algorithm. In the adaptive modeling
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we do not transmit the model; instead it is built on-line. Using a model built for all
the already processed symbols we encode specific symbol immediately after reading it.
After encoding the symbol we update the data model. If the model estimates conditional
probabilities, i.e., if the specific symbol’s context is considered in determining symbol’s
probability then it is the context model, otherwise the model is memoryless. As op-
posed to universal algorithms that as contexts use symbols directly preceding the current
one, contexts in some of the image compression algorithms are formed by the pixel’s 2-
dimensional neighborhood. In context determination we use pixel intensities, prediction
errors of neighboring pixels, or some other function of pixel intensities. High number
of intensity levels, especially if the context is formed of several pixels, could result in
a vast number of possible contexts—too high a number considering the model memory
complexity and the cost of adapting the model to actual image characteristics for all
contexts or of transmitting the model to the decompression algorithm. Therefore, in im-
age compression algorithms we group contexts in collective context buckets and estimate
probability distribution jointly for all the contexts contained in the bucket. The context
buckets were firstly used in the Sunset algorithm that evolved into Lossless JPEG, the
former JPEG committee standard for lossless image compression [9)].

After the probability distribution for the symbol’s context is determined by a data
model, the symbol is encoded using the entropy coder. In order to encode the symbol s
optimally, we should use — log,(prob(s)) bits, where prob(s) is the probability assigned
to s by the data model [10]. Employing an arithmetic entropy coder we may get arbitrarily
close to the above optimum, but practical implementations of arithmetic coding are
relatively slow and not as perfect as theoretically possible [11]. For entropy coding we
also use prefix codes, such as Huffman codes [12], which are much faster in practice. In this
case we encode symbols with binary codewords of integer lengths. The use of prefix codes
may lead to coding results noticeably worse than the above optimum, when probability
assigned by the data model to the actual symbol is high. In image compression, as
in universal compression algorithms, we use both methods of entropy coding, however
knowing the probability distribution of symbols allows some improvements. Relatively
fast Huffman coding may be replaced by a faster entropy coder using a parametric family
of prefix codes, i.e., Golomb or Golomb—Rice family [13, 14].

The algorithms used for comparisons in this paper employ two more methods to
improve compression ratio for images. Some images contain highly compressible smooth
(or ‘flat’ [7]) regions. It appears that modeling algorithms and entropy coders, tuned for
typical image characteristics, do not obtain best results when applied to such regions.
Furthermore, if we encode pixels from such a region using prefix codes, then the resulting
code length cannot be less than 1 bit per pixel, even if the probability estimated for a
symbol is close to 1. For the above reasons some compression algorithms detect smooth
regions and encode them in a special way. For example, in the JPEG-LS algorithm,
instead of encoding each pixel separately, we encode, with a single codeword, the number
of consecutive pixels of equal intensity. In the CALIC algorithm, we encode in a special
way sequences of pixels that are of at most two intensity levels—a method aimed not
only at smooth regions, but for bilevel images encoded as grayscale also.

The other method, probably firstly introduced in the CALIC algorithm, actually
employs modeling to improve prediction. This method is called the bias cancellation.
The prediction error distribution for the whole image usually is close to Laplacian with
0 mean. The mean of the distribution for a specific context, however, may locally vary
with location within the image. To make the distribution centered at 0 we estimate a
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local mean of the distribution and subtract it from the prediction error. The contexts, or
context buckets, used for modeling the distribution mean may differ from contexts used
for modeling distribution of prediction errors after the bias cancellation.

The performance of the predictive algorithm depends on the predictor function used.
The predictors in CALIC and JPEG-LS are nonlinear and can be considered as switching,
based on local image gradients, among a few simple linear predictors. More sophisticated
schemes are used in some recent algorithms to further improve the compression ratios.
For example, in the APC algorithm the predictor is a linear combination of a set of
simple predictors, where the combination coefficients are adaptively calculated based on
the least mean square prediction error [15]. Another interesting approach is used in the
EDP algorithm, where the predictor is a linear combination of neighboring pixels and the
pixel coefficients are determined adaptively based on the least-square optimization [16].
To reduce the time complexity of the EDP algorithm the optimization is performed only
for pixels around the edges. Compared to a CALIC algorithm which, because of its
compression speed, is by some authors considered to be of research use rather than of
practical use, the two latter algorithms obtain speeds significantly lower.

Another method of making the image data easier compressible, different from the pre-
diction, is to use 2-dimensional image transforms, such as DCT or wavelet transform. In
transform algorithms, instead of pixel intensities, we encode a matrix of transform coeffi-
cients. The transform is applied to the whole image, or to an image split into fragments.
We use transforms for both lossless and lossy compression. Transform algorithms are
more popular in lossy compression, since for a lossy algorithm we do not need the inverse
transform to be capable of losslessly reconstructing the original image from transform
coefficients encoded with finite precision. The new JPEG committee standard of lossy
and lossless image compression, JPEG2000, is a transform algorithm employing a wavelet
transform [17, 18]. Apart from lossy and lossless compressing and decompressing of whole
images, transform algorithms deliver many interesting features (progressive transmission,
region of interest coding, etc.), however, in respect to the lossless compression speed and
ratio, better results are obtained by predictive algorithms.

In this paper, we introduce a simple, fast, and adaptive lossless grayscale image com-
pression algorithm. The algorithm, designed primarily to achieve the high compression
speed, is based on the linear prediction, modified Golomb—Rice code family and a very
fast prediction error modeling method. The operation of updating the data model, which
is based on the data model known from the FELICS algorithm [19], although fast as
compared to many other modeling methods would be the most complex element of the
algorithm. Therefore we apply the reduced model update frequency method that increases
the overall compression speed by a couple of hundred percent at the cost of worsening
the compression ratio by a fraction of a percent. The algorithm is capable of compress-
ing images of high bit depths, actual implementation is for images of bit depths up to
16 bits per pixel. The algorithm originates from an algorithm designed for 8-bit images
only [20]. We analyze the algorithm and compare it with other algorithms for many
classes of images. In the experiments, we use natural continuous tone grayscale images
of various depths (up to 16 bits), various sizes (up to about 4 millions of pixels) and var-
ious classes of medical images (modalities: CR, CT, MR, and US). Nowadays, consumer
acquisition devices, such as cameras or scanners, produce images of ever growing sizes
and high nominal depths, often attaining 16 bits. The quality of the acquisition process
seems to fall behind the growth of acquisition resolution and bit depth—typical high
bit depth images are noisy. Natural images used in research were acquired using a high
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Table 1: Predictors used in the research.

Pred0(X) =0 Pred3(X) =C Pred6(X) =B+ (A—C)/2
Pred1(X) = Pred4(X)=A+ B -C Pred7(X) = (A + B)/2
Pred2(X) =B  Pred5(X) = A+ (B—C)/2  Pred8(X) = (34 + 3B — 20)/4

quality film scanner. To analyze the algorithm performance on noisy data special images
with added noise were prepared. We also generated non-typical easily compressible and
incompressible pseudo-images to estimate the best-case and the worst-case performance
of compression algorithms.

2 METHOD DESCRIPTION

2.1 Overview

Our algorithm is predictive and adaptive; it compresses continuous tone grayscale images.
The image is processed in a raster-scan order. Firstly, we perform prediction using a
predictor selected from a fixed set of 9 simple linear predictors. Prediction errors are
reordered to obtain probability distribution expected by the data model and the entropy
coder, and then output as a sequence of residuum symbols. For encoding residuum
symbols we use a family of prefix codes based on the Golomb—Rice family. For fast and
adaptive modeling we use a simple context data model based on a model of the FELICS
algorithm [19] and the method of reduced model update frequency [20]. The algorithm
was designed to be simple and fast. We do not employ methods such as detection of
smooth regions or bias cancellation. Decompression is a simple reversal of the compression
process. With respect to both time and memory complexity the algorithm is symmetric.

The algorithm described herein originates from an algorithm designed for images of
8-bit depth, which obtained high compression speed but could not be just simply extended
to higher bit depths [20]. The most significant differences between these algorithms are
reported in Section 2.6.

2.2 Prediction

To predict the intensity of a specific pixel X, we employ fast linear predictors that use
up to 3 neighboring pixels: the left-hand neighbor (A), the upper neighbor (B), and the
upper-left neighbor (C). We use 8 predictors of the Lossless JPEG algorithm (Table 1,
Pred0—Pred7) [9], and one a bit more complex predictor Pred8, that actually returns an
average of Pred4 and Pred7. Predictors are calculated using integer arithmetic. We select
a single predictor for the whole image, however for pixels of the first row and the first
column some predictors cannot be calculated—in this case we use simpler predictors (e.g.,
Pred2 for the first column).

If there is a subtraction operation in a calculation of the predictor, then its value may
be out of the nominal range of pixel intensities [0,2" — 1], where N denotes image bit
depth. In such a case, we take the closest value from the above range. We compress the
residuum symbol that is a difference between the actual (X)) and the predicted (Pred(X))
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Figure 1: Probability distribution of prediction errors: a) before modulo reduction, b)
after modulo reduction, and c) after reordering.

pixel intensity, i.e., R, = X — Pred(X). Since both X and Pred(X) are in the range
0,2V — 1], R, is in the range [—2" + 1,2" — 1]. To encode such a symbol directly, using
the natural binary code, we would need N + 1 bits, i.e., we would expand the N-bit
image data before the actual compression. Fortunately, we may use N-bit symbols to
encode prediction errors since for a specific pixel we have only 2V values of R, (range
[—Pred(X), 2" —1—Pred(X)]). The Pred(X) may be calculated by both the compression
and the decompression algorithm prior to processing the pixel X. Instead of the above-
mentioned formula we use R,, = (X — Pred(X))mod2". For decompression we use
X = (R, + Pred(X))mod2".

The code family we use to encode the residuum requires residual values to be ordered
in a descending order of probability. For typical images, before a modulo reduction,
the distribution is close to symmetrically exponential (Laplacian), however after that
reduction it no longer descends (Fig. 1). We reorder residual values to get the probability
distribution close to exponential by simply picking symbols: first, last, second, last but
one and so on:

n_ 2R, for R,, < 2N-1
1 2@Y -R,) -1 for R, >2N"!

2.3 The code family

The code family used is based on the Golomb—Rice (GR) family, i.e., on the infinite family
of prefix codes, that is a subset of a family described by Golomb [13] (Golomb family),
rediscovered independently by Rice [14]. GR codes are optimal for encoding symbols
from an infinite alphabet of exponential symbol probability distribution. Each code in
the GR family is characterized by a nonnegative integer rank k. In order to encode the
nonnegative integer ¢ using the GR code of rank k we firstly encode the codeword prefix:
|i/2%] using a unary code, then the suffix: imod2* using a fixed length k-bit natural
binary code.

Prediction errors are symbols from a finite alphabet. The probability distribution of
these symbols is only close to the exponential. To encode the prediction errors we use a
limited codeword length variant of the GR family [21]. For encoding residuum symbols
of image of N-bit depth, that is for alphabet size 2%V, we use family of N codes. We limit
the codeword length to [, > N. For each code rank 0 < k < N we define the threshold
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Table 2: The code family for integers in range [0, 15], codeword length limited to 8 bits.

Integer Code

E=0 k=1 k=2 k=3
0 Oe 0e0 0e00 0000
1 10e Oel 0e01 0e001
2 110e 10e0 Oe10 0e010
3 1110e 10e1 Oell 0Oe011
4 11110000 11060 10600 00100
) 11110001  110e1 10601 0Oe101
6 11110010 11100 10e10 0110
7 11110011 1110e1 10e11 Qel111
8 111160100 1111000 11000 1000
9 111160101 11116001 110601 1001
10 11110110 1111010 11010 1010
11 11110111 1111011 110ell 1011
12 11111000 1111100 11100 1100
13 11111001 1111101 111e01 1101
14 11111010 1111110 11110 1e110
15 11111011 1111e111 111el1l 1lelll

7 = min((lpax — N)2F, 28 — 2%). We encode the nonnegative integer 0 < i < 2V in
the following way: if ¢ < 7 then we use the GR code of rank k, in the opposite case
we output a fixed prefix: m /2% ones, and then suffix: i — 7, encoded using fixed length
[log,(2Y — m,)]-bit natural binary code.

Sample codewords are presented in Table 2. The separator is inserted between prefix
and suffix of the codeword for legibility only. Some codewords are underlined. For
a specific code the underlined codeword and codewords above the underlined one are
identical to their equivalents in the GR code.

Use of the code family significantly simplifies the compression algorithm. To encode
a certain residuum symbol we just select a code rank based on the information stored in
the data model and simply output a codeword assigned to this symbol by the code of the
selected rank.

Limiting the codeword length is a method used in several other algorithms, including
JPEG-LS. It is introduced to reduce data expansion in case of selecting in the data model
a code of improper (too small) rank to encode symbol of high value—coding images we
deal with alphabet sizes up to 2! and code of rank k = 0 assigns (i + 1)-bit codeword
to symbol 7. Apart from limiting the codeword length, the advantage of the presented
family over the original GR codes is that it contains, as the code of rank £ = N — 1, the
N-bit natural binary code. Using natural binary code we may avoid the data expansion
even when coding the incompressible data.
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2.4 The data model

The modified data model known from the FELICS algorithm invented by Howard and
Vitter [19] is used. For prediction errors of pixels in the first column of an image a
prediction error of the above pixel is used as a context, for prediction errors of the
remaining pixels the preceding residuum symbol, i.e., a prediction error of pixel’s left-
hand neighbor, is used as a context.

The method of selecting code rank in the data model of the FELICS algorithm is fast
and simple. For each context we maintain an array of N counters, one counter for each
code rank k. Each counter stores the code length we would have if we used code of rank k
to encode all symbols encountered in the context so far. To encode a specific symbol in a
specific context we simply use the rank that in that context would give the shortest code
so far. After coding the symbol we update the counters in the current context. For each
code rank we increase its counter by the length of the codeword assigned to the encoded
symbol by code of this rank. Periodically, when the smallest counter in a specific context
reaches a certain threshold all the counters in this context are halved, causing the model
to assign more importance to the more recently processed data.

Although one symbol only is used to determine the context we use collective context
buckets. In the FELICS algorithm data model, for each context, at least one symbol has
to be encoded before we are able to estimate the code rank based on actual image data.
The first symbol in a given context, or a few first symbols, may be encoded using an
improper code rank. Since we deal with alphabet sizes up to 2'%, the number of pixels
encoded in a non-optimal way may worsen the overall compression ratio. Furthermore,
due to an exponential prediction error probability distribution, some contexts may appear
in the whole image a couple of times only. For the above reasons we group contexts of
higher values in collective context buckets. In our case we maintain a single array of
counters for all the contexts contained in the bucket. The number of contexts contained
in the bucket grows exponentially in respect to the bucket number, starting with the
bucket containing the single context. This way we reduce the FELICS model memory
complexity of O(2N*1) to O(N?).

If there are some codes equally good for encoding a specific symbol according to the
criterion of the FELICS data model, then the code of the smallest rank is selected, which
may cause an improper selection of small code ranks and lead to data expansion. To
reduce the effects of the improper rank selection at the beginning of the coding, Howard
and Vitter suggest assigning a small initial penalty to the counters for small ranks. We
used a simple method that works not only at the beginning of the coding, but also when
the image data characteristics change during the compression. We avoid the risk of data
expansion by selecting, from among all the equally good codes, the one of the highest
rank [22].

2.5 The reduced model update frequency method

The motivation for introducing the reduced model update frequency method is the ob-
servation of typical image characteristics that change gradually for almost all the image
area or even are invariable. In order to adapt to gradual changes, we may sample the
image, i.e., update the data model, less frequently than each time the pixel gets coded.
Instead we update the model after the coding of selected pixels only. We could simply
pick every i-th symbol to update the model, but such a constant period could interfere
with the image structure. Therefore each time, after updating the model with some sym-
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delay := 0
while not EOF
read symbol
compress symbol
if delay = O then
update model

delay := random(range)
else
delay := delay-1
endif
endwhile

Figure 2: The reduced model update frequency method.

bol, we select randomly a number of symbols to skip before next update of the model
(Fig. 2). The number of symbols to skip is selected regardless of the actual value of
the symbol used to update the model as well as of it’s context (the delay variable in
the Fig. 2 is a global one). In order to permit the decoder to select the same number
we use a pseudo-random number generator. For just avoiding the interference with an
image structure, even the simplest pseudo-random number generator, should suffice. We
use the fixed pseudo-random number generator seed—this way we avoid storing the seed
along with the compressed image and make the compression process deterministic.

By selecting the range of the pseudo-random numbers we may change the model
update frequency, i.e., the probability of updating the model after coding a symbol.
This way we control the speed of adapting the model and the speed of the compression
process. At the beginning of compression, the data model should adapt to the image data
characteristics as quickly as possible. We start compression using all symbols in data
modeling and then we gradually decrease the model update frequency, until it reaches
some minimal value.

The method is expected to vastly improve the compression speed without significantly
worsening the compression ratio. In case of the algorithm, from which the described algo-
rithm originates, the method allowed to increase the compression speed by about 250% at
the cost of worsening the ratio by about 1% [20]. Similar, to a certain extent, approach
was used in the EDP algorithm, where the predictor coefficients are determined in an
adaptive way by means of relatively complex LS optimization. As reported in [16], per-
forming the above optimization only for pixels around the edges allows a decrease of the
time complexity by an order of magnitude at the cost of a negligible worsening of the
compression ratio. Note that, as opposed to the reduced update frequency method, in
EDP location the pixels for which the time consuming operation is performed (or skipped)
depends on the image contents.

2.6 Differences from the predecessor algorithm

The most significant differences between the described algorithm and the one from which
it originates [20] are the code family and the data model. Actually, the described algo-
rithm is simpler compared to its predecessor.
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The code family used in the previous algorithm was based on the Golomb codes. It was
a limited codeword length family, it contained the natural binary code, ordering of codes
in the family was altered compared to original Golomb family. Generating codewords
from that family was not as simple as in case of the family presented in Section 2.3,
however, it was not a problem for the algorithm of 8-bit image compression. As opposed
to 16-bit depth, for 8-bit depth whole family may be precomputed and stored in the array
of a reasonable size.

The data model of the predecessor algorithm was also more sophisticated. To aid
fast adaptation to characteristics of the image data at the beginning of the compression,
the model used variable number of collective context buckets. The compression started
with a single bucket (containing all the contexts), that was subsequently divided into
smaller ones. By using this method the compression ratio for the smallest images was
improved by over 1%. For the described algorithm, the use of variable number of buckets
resulted in worsening the average compression ratio (by about 0.2%); only in case of some
small images the ratios were negligibly improved (by less than 0.1%). As opposed to its
predecessor, in the data model of the described algorithm we select, from among all the
equally good codes, the one of the greatest rank. The above feature, along with using
different code family, seems to be simpler and more efficient, than using the variable
number of buckets. Furthermore, giving the variable number of buckets up we reduce the
modeling memory and time complexity.

2.7 Complexity analysis
Time complexity

The fast adaptive compression algorithms are of the linear time complexity, in our case:

T(n) =n(cy, + cc+ cm) = n(cp + ¢ + pey) = O(n),

where n is the number of pixels in the image, ¢, denotes prediction complexity (per
pixel), ¢.—coding, ¢,,—modeling, ¢,—single model update, and p—the update frequency.
Prediction and coding are implemented as short sequences of simple integer operations.
The model update is more complex since to update the model we have to compute lengths
of N codewords, where N is the image bit depth. Updating the model less frequently we
accelerate the slowest part of the compression process.

Memory complexity

The data model requires O(N?) bytes, where N is the image bit depth, for storing N coun-
ters for each of ¢V buckets, ¢ ~ 1. To perform prediction we need O(w) bytes, where w is
the image width, since for some of the predictor functions we need the pixel’s upper-left
neighbor, i.e., memory for storing at least w + 1 pixels.

Actual implementation is aimed at maximizing the compression speed, rather than at
reducing the memory complexity. Depending on image bit depth and endianness of the
CPU it requires from about 7w + 2000 to about 12w + 4000 bytes.
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3 EXPERIMENTAL RESULTS

3.1 Algorithm implementation

The algorithm was implemented in ANSI C language; the implementation may be down-
loaded from http://sun.iinf.polsl.gliwice.pl/~rstaros/sfalic/. Algorithm pro-
cesses the image row by row. After the row has been inputted, the prediction for the
whole row is performed and a resulting row of residuum symbols is stored in a mem-
ory buffer. The row of residuum symbols is compressed to another memory buffer and
then output. After updating the model, the number of symbols to be skipped before the
next update is selected by picking a pseudo-random number and reducing it modulo 2™,
where m is a nonnegative integer. Therefore following frequencies p = 2/(2™ + 1) may
be used: 100% (the full update frequency), 66.6%, 40%, 22.2%, 11.8%, 6.06%, 3.08%,
1.55%, 0.778%, 0.390%, 0.195%, ... . We start coding the image with the full update
frequency. Then, each time d pixels are coded, we decrease the frequency, until we reach
the target update frequency. The number of buckets in the model, as a function of image
bit depth, may be also selected. We tested a few following model structures (below are
numbers of contexts in the consecutive buckets):

a) 1,1,1,2,2,4,4,8,8, ...
b) 1,2, 4,8, 16, ... ;
) 1,4, 16,64, ... .

In an actual implementation, special variants of some functions were prepared for
images of depths up to 8 bits. Optimizations are possible when the alphabet size is small.
For example, reordering of prediction errors or finding a bucket for specific context may
be done using single table-lookup to increase the compression speed; buffers for image
rows may be allocated for 8-bit pixels instead of 16-bit ones to reduce implementation’s
memory requirements.

3.2 Procedure

An HP Proliant ML350G3 computer equipped with two Intel Xeon 3.06 GHz (512 KB
cache memory) processors and Windows 2003 operating system was used to measure the
performance of algorithm implementations. Single-threaded application executables of
the described algorithm, and other algorithms used for comparisons, were compiled using
Intel C++ Compiler, version 8.1. To minimize effects of the system load and the input-
output subsystem performance on obtained results the executable was run several times.
The time of the first run was ignored and the collective time of other runs (executed for
at least one second, and at least 5 times) was measured and then averaged. The time
measured was a sum of time spent by the processor in an application code and in kernel
functions called by the application, as reported by the operating system after application
execution. Since we measure the execution time externally we actually include the time
of initializing the program by the operating system into our calculations; this time may
be significant for the smallest images.

The compression speed is reported in megabytes per second [MB/s], where 1 MB =
220 hytes. Since we used PGM P5 image representation, the pixel size is 2 bytes for image
depth over 8 bits, 1 byte in the opposite case. The compression ratio is in bits per pixel
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[bpp|: 8e/n, where e is the size in bytes of the compressed image including the header,
n—number of pixels in the image.

3.3 Test image set

A new diverse set of medical and natural continuous tone grayscale test images was
prepared to evaluate the performance of lossless image compression algorithms. The
main reason of preparing the new set was that, to our best knowledge, there was no
publicly available set of test images containing big, high quality images, which were
originally acquired with an actual 16-bit depth. The set contains natural continuous tone
grayscale images of various bit depths (up to 16 bits), various sizes (up to about 4 millions
of pixels) and medical images of various modalities (CR, CT, MR, and US). In the set,
image groups were defined, to permit performance analysis based on average results for
the whole group, rather than on results for single images.

The biggest group, normal, is for evaluating algorithms’ performance in a typical case.
A collection of smaller groups permits us to analyze or compare results with respect to
images’ bit depths, sizes, or medical image modality. The set contains also non-typical
images, which do not belong to the normal group. To analyze the algorithms’ performance
on noisy data special images with added noise were prepared. To estimate the best-case
and the worst-case performance of algorithms, easily compressible and incompressible
pseudo-images were also generated. Below, we describe the image groups; details of
individual images are reported in [23]. The set contains about one hundred images. It
is not as large as, for example, the set used by Clunie in an extensive study on lossless
compression of medical images [24] which contained over 3600 images but, on the other
hand, moderate size of the set allowed making it publicly available—it may be downloaded
from http://sun.iinf.polsl.gliwice.pl/~rstaros/mednat/.

Group of natural continuous tone images, i.e., group of images acquired from scenes
available for the human eye (photographic images), was constructed as follows. Four im-
ages were acquired from a 36mm high quality diapositive film (Fuji Provia/Velvia) using
Minolta Dimage 5400 scanner (Fig. 3). In order to minimize the noise, the acquisition
was first done at the device’s maximum depth of 16 bits, optical resolution 5400dpi and
using multiple sampling of each pixel (16 times or 4 times in case of branches image).
One image (flower) was softened by setting the scanner focus too close. Then the im-
ages’ resolution was reduced 3 times. These images formed a group of 16-bit big images,
and then were subject to further resolution reduction (3 and 9 times) and to bit depth
reduction (to 12 and to 8 bits). The set contains following groups of natural images:

e natural—36 natural images of various sizes and bit depths,

e big—12 natural images of various bit depths and size approximately 4000000 pixels,
e medium—12 natural images of various bit depths and size approx. 440000 pixels,
e small—12 natural images of various bit depths and size approx. 49000 pixels,

e 16bpp—12 natural images of various sizes and 16-bit depth,

e 12bpp—12 natural images of various sizes and 12-bit depth,

e Sbpp—12 natural images of various sizes and 8-bit depth.
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Figure 3: Sample natural images.

Groups of medical images were composed of CR, CT, MR, and US images of various
anatomical regions, acquired from devices of several vendors. Most of the medical images
are from collections of medical images available on the Internet; the origin of individual
images is reported in [23]. In case of medical CR, CT, and MR images we report the
nominal bit depth. The actual number of intensity levels may be smaller than implied
by the bit depth, by an order of magnitude or even more. The set contains the following
groups of medical images:

e medical—48 medical CR, CT, MR, and US images,

e cr—12medical CR images, nominal depth: 10 to 16 bits, average size approximately
3500000 pixels,

o ct—12medical CT images, nominal depth: 12 to 16 bits, average size approximately
260000 pixels,

e mr—12 medical MR images, nominal depth of 16 bits, average size approximately
200000 pixels,

e us—12 medical US images, 8-bit depth, average size approximately 300000 pixels.

To evaluate algorithms’ performance in a typical case, the normal group was defined.
The normal group contains all 84 natural and medical images. The average results
of compressing images from the normal group are used as a measure of algorithms’
performance for continuous tone grayscale images. Unless indicated otherwise, we report
the average results for this group.

Other groups contained in the set, non-typical images:

e noise—9 images with added noise, created using branches image of various bit
depths (8, 12, and 16 bits) and medium size (approximately 440000 pixels). Noise
was added using: v; = vo(1 — a) + ra, where vy denotes original pixel intensity,



R. Starosolski — Simple Fast and Adaptive Lossless. . . 14

vi—intensity after adding noise, r—random value of uniform distribution (range
(0,2 — 1], where N is image bit depth) and a is the amount of noise. We prepared
images using a = 0.1,0.2, 0.5,

e empty—3 pseudo-images, intensity of all pixels equals 0, nominal depth of 8, 12,
and 16 bits, size approximately 440000 pixels,

e random—3 pseudo-images, random intensities of pixels (uniform distribution), bit
depth of 8, 12, and 16 bits, size approximately 440000 pixels.

The set described above contains no images traditionally used for comparisons of
image compression algorithms. To verify observations made using the above set for
traditional 8-bit test images and to make comparisons to results reported in other stud-
ies possible, additional experiments were performed using the popular Waterloo Brag-
Zone GreySet2 set of test images (downloaded from: http://links.uwaterloo.ca/
BragZone/GreySet2/).

3.4 Parameter selection for the algorithm

The parameter selection was based on the average compression speed and the average
compression ratio for images from the normal group. The threshold, that triggers dividing
all the counters in a certain context when the smallest counter reaches it, was selected
for each update frequency and for each number of buckets individually as the average
best value for predictors 1 to 8. This way we do not favor any specific update frequency,
predictor, or model structure. Knowing these parameters, however, we could simply use
a fixed threshold for all the update frequencies. Using for all the update frequencies the
threshold selected for the update frequency and the number of buckets of the default
parameter set listed below, would simplify the algorithm and change the compression
ratio, for some image groups only, by less than 0.1%. The remaining algorithm parameters
were selected by examining results of compression using combinations of all p values,
all numbers of buckets, all predictors, some values of d, and some code length limits
Imax. Parameter combinations which, compared to some other combination, resulted in
worsening of both the compression speed and the compression ratio, were rejected. One
of the remaining combinations was selected as the default parameter set, its use results in
the compression speed 20% less than the fastest one obtained and the compression ratio
worse by about 0.5%, compared to the best ratio. The default parameters are:

e model update frequency p = 3.08%),
e predictor Pred8 ((3A + 3B — 2C)/4),

decreasing the update frequency each d = 2048 pixels,

code length limit [, = 26,

doubling model bucket size each bucket (model structure b).

Below we describe how these parameters, considered individually, influence compres-
sion results. Fig. 4 presents the compression speed and the compression ratio obtained
using various update frequencies. Using the reduced update frequency we may get a
couple of hundred percent speed improvement at the cost of worsening the compression
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Figure 4: Compression results for various update frequencies (normal images).

ratio by about 0.5%. Note that decreasing the update frequency below some point stops
improving the modeling speed. The reduced model update frequency method could prob-
ably be applied to other adaptive algorithms, in which modeling is a considerable factor
in algorithm’s overall time complexity. It could be used as a mean of adjusting the algo-
rithm speed versus the quality of modeling or, as in our case, it could be used to improve
the speed, to a certain extent, without worsening the modeling quality significantly.

The selected Pred8 predictor, although the most complex, gives the best average
compression ratio. Use of this predictor and the selected update frequency proves to be
better than the use of any simpler predictor and a greater frequency since the compression
ratio improvement is obtained at the relatively small cost. For a few specific image groups,
the use of other predictors results in the compression ratio improvement (and in the speed
improvement by a few percent):

e for the ¢r and noise images Pred7 improves the ratio by 1.0% and 1.6% respectively,

e for the us images the use of Pred4 gives a 3.6% improvement of the compression
ratio.

Decreasing gradually the update frequency each 2048 pixels, compared to compressing
the whole image using the same frequency, only affects the results for the smallest images.
This way, for the small group, we get a 1.0% compression ratio improvement and the
speed lower by a few percent.

The code length limit was selected for the normal group. Except for the us group,
selecting the limit for the specific group may improve the compression ratio by less
than 0.1%. For the us images we may obtain a 2.1% compression ratio improvement
by limiting the codeword length to 14 bits.

Results for the data model structures described earlier: a, b, and ¢ are almost identical.
Selecting other than the default model structure we may improve the compression ratio
for some groups by less than 0.1%. We also compared the data model that uses collective
context buckets to two other model structures. Using collective context buckets proves
to be superior to compression with a model of 2V individual contexts that results in an
expansion of 16-bit images and also to compression with memoryless model that, for the
normal images, results in worsening the average compression ratio by 6.2%.
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3.5 Comparison to other techniques

The algorithm described in this paper, denoted here as ‘SFALIC’, was compared to sev-
eral other image compression algorithms. In Tables 3 and 4 we report average com-
pression speeds and average ratios obtained by the algorithms described below, for
normal images. Due to the number of images contained in the set, results for indi-
vidual images are not included in this paper, they may be downloaded from http:
//sun.iinf.polsl.gliwice.pl/~rstaros/sfalic/. After discussing results for the
new set we report results obtained for the well-known images of University of Water-
loo. The results are reported for the following algorithms:

o CALIC-A—the relatively complex predictive and adaptive image compression algo-
rithm using arithmetic entropy coder, which because of the very good compression
ratios is commonly used as a reference for other image compression algorithms [2, 3].
In the CALIC algorithm we use 7 neighboring pixels, both to determine context
and as arguments of the nonlinear predictor function. When pixels in the neighbor-
hood are, at most, of 2 intensity levels CALIC enters, so called, the binary mode.
In the binary mode, for consecutive pixels, we encode information whether pixel
intensity is equal to brighter neighbors, darker neighbors, or neither of them-in
this case we leave the binary mode. CALIC utilizes the bias cancellation method.
We used implementation by Wu and Memon [25]. Since this implementation is a
binary executable for UltraSparc processors, the compression speed of CALIC algo-
rithm is estimated based on the relative speed of this implementation compared to
the SFALIC speed on a different computer system (Sun Fire V440 running Solaris
9, equipped with 1.06 GHz UltraSparc IIIi processors; both implementations were
single-threaded).

e CALIC-H—the variant of the CALIC algorithm using Huffman codes (compression
speed estimated as in case of CALIC-A).

e JPEG-LS—the standard of the JPEG committee for lossless and near-lossless com-
pression of still images [4]. The standard describes a low-complexity predictive
and adaptive image compression algorithm with entropy coding using a modified
Golomb—Rice family. The algorithm is based on the LOCO-I algorithm [26, 27].
In the JPEG-LS algorithm, we use 3 neighboring pixels for nonlinear prediction,
and 4 pixels for modeling. JPEG-LS utilizes the bias cancellation method, also it
detects and encodes in a special way smooth image regions. If the smooth region
is detected we enter the, so called, run-mode and instead of encoding each pixel
separately we encode, with a single codeword, the number of consecutive pixels of
equal intensity. We used the SPMG/UBC implementation [28]. In this implemen-
tation, some code parts are implemented in 2 variants: one for images of depths up
to 8 bits and the other for image depths 9-16 bits.

e CCSDS SZIP—the standard of the Consultative Committee for Space Data Systems
used by space agencies for compressing scientific data transmitted from satellites
and other space instruments [5]. CCSDS SZIP is a very fast predictive compression
algorithm based on the extended-Rice algorithm, it uses Golomb—Rice codes for en-
tropy coding, and primarily was developed by Rice. CCSDS SZIP is often confused
with a general-purpose compression utility by Schindler, which is also called ‘SZIP’.
CCSDS SZIP does not employ an adaptive data model. The sequence of prediction
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Table 3: The compression speed, normal images [MB/s].

image group CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC

natural 2.6 7.2 15.0 40.3 43.3
big 3.4 9.7 18.1 56.0 61.8
medium 2.8 8.0 16.5 44.8 48.1
small 1.7 3.7 10.3 20.0 20.1
16bpp 1.9 6.9 15.9 40.0 41.3
12bpp 3.0 7.5 17.8 48.4 47.9
Sbpp 3.0 7.0 11.1 32.4 40.7
medical 3.6 9.6 20.7 50.6 50.1
cr 4.9 11.5 24.8 73.5 70.5
ct 3.4 9.1 21.6 50.1 49.1
mr 2.7 8.4 20.9 41.6 39.9
us 3.7 9.3 15.4 37.1 40.8
normal 3.2 8.5 18.2 46.1 47.2

errors is divided into blocks. Each block is compressed using a two-pass algorithm.
In the first pass, we determine the best coding method for the whole block. In the
second pass, we output the marker of the selected coding method as a side informa-
tion along with prediction errors encoded using this method. The coding methods
include: Golomb—Rice codes of a chosen rank; unary code for transformed pairs of
prediction errors; fixed length natural binary code if the block is found to be incom-
pressible; signaling to the decoder empty block if all prediction errors are zeroes.
We used UNM implementation [29]. It was optimized for the default block size of
16 symbols. Since biggest images (big and cr) required greater block size, we used
block size of 20 symbols for all the images. For smaller images, compared to the
reported results, by using the default block size, we get compression speed higher
by about 10% to 20%, and the compression ratio from 0.5% worse to 1.2% better,
depending on the image group. Higher compression speed for all the images by
an average of 8.5% for the normal group may be obtained using a block size of
32 symbols, however, at the cost of worsening the compression ratio by 0.9%.

JPEG2000, Lossless JPEG Huffman, PNG [30], and FELICS were also examined [23].
We do not report these results because, for all the image groups, speeds and ratios of
these algorithms are worse than obtained by the JPEG-LS. For other test image sets the
JPEG2000 algorithm is reported to obtain ratios, depending on image or image class, little
better or little worse to JPEG-LS [24, 31]. Compared to SFALIC, the algorithms Lossless
JPEG Huffman, PNG, and FELICS, obtain worse compression ratios for almost all the
groups (except for us group for PNG and FELICS, and empty group for PNG) and lower
compression speeds for all the groups. JPEG2000 obtains average ratio by 2.3% better
than SFALIC and compression speed about 15 times lower. SFALIC was also compared to
the algorithm from which it originates. For 8bpp images SFALIC’s predecessor obtained
compression ratio worse by 1.3% and the compression speed lower by 34%.
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Table 4: The compression ratio, normal images [bpp].

image group CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC

natural 7.617 7.661 7.687 8.432 7.953
big 6.962 7.059 7.083 7.773 7.274
medium 7.623 7.699 7.710 8.403 8.009
small 8.267 8.227 8.269 9.121 8.576
16bpp 11.748 11.622 11.776 12.458 11.867
12bpp 7.491 7.565 7.571 8.407 7.869
Sbpp 3.613 3.797 3.715 4.431 4.123
medical 6.651 6.761 6.734 7.396 7.165
cr 6.229 6.324 6.343 6.883 6.662
ct 7.759 7.840 7.838 8.806 8.266
mr 9.975 9.895 10.009 10.599 10.235
us 2.641 2.985 2.748 3.298 3.497
normal 7.065 7.147 7.143 7.840 7.503

SFALIC algorithm is clearly the fastest algorithm among algorithms that use an adap-
tive data model. The compression speed of SFALIC algorithm for normal images (Fig. 5)
is over 2.5 times higher than the speed of the second fastest adaptive model algorithm
(JPEG-LS) and about 12 times higher than the speed of an algorithm obtaining the
best compression ratios (CALIC-A). Compression speed of SFALIC is almost the same
as the speed of the CCSDS SZIP algorithm, which does not employ adaptive modeling.
Actually SFALIC obtained speed little higher than CCSDS SZIP. However, the relative
speed difference is negligible. Probably both algorithms could be optimized to improve
the speed a little—CCSDS SZIP by optimizing it for block size of 20 symbols, or by
optimizing it for low image bit depths, SFALIC by integrating prediction into coding and
modeling loop. The highest compression speed is achieved for the biggest images (big and
cr). The compression speed for these groups is over 60 MB/s, i.e., for the biggest images
we need less than 50 CPU cycles per byte of image. The compression speed significantly
lower, than the average, was obtained for small images. For these images, the time of
initializing the compression implementation executable by the operating system becomes
a significant factor in the overall speed of the compression algorithm. To some extent
similar behavior may be observed for all the examined algorithms. SFALIC compression
speed depends on the image size rather than on the image bit depth. Since for depths
over 8 bits the image pixel is stored using 2 bytes, the compression speed for 12bpp
images is greater than the speed for 8bpp and 16bpp images. We also notice that, for
individual images of similar bit depth and similar size there are no significant differences
in SFALIC compression speed. The compression speed of some other algorithms, such as
JPEG-LS, depends to a larger extent on the image contents. Here the greater differences
are probably due to much lower complexity of the run mode employed by JPEG-LS for
smooth areas found in some images, compared to the complexity of regular mode used
for non-smooth regions.

The average compression ratio of the CALIC-A, CALIC-H, and JPEG-LS algorithms
is better than the ratio of SFALIC by 5.8%, 4.7%, and 4.8% respectively. Such a cost
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Figure 5: The compression results for various algorithms (normal images).

Figure 6: Sample medical us images.

of improving the compression speed is not important in many practical image processing
systems, especially when we compress images to transmit them or to store them tem-
porarily. Compared to the CCSDS SZIP, which is the only algorithm that obtains speed
close to SFALIC, the compression ratio of SFALIC is better by 4.5%.

For compressing some images, other algorithms are much better—the us images are
compressed 24.5% better by CALIC-A. The predictor function and the codeword length
limit were selected for the normal group and are not well suited for the us images,
but the main reason of a worse compression ratio is that SFALIC does not employ any
special method of processing smooth image regions—the us images contain large uniform
intensity areas, i.e., black background for the actual image (Fig. 6).

On the Fig. 7 we compare ratios of SFALIC and JPEG-LS obtained for individual
images. The absolute differences of ratios are moderate; the greatest one is about 1bpp.
Note that bigger differences occur for smaller compression ratios so the relative differences
of ratios may be, for highly compressible images, practically important. Therefore, in
the Fig. 8, instead of an absolute ratio we present the relative compression ratio of
JPEG-LS expressed as percents of the ratio that SFALIC obtained for a specific image.
We also mark, by the gray background, images that contain significant amount of smooth
areas. Here, the image is considered to contain significant amount of smooth areas if at
least 15% of its pixels is encoded by the JPEG-LS using the run mode (actually it is at
least 17.6% for these images and at most 5.6% for the remaining ones). We can see that
the relative ratio differences in favor of JPEG-LS are getting much greater as the image
compression ratio decreases. It can also be seen that the JPEG-LS ratio is better than
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Figure 8: SFALIC ratio and relative JPEG-LS ratio for individual images.

SFALICS’s by up to almost 40% for images containing significant amount of smooth areas,
whereas for other images the JPEG-LS is better by up to about 16%. Above observation
confirms significance of using the method of efficient encoding smooth image areas in the
compression algorithm.

For natural images the relative compression ratio of algorithms obtaining better ratios
compared to SFALIC, does not depend on image size and significantly depends on image
bit depth. For 8bpp images the compression ratio of CALIC-A is 12.4% better, for 16bpp
images it is better by 1.0%. Generally the SFALIC algorithm obtains good compression
ratios when the actual number of intensity levels is high. The medical cr, ct, and mr
images, which are of 16-bit nominal depth, actually use much smaller than 2'® number
of levels. Among 24 such images 21 use below 4000 levels and only 3 c¢r images use
about 25000 levels. For these 3 images the ratio of CALIC-A algorithm is better than
SFALIC’s ratio by 1.4%.

Most ¢t and mr images and some cr images are of sparse histograms. Not only the
actual number of levels found in these images is much smaller than the nominal one,
but the levels are distributed throughout almost all the entire nominal intensity range as
well. Such characteristics is clearly different from what is expected by a lossless image
compression algorithm, both in case of predictive and of transform coding. In [32] we re-
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Figure 9: The compression results for various algorithms (16bpp images).

Table 5: The compression speed for non-typical images [MB/s].

image group CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC

empty 13.2 39.9 156.1 118.2 79.3
noise 2.0 7.4 14.9 41.4 45.6
random 1.3 6.5 14.7 41.5 37.3

ported efficient methods of compressing these images. Employing the so called histogram
packing technique we may vastly improve compression ratios of sparse histogram images.
This way the CALIC-A average compression ratios were improved to 4.485 bpp for ct and
to 4.811 bpp for mr images (that is by about 42% and 52% respectively). Improvement
of the average compression ratio for the ¢r group was about 15%.

Interesting results were obtained for 16bpp images (Fig. 9). For this group the com-
pression ratio of arithmetic coding version of CALIC is 1.1% worse than the ratio of
the Huffman-coder version. CALIC-H obtains ratios better than CALIC-A also for small
(i.e., group containing 16-bit images) and for mr images (of 16 bit nominal depth). Above
observations suggest that the small difference in compression ratio between SFALIC and
CALIC for 16bpp images should rather be attributed to imperfections of other algorithms,
than to especially good performance of SFALIC. Probably there is still a possibility of
improving the compression ratio of CALIC for high bit depth images.

The empty pseudo-images (Tables 5 and 6) are the most easily compressible data
for the image compression algorithm. As one could expect, for empty images the ratio
of algorithms that employ a method of efficient encoding smooth image regions is close
to Obpp. For all the algorithms, the compression speed for the empty group is higher
than of any other group, the greatest speedup is observed for JPEG-LS.

For non-typical noisy images the compression speed of all algorithms is similar to the
average medium group speed that contains images of similar size. Compression of these
images, in case of some algorithms even of individual images with 50% noise added, still
results in compression ratios smaller than the image bit depth, however not by much. The
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Table 6: The compression ratio for non-typical images [bpp].

image group CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC

empty 0.001 0.045 0.002 0.027 1.000
noise 10.478 10.690 10.693 11.101 10.842
random 12.375 13.008 12.516 12.370 12.009

France:

france library washsat

Figure 10: BragZone GreySet2 images with smooth areas.

random pseudo-images are incompressible and may be used for estimating the worst-case
algorithm compression ratio, however for a specific image compression algorithm we can
prepare data even harder to compress, i.e., pseudo-image of characteristics opposite to
what is expected in prediction or modeling. The best method of processing incompressible
data is to copy them binary, i.e., to encode pixel intensities using /N-bit natural binary
code, where N denotes image bit depth—for the random group we would get the com-
pression ratio of 12bpp. The SFALIC algorithm actually acts this way; its code family
contains the fixed length natural binary code that is used in case of processing random
images. All the remaining algorithms cause noticeable data expansion. In case of CCSDS
SZIP algorithm, natural binary code is also used, however it is a two-pass scheme. The
data expansion of CCSDS SZIP is solely due to including, in the compressed data, side
information along with each block.

To verify observations made using the new set, additional experiments were performed
with the popular Waterloo BragZone GreySet2 set of 8-bit test images (Tables 7 and 8). In
the tables we report results for individual images, average results for the whole BragZone
GreySet2 set, and the average results for 8-bit medium size natural images from the new
set, i.e., for images belonging to the intersection of groups 8bpp and medium (rows labeled
‘Average medium8bpp’). Not all the BragZone GreySet2 images are typical photographic
continuous-tone ones. The france is a computer generated and the library is a compound
image. The washsat is an aerial photo image. Compared to other GreySet2 images, the
latter 3 images contain significantly greater amount of smooth areas (Fig. 10). JPEG-LS
encodes 46.9%, 22.4%, and 10.7% of pixels of france, library, and washsat respectively,
using the run-mode, whereas for the remaining images it is at most 2.9%. In some
images dithering-like patterns are visible; these images are probably dithered palette
color images converted to grayscale. The patterns are most noticeable in library and frog
images, also mandrill, mountain, and peppers seem to be dithered. We also note that
the images washsat, frog, and mountain are of sparse histograms—the number of pixel
intensity levels actually used in these images is 35, 102, and 110 respectively.
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Table 7: The compression speed, BragZone GreySet2 images [MB/s].

23

image pixels CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC
barb 262144 1.8 4.2 10.3 28.7 34.3
boat 262144 1.9 4.4 10.6 28.7 36.3
france 333312 4.3 10.7 23.1 45.5 40.0
frog 309258 2.0 5.3 10.3 30.4 35.8
goldhill 262144 1.7 4.1 10.3 29.0 35.4
lena 262144 1.9 4.4 10.5 28.8 36.6
library 163328 1.6 4.2 11.0 24.1 927.4
mandril 262144 1.6 4.1 9.5 27.9 33.7
mountain 307200 1.9 5.1 10.1 28.8 33.6
peppers 262144 1.8 4.1 10.4 28.5 34.8
washsat 262144 2.1 4.8 11.5 30.2 36.3
zelda 262144 2.1 4.6 11.0 29.5 37.1
Average — erno 2.1 5.0 115 30.0 35.1
GreySet2 ’ ’ ’ ' ’
Average 10046 3.1 7.7 12.1 36.0 44.1
medium8bpp

Table 8: The compression ratio, BragZone GreySet2 images [bpp].

image pixels CALIC-A CALIC-H JPEG-LS CCSDS SZIP SFALIC
barb 262144 4.453 4.569 4.733 5775 5315
boat 262144 4.151 4.233 4.250 5153  4.632
france 333312 0.823 1.684 1.411 92425  3.736
frog 309258 5.853 6.232 6.049 6.657  6.536
goldhill 262144 4.629 4.719 4.712 5280  4.870
lena 262144 4.110 4.184 4.244 5046 4.567
library 163328 5.012 5.228 5.101 5858  6.025
mandrill 262144 5.875 6.031 6.036 6.374  6.256
mountain 307200 6.265 6.538 6.422 6.717  6.840
peppers 262144 4.378 4.488 4.489 5167  4.933
washsat 262144 3.670 4107 4.129 4825  4.526
zelda 262144 3.862 3.973 4.005 4838  4.289
Average o oro) 4.424 4.665 4.632 5343 5.210
GreySet2

Average 10046 3.630 3.826 3.701 4400  4.153

medium8bpp
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Generally, these results adhere to the results obtained for the new set. Average com-
pression speed for GreySet2 images is little lower than the speed obtained for medium8bpp
images, that are of little greater size. The compression speed for all the photographic
images, for a specific algorithm, does not vary significantly. Increased speed is observed
for france image, which contains smooth regions and, by all the algorithms, is compressed
faster than other images of similar size. In case of CALIC and JPEG-LS, the speed is
increased over 2 times compared to other images of similar size. The library image also
contains smooth regions, but this image is smaller than others—as could be expected
SFALIC compresses this image slower compared to bigger images. For some other algo-
rithms presence of smooth regions seems to have greater impact on compression speed,
than the smaller size of the image. The smooth regions in washsat do not influence no-
ticeably the compression speed. In this image, observed in a raster scan order, runs of
pixels (or prediction errors) are much shorter, than in france or in the library (and the
overall amount of pixels in smooth regions is smaller). There are no significant differences
in compression speed between photographic images with and without dithering patterns.

The average SFALIC compression ratio for GreySet2 images compared to ratios ob-
tained by other algorithms, is little worse than in case of the medium8bpp images—
for the GreySet2 CALIC-A obtains a ratio better than SFALIC by 15.1%, whereas for
medium8bpp it is better by 12.6%. The greater differences are due to ratios obtained for
two images (france and library) containing significant amount of smooth areas. If we ex-
clude these images from comparison, then the CALIC-A ratio gets smaller than SFALIC’s
by 10.5% only. For the france image the CALIC-A obtains a ratio of 0.823 bpp, whereas
ratios of other algorithms are from 1.411bpp (JPEG-LS) to 3.736 bpp (SFALIC). Such
large differences cannot be attributed to smooth areas alone. The probable reasons of
large differences among CALIC-A and other algorithms are: the CALIC’s binary mode
(capable of encoding sequences of symbols of 2 intensity levels); the arithmetic coder
used (which as opposed to Golomb—Rice codes is capable of efficiently encoding of any
probability distribution); the predictors used (that in the CALIC and in the JPEG-LS are
actually switching between simple predictors in order to detect edges); the more sophisti-
cated data model used (SFALIC uses prediction error of a single neighbor of current pixel
only to determine pixel’s context) and the algorithms’ ability to adapt quickly to rapid
changes of the image characteristics (SFALIC uses the reduced model update frequency
method; SZIP selects the coding method for a whole block of pixels). Note, however,
that france is definitely not a typical continuous tone image and that for such images
special algorithms exist. In [33] a reversible image preprocessing method is proposed,
that in case of the JPEG-LS algorithm is reported to improve the compression ratio for
the france image from 1.411bpp to 0.556 bpp. For images of sparse histograms we may
get significantly better ratios by applying the histogram packing technique, this way the
CALIC compression ratio for washsat, frog, and mountain may be improved by respec-
tively 44.5%, 16.8%, and 18.9% (similar ratio improvement is reported for the JPEG-LS
algorithm) [34]. We also notice for all the algorithms, that the average ratios for photo-
graphic images containing visible dithering patterns are noticeably worse, than average
ratios for the remaining photographic images.
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4 CONCLUSIONS

The presented predictive and adaptive lossless image compression algorithm was designed
to achieve high compression speed. The prediction errors obtained using simple linear
predictor are encoded using codes adaptively selected from the modified Golomb—Rice
code family. As opposed to the unmodified Golomb—Rice codes, this family limits the
codeword length and allows coding of incompressible data without expansion. Code se-
lection is performed using a simple data model based on the model known from FELICS
algorithm. Since updating the data model, although fast as compared to many other
modeling methods, is the most complex element of the algorithm, we apply the reduced
model update frequency method that increases the compression speed by a couple of hun-
dred percent at the cost of worsening the compression ratio by about 0.5%. This method
could probably be used for improving speed of other algorithms, in which data modeling
is a considerable factor in the overall algorithm time complexity. The memory complexity
is low—algorithm’s data structures fit into contemporary CPUs’ cache memory.

The presented algorithm was compared experimentally to several others. For continu-
ous tone natural and medical images, on average, its compression ratio is by 5.8% worse,
compared to the best ratio obtained by CALIC. Its compression speed is over 2.5 times
higher than the speed of JPEG-LS. Compared to the CCSDS SZIP, i.e., to the algorithm
that does not employ adaptive data model, the presented algorithm obtains similar com-
pression speed, and by 4.5% better compression ratio.

For some images SFALIC compression ratios are significantly worse than ratios of
certain other schemes. The ratios worse than CALIC by up to about 1 bpp were obtained
for images that contain significant amount of highly compressible smooth areas, such as
medical US images. For compound and computer generated images more sophisticated
algorithms may obtain ratios better by even more. For images having sparse histograms,
such as MR and CT medical images, significant ratio improvement is possible both in case
of SFALIC and the remaining algorithms used for comparisons in this paper. Finding
a fast and efficient method of processing the above types of data is a potential field of
future algorithm improvement.

Another type of data requiring huge amounts of storage, for which a fast algorithm
could be practically useful, is volumetric data. A simple method of extending the de-
scribed algorithm to exploit the 3-dimensional characteristics of the data, which is an
interesting field of further research, might be the use of 3-dimensional prediction func-
tions.

The described algorithm is especially good for:

e big images, since it compresses them with the very high speed—over 60 MB/s on
3.06 GHz CPU, i.e., it needs less than 50 CPU cycles per byte of image,

e natural images of 16-bit depth, since it obtains for them very good compression
ratio—it’s ratio differs by couple percent from the ratio of the CALIC algorithm,

e noisy images, since as opposed to the other algorithms, it causes almost no data
expansion even if the image contains nothing, but noise.

Due to the above advantages it is ideally suited for lossless compression of data to be
transmitted from modern medical and general purpose image acquisition devices, that
produce images of high bit depths, big sizes, usually containing certain amount of noise.
Presented algorithm is an alternative for compressing images to be transmitted over the
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network—it may improve the transmission throughput when most other algorithms are
too slow. The algorithm could also be used for compressing and decompressing, on the
fly, large sets of images that are stored in memory for rapid access.
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